Particle Physics beyond the Higgs

Marcela Carena Fermilab and U. of Chicago 2015: THE SPACETIME ODYSSEY CONTINUES Stockholm, June 4, 2015

What changed in Particle Physics in the last quarter of a century? ~ since I became a professional physicists ~

State of the art in 1990

- Excellent agreement with SM predictions at the quantum level
- Value of the weak mixing angle consistent with SUSY GUT prediction : SUSY re-born
- No observation of proton decay put strong constraints on non-SUSY GUT models

Tevatron Run 1 on the way to LEP 2

- Precision EW measurements at LEP1 suggested a heavy top quark (m_t > 130 GeV)
- Top quark seen at the Tevatron in 1995
- Start of precision studies of the Higgs mass while LEP2 started the quest for the Higgs

What changed in Particle Physics in the last quarter of a century? (cont'd)

The LEP 2 Legacy

- No Higgs discovery but many valuable measurements
- A decay independent lower bound on the Higgs mass
 & an upper bound from PEW data
 - relevant implications for model building:
 i.e. ruled out SM electroweak baryogenesis

The last of the Neutrinos?

 2000: the tau neutrino was observed at Fermilab

Particle physics in the 21st century

Many things happened at the turn of the Century, at the end of the LEP years

- Neutrino Oscillations led to convincing evidence of neutrino masses
 - CMB studies led to conclusive evidence of Dark Matter
 - Supernova and CMB studies led to evidence of Dark Energy

The Higgs was not yet there The Tevatron and the LHC started the race for it.

Fireworks on 4th July 2012

Discovery of a new type of particle
Discovery of a new type of force
Start of a new era for particle physics and cosmology

The Brout-Englert-Higgs + Guralnik-Hagen-Kibble Mechanism & the Higgs Boson (1964)

A fundamental scalar field with self-interactions can cause spontaneous symmetry breaking in the vacuum, respecting the sophisticated choreography of gauge symmetries, and can give gauge bosons mass

One particle left in the spectrum

The fermions also get mass from a new type of interactions (Yukawa int.) with the scalar field **Weinberg-Salam: The electroweak SM (1967**

Higgs explains: My first paper was rejected because it was not relevant for phenomenology

Quantum Fluctuations produce the Higgs at the LHC

"Nothingness" is the most exciting medium in the cosmos!

Photon propagates in Quantum Vacuum Quantum fluctuations create and annihilate "virtual particles" in the vacuum

Higgs decays into 2 Photons

Higgs decay into 4 leptons via virtual Z/W bosons

Also main production channels involve virtual particles

No doubt that a Higgs boson has been discovered

Are we Done? Not really, much to explain yet

Dark Matter, Baryogenesis, Dynamical Origin of Fermion Masses, Mixings, CP Violation, Tiny Neutrino Masses,

None of the above demands NP at the electroweak scale, but...

The Higgs is special : it is a scalar

Although the SM with the Higgs is a consistent theory, light scalars like the Higgs cannot survive in the presence of heavy states at GUT/String/Planck scales

Also, many other open questions:

Do forces unify? Is the proton (ordinary matter) stable ? Are neutrinos their own antiparticle? Are there more generations of matter? What about Dark Energy ?

And some interesting electroweak scale anomalies !

Signals which are two to three standard deviations away from the expected SM predictions

e.g. Anomalous magnetic moment of the muon, Higgs decay to $\tau\mu$, Excess in Dibosons, Anomalous events in same flavor, opposite sign leptons, ...

125 GeV is suspiciously light for a composite Higgs boson but it is suspiciously heavy for minimal SUSY

Additional option: Higgs as part of an extended sector (e.g. 2HDM) to explain flavor from the electroweak scale

Composite Higgs Models

The Higgs does not exist above a certain scale, at which the new strong dynamics takes place → dynamical origin of EWSB

> New strong resonance masses constrained by Precision Electroweak data and direct searches Higgs
>
> scalar resonance much lighter that other ones

Supersymmetry: a fermion-boson symmetry The Higgs remains elementary but its mass is protected by SUSY $\rightarrow \delta m^2 = 0$

Flavor from the electroweak scale

Flavor hierarchies arise from a Froggatt-Nielsen mechanism with two Higgs doublets jointly acting as a flavon

All options imply changes in the Higgs phenomenology and beyond

Composite Higgs Models The Higgs as a pseudo Nambu-Goldstone Boson (pNGB)

QCD with 2 flavors: global symmetry $SU(2)_L \times SU(2)_R / SU(2)_V$.

 $\pi^{+-}\pi^{0}$ are Goldstones associated to spontaneous breaking

$$g, g' \to 0 \qquad \& \qquad m_q \to 0$$

$$\Rightarrow m_\pi = 0$$

$$m_q \neq 0 \Rightarrow m_\pi^2 \simeq m_q B_0$$

$$e \neq 0 \Rightarrow \overline{o} n_{\pi^{\pm}}^2 \simeq \frac{e^2}{16\pi^2} \Lambda_{QCD}^2$$

Higgs is light because is the pNGB -- a kind of pion – of a new strong sector

Mass protected by the global symmetries

A tantalizing alternative to the strong dynamics realization of EWSB

Georgi, Kaplan'84

Higgs as a PNGB

Light Higgs since its mass arises from one loop

Mass generated at one loop: explicit breaking of global symmetry due to SM couplings

Dynamical EWSB: large set of vacua, some of them break $SU(2)_L \times U(1)_Y$

The Higgs potential depends on the chosen global symmetry AND on the fermion embedding in the representations of the symmetry group

Higgs mass challenging to compute due to strong dynamics behavior $m_{H}^{2} \propto m_{t}^{2} M_{T}^{2}/f^{2} \qquad \begin{array}{l} \mbox{Marzoca, Serone, Shu'12,} \\ \mbox{Pomarol, Riva '12} \end{array}$

New Heavy Resonances being sought for at the LHC

Minimal Composite Higgs models phenomenology -- All About Symmetries --

Choosing the global symmetry [SO(5)] broken to a smaller symmetry group [SO(4)]
-- at an intermediate scale f larger than the electroweak scale -- such that:
the Higgs can be a pNBG, the SM gauge group remains unbroken until the EW scale and there is a custodial symmetