

Planck

Graça Rocha

Jet Propulsion Laboratory, California Institute of Technology

For the Planck Collaboration

Planck 2015 Results

'2015: The Spacetime Odyssey Continues' Nordita Institute, Stockholm, June 2015

2015 is the Jubilaeus Annus for the discovery of the Cosmic Microwave Background. We have been enormously privileged to have seen the success of 3 satellite massions//C/K and a number of remarkable suborbital experiments dedicated to exploration of the CMB sky. It is a good moment to reflect briefly on why were we doing this?

~95% of the radiation content of the universe

PLA

PLAV

is in the CMB black body radiation

Why Is the CMB So Important?

- We see directly the Universe 370,000 years after the Big Bang
- The Universe then was very simple
 - No chemistry: p⁺, n, e⁻, D⁺, T⁺, ³He⁺⁺, ⁴He⁺⁺, Li⁺⁺⁺, plus "dark" matter
 - Well-understood physical conditions

3000 K

High vacuum (a few million nuclei per m³)

Extremely uniform ($\sim 1 \text{ part in } 10^5$)

- Calculate how matter and radiation would behave as a function of things that we want to know. Compare with observations, and infer the parameters.

Planck, Graça Rocha

esa

The "Standard ΛCDM" Model...

- ...has been developed over many years:
 - General Relativity
 - Homogeneous, isotropic, and expanding

" Λ ", the cosmological "constant," is now generally referred to as "dark energy"

 Early period of accelerated expansion, cosmological inflation, driven by "some physics"

Quantum fluctuations seeded the present large-scale matter distribution via gravitational instability

Perturbations were nearly scale-invariant, adiabatic, Gaussian distributed – all those properties to be determined from measurements

esa

Parameters

- $A_{
 m s},\,n_{
 m s}$ inflation fluctuations; $10^{-35}\,
 m s$;
 - scale invariance ruled out at σ
- $\Omega_{\rm b}h^2$, $\Omega_{\rm c}h^2$ baryons and cold dark matter; first few minutes
 - 0.6% and 1.1% precision
- $\theta_{\rm MC}$ sound horizon; 370,000 years
 - 0.03% precision
- τ reionization optical depth; 13.8 billion years

Dramatic improvements in the quality of CMB anisotropy measurements since the discovery reported in 1992 by COBE-DMR have put the term "precision cosmology" into a new category, and allowed a continuing race for determination, with ever growing fidelity, of those cosmological parameters.

Planck, Graça Rocha

"Last" word on pre-Planck determination of parameter values in the standard Λ CDM model (from early 2013, temperature measurementsbased, except WMAP9-driven tau)

Planck, Graça Rocha

esa

TABLE I. Standard $\Lambda \rm CDM$ parameters from the combination of WMAP9, ACT and SPT.

Parameter	WMAP9	WMAP9	WMAP9
	$+\mathrm{ACT}$	+SPT	$+ACT+SPT^{a}$
$100\Omega_b h^2$	2.260 ± 0.041	2.231 ± 0.034	2.252 ± 0.033
$100\Omega_c h^2$	11.46 ± 0.43	11.16 ± 0.36	11.22 ± 0.36
$100 heta_A$	1.0396 ± 0.0019	1.0422 ± 0.0010	1.0424 ± 0.0010
au	0.090 ± 0.014	0.082 ± 0.013	0.085 ± 0.013
n_s	0.973 ± 0.011	0.9650 ± 0.0093	0.9690 ± 0.0089
$10^9\Delta_{\mathcal{R}}^2$	2.22 ± 0.10	2.15 ± 0.10	2.17 ± 0.10
$\Omega_{\Lambda}{}^{b}$	0.716 ± 0.024	0.737 ± 0.019	0.735 ± 0.019
σ_8	0.830 ± 0.021	0.808 ± 0.018	0.814 ± 0.018
t_0	13.752 ± 0.096	13.686 ± 0.065	13.665 ± 0.063
H_0	69.7 ± 2.0	71.5 ± 1.7	71.4 ± 1.6
$100r_s/D_{V0.57}$	7.50 ± 0.17	7.65 ± 0.14	7.66 ± 0.14
$100r_s/D_{V_{0.35}}$	11.29 ± 0.31	11.56 ± 0.26	11.57 ± 0.26
best fit χ^2	7596.0	7617.1	7640.7

- ^a The combination ACT+SPT uses ACT-E data only. We report errors at 68% confidence levels.
- ^b Derived parameters: Dark energy density, the amplitude of matter fluctuations on 8 h^{-1} Mpc scales, the age of the Universe in Gyr, the Hubble constant in units of km/s/Mpc, and the galaxy correlation scales at redshifts 0.57 and 0.35.

ACDM Model Parameters

Planck 2015 – the latest suite of cosmological parameters (caveats notwithstanding, first time inclusion of TE&EE)

Parameter	TT	TT, TE, EE + lensing	N_{σ}
$\Omega_{ m b}h^2$	0.02222 ± 0.00023	0.02226 ± 0.00016	139
$\Omega_{ m c}h^2$	0.1197 ± 0.0022	0.1193 ± 0.0014	85
$100\theta_{\rm MC}$	1.04085 ± 0.00047	1.04087 ± 0.00032	3250
au	0.078 ± 0.019	0.063 ± 0.014	4.5
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.059 ± 0.025	122
<i>n</i> _s	0.9655 ± 0.0062	0.9653 ± 0.0048	(7.2)
H_0	67.31 ± 0.96	67.51 ± 0.64	105
$\Omega_{\rm m}$	0.315 ± 0.013	0.3121 ± 0.0087	36
σ_8	0.829 ± 0.014	0.8150 ± 0.0087	94
$z_{ m re}$	9.9 ± 1.9	8.5 ± 1.4	6
$z_{\rm recomb}$	1090.09 ± 0.42	1090.00 ± 0.29	3750

PI

CMB field in general, Conclusion

- and
- The Planck mission has been stunningly successful.
- Impressive confirmation of the standard cosmological model.
 - Precise constraints on model and parameters.
 - Tight limits on deviations from base model.
 - Some indications of internal and external tensions, but with only modest statistical significance.
 - No evidence for cosmological non-Gaussianity
 - "Simple" inflation favored
 - Ties together many things: Distribution of matter (lensing), clusters, neutrinos, helium and deuterium abundances, hydrogen transitions
 - Plus a lot of astrophysics from all-sky surveys at nine frequencies
- Full 2015 release starting soon, in three phases
- Final data release at the end of 2015/beginning of 2016
 - New analysis should improve data quality even more for the final release!

esa

Why Is the CMB So Important? — cont'd

As the light travels to us on its 13.8 billion year journey it is affected by the intervening parts of the Universe.

- Path bent by mass
- Spectrum changed by hot gas in galaxy clusters
- Photons scattered by reionized hydrogen

Planck, Graça Rocha

Nordita, Stockholm, 3 June 2015

PLANCK

Lensing smoothes out the peaks and alters the statistics of the CMB

Intervening large-scale potentials deflect CMB photons and distort the CMB.

Lensing potential: ϕ Deflection field: $\mathbf{d} = \nabla \phi$ Convergence: $\kappa = \frac{1}{2} \nabla \cdot \mathbf{d}$

Lens-speak:

The RMS deflection is about 2.7 arcmins, but the deflections are coherent on degree scales.

From Sudeep Das

$T(\hat{n}) \ (\pm 350 \mu K)$

 $\mathbf{B}(\hat{n})~(\pm 2.5 \mu K)$

15

$T(\hat{n}) \ (\pm 350 \mu K)$

$\mathbf{B}(\hat{n}) \ (\pm 2.5 \mu K)$

16

♦ Primary scientific goal:

To measure the temperature anisotropies of the CMB to fundamental limits down to angular resolution of 5arcmin; also measure polarization better than ever before

- ♦ Fly at Sun-Earth L2 point
- \diamond Use 4-stage cooling system
- ♦ Carry two instruments:
- Low Frequency Instrument (LFI), 20-K cryogenic amplifiers
- High Frequency Instrument (HFI), 0.1-K bolometers
- ♦ Observe at 9 frequency channels:
 LFI 30, 44, 70 GHz, and
 HFI 100, 143, 217, 353, 545, 857 GHz
 to deal with foregrounds

Planck is the 3rd Generation Space CMB Mission

- Formally: "ESA mission with significant participation of NASA"
- Translation: thermal design, sorption coolers, all bolometers, delivery of ERCSC,

Planck Telescope 1.5x1.9m off-axis Gregorian T = 50 K

LFI Radiometers 30-70 GHz, T = 20 K

HFI Bolometers 100-857 GHz, T = 0.1 K

Planck Collaboration

The Planck Collaboration

Planck, Graça Rocha

NASA

PLAN

Measuring the CMB

- CMB spectrum peaks between 100 and 200 GHz
- Everything else that radiates at the same frequencies will be seen as well.
 - Have to be able to separate the different sources.

Temperature

- All components smoothed to 1°
- Sky fractions 81–93% of sky

Planck, Graça Rocha

Polarization

- All components smoothed to 40'
- Sky fractions 73–93% of sky

PLANCK

2015: Planck full mission

- Second Planck data release: Full mission data (12 Aug 2009 23 Oct 2013)
- Planck 2015 release has better S/N and takes full advantage of multiple fullsky redundancies (main motivation for the extension) – *Surveys & Years*

Due to Planck scanning strategy, odd and even surveys couple differently with sky signal

Odd and even surveys have different far sidelobe pick up

m, 3 June 2015

- Frequency maps and CMB maps
- Angular power spectrum
- Likelihood
 - CMB+lensing Temperature+Polarisation;
 - Low-ell likelihood based on LFI 70 GHz (replaces WMAP)
- Foregrounds
 - Dust (temp and pol), Synchrotron (temp and pol), Free-Free, Spinning Dust, CO emission;
- Map of integrated lensing potential
- New catalogue of compact sources
- New catalogue of SZ sources
- Cosmological parameters
- Constraints on B-modes, Bicep2/Keck/Planck coll.
- Higher order statistics, etc.

PLA

esa

2015: Planck data & products:

- More data: 48/29 months of LFI/HFI observations, therefore further checks. ☺
- Improved data processing:
 - systematics removal, calibration, beam reconstruction
 - Changes to the filtering applied to remove "4-K" cooler lines from the time-ordered data (TOD); Changes to the deglitching algorithm used to correct the TOD for cosmic ray hits; Improved absolute calibration based on the spacecraft orbital dipole;more accurate models of the beams, accounting for the intermediate and far side-lobes, etc..
- Improved foreground model
 - Larger sky-fraction used for analysis
- More robust to systematics:
 - based on half-mission cross power spectra of frequency channels and half-mission auto-spectra of CMB maps
- The 2015 analysis includes polarization:
 - I<30: T from Commander (93%), Polarisation from 70GHz (-S2 & S4, 47%), cleaned with 30 & 353GHz
 - High-resolution High-Pass-Filtered CMB Q and U maps , analysis for 30<1<2000 for Commander, NILC, SEVEM and SMICA

Planck, Graça Rocha

2105: Cosmology from Planck: Standard model and beyond

Lets's start with what has not changed:

- **ACDM** still a good fit.
- The Universe is still very flat
- Parameters and major cosmological inferences from 2013.
- Power asymmetry at large angular scales
 - Features on 2015 full mission data are very similar to 2013 nominal mission data

Now what's new:

- Typical uncertainty reduced by more than **25%**.
- Photometric calibration increased by **0.8%**.
 - Uncertainty now 0.05%. Excellent agreement on orbital dipole between WMAP, LFI & HFI! ^(C)
- Thomson τ lower by ~ 1σ (so z_{re} decreased ~ 1σ)
 - but calibration increased power so σ_8 hardly changed
- n_s increased by ~0.7 σ
- ω_b increased by ~0.6 σ and error decreased.
- Limits on isocurvature modes, $\Omega_{\rm K}$, $m_{\rm v}$, $\Delta N_{\rm eff}$, $f_{\rm nl}$, DM annihilation etc. all tighter. No deviations detected

Planck, Graça Rocha

143 GHz

Planck, Graça Rocha

courtesy of K. Gorski

Calibration Update

Planck, Graça Rocha

Nordita, Stockholm, 3 June 2015

PLANC

Component Separation

- For CMB and foreground maps (Used for higher-order statistics, foreground studies)
 - Separate diffuse foregrounds at map level Commander, NILC, SEVEM, SMICA
 - Handle "discrete" foregrounds various ways depending on use
- For likelihood and parameters (second-order statistics)
 - Model and subtract both diffuse and discrete foregrounds at the power spectrum level

PLAI

CMB and Foreground Stokes I Maps

esa

Four Color Composite Image of the Foreground Sky

The Universe, Age 370,000 Years

esa

CMB and Foreground Stokes Q, U Maps

NASA

Dust Temperature and Polarization at 353 GHz

Total intensity encoded in colours

Polarization encoded in shaded striations.

Polarization orientation is at 90° from the striations, which indicate the direction of the magnetic Planck, Graça Rocha field projected on the sky. Planck Graça Rocha Nordita, Stockholm, 3 June 2015

	Commander	NILC	SEVEM	SMICA
HMHD RMS @ 60'	0.64	0.76	0.76	0.70

Planck, Graça Rocha

- The Planck mission has been very successful!
- Impressive confirmation of the standard cosmological model.
 - Precise constraints on model and parameters.
 - Tight limits on deviations from base model.
 - Some indications of internal and external tensions, but with only modest statistical significance.
- New analysis should improve data quality even more for the next release!
 - Expect even better polarization measurements.

esa

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Appendix

Additional slides

Fig. 8. Marginalized constraints on the reionization optical depth in the base ACDM model for various data combinations. Solid lines do not include low multipole polarization; in these cases the optical depth is constrained by *Planck* lensing. The dashed/dotted lines include LFI polarization (+lowP), or the combination of LFI and WMAP polarization cleaned using 353 GHz as a dust template (+lowP+WP).

PLANCK

 τ shifts towards a lower value

Better FG (dust) cleaning with Planck 353GHz channel

WMAP9 cleaned with Planck 353GHz exhibits a similar shift

The τ measurement from CMB is difficult because it is a small signal, confined to low multipoles, requiring accurate control of instrumental systematics and polarized foreground emission.

Nordita, Stockholm, 3 June 2015

Multipole *l*

Multipole *l*

Lensing Spectrum

• Constrains $\sigma_8\Omega_{
m M}^{1/4}$ to 3.5%!

esa

NA SA

PLANC

Polarization Spectra, Same Model

- Red curve is the prediction based on the best fit TT in base ACDM
 - 2015 polarisation data and results are preliminary because all systematic and foreground uncertainties have not been exhaustively characterised – we are looking at a precision level of

$O(1) \ \mu K^2 \ level$

green line - estimate of the (uncorrected) beam mismatch systematic effect, possibly the largest one at high-ell: results depending on this level of precision, $O(1) \mu K^2$ level, may therefore be subject to revision.

Planck, Graça Rocha

PLAN

Power spectra and (CMB, FG) Best Fit Model TT & EE, higher-order stats

We cannot tell the methods apart within the spectral uncertainties Higher order statistics - consistency with Gaussianity In Planck 2015 results. IX, XII

Planck, Graça Rocha

No major surprises ! Nordita, Stockholm, 3 June 2015

PLA

TE, EE Compilation Power Spectrum

Polarization measurements consistent with Planck Planck Λ CDM model shown as solid line

NASA

PLANC

BB Compilation

PLAN

Gravitational lensing by large scale structure PLANCK Lensing B modes

Planck, Graça Rocha

Nordita, Stockholm, 3 June 2015

Fig. 6. Comparison of the base ACDM model parameter constraints from Planck temperature and polarization data.

ACDM model parameters "Tensions" – H₀

Independent local cosmological probes:

Non-geometric and Geometric determination of H_0 were discordant with Planck 2013 value at 2.5 σ level

CMB estimation of H₀ is model dependent

-> driven towards the Planck value

In Planck 2013 results. XIII

 $WMAP9 + BAO - > H_0 = 68.0 \pm 0.7 km s^{-1} Mpc^{-1}$

Planck, Graça Rocha

ACDM model parameters "Tensions" σ₈

In Planck 2015 results. XIII In Planck 2015 results. XXIV

Planck, Graça Rocha

esa

PLA

0.5

Ζ

0.4

0.6

0.7

0.8

BOSS LOWZ

0.3

0.2

0.1

59

 $f\sigma_8$

0.3

0.2

r vs n_s

<i>r</i> < 0.11	PlanckTT+lowP+lensing+ext
<i>r</i> < 0.10	⁶⁰ PlanckTT+lowP

Planck, Graça Rocha

esa

Nordita, Stockholm, 3 June 2015 Model dependent

Planck 2015: Inflationary Scenarios

esa

BICEP2 and Keck Array

PL

BICEP2 2008-2011

Keck Array 2011-...

Compact cold refractive optics optimized for the angular scales of the inflationary signal Superconducting phased antenna arrays Observation at 150 GHz (Keck 2014 also at 95 GHz) Focus on $\sim 400 \text{ deg}^2$ patch = 1% of the sky **3yrs of BICEP2 + Keck 2012/13**

 \rightarrow Final map depth: 3.4 μ K arcmin / 57 nk deg (RMS noise in sq-deg pixels) Nordita, Stockholm, 3 June 2015 Deepest map of the CMB polarization ever made

Pla

esa

Planck 353 GHz

-65

-70

50

Planck 353GHz maps in BICEP2/Keck sky region with full simulation of observation and filtering applied plus āpodization

- Planck is the third generation space mission to observe the CMB: observes the full sky at 9 bands in intensity; 7 in linear polarization
- Full sky measurement, but in any given sky patch much less deep than BICEP2-Keck
- 353 GHz band is very sensitive to polarized dust emission

0

-50

Compare BK 150 GHz (left) with Planck 353 GHz (right) CK

NASA

BB Spectra

➤ Correlation of 150 GHz and 353 GHz B-modes is detected with high signal-to-noise.

Scaling the cross-frequency spectrum by the expected brightness ratio (x25) of dust (right y-axis) indicates that dust contribution is comparable in magnitude to BICEP2/Keck excess over LCDM.

On Shape looks consistent with ℓ -0.42 power law expectation

PLA

Multi-component multi-spectral likelihood analysistanck

A_d @ I=80 & 353 GHz [μK²] 0.05 í٥ 0.1 0.15 0.2 0.25 0.3 r As expected dust and *r* are partially degenerate reducing dust means more of the 150x150 signal needs to be r

6

➤ use single- and cross-frequency spectra between BK 150 GHz and Planck 217&353 GHz channels

- > As addition to basic LCDM lensing signal include gravity wave signal (with amp r) and dust signal with
- > amplitude A_d (specified at ℓ =80 and 353 GHz)
 - For dust SED use modified blackbody model and marginalize over range $\beta_d=1.59\pm0.11$

Planck, Graça Rocha

Use 5 lowest BB bandpowers only $(20 < \ell < 200)$

Nordita, Stockholm, 3 June 2015

Constraints on lensing B-modes

> We next allow the amplitude of the lensing signal to vary while also extending the ℓ range up to 330

 $\succ \text{ We find that the lensing and dust components can be cleanly separated}$ $<math display="block">\bigcirc_{Planck, Graça Rocha} \text{And detect lensing at 7.0 } \sigma \text{ significance} \text{Nordita,}$

esa

Nordita, Stockholm, 3 June 2015

PLAN

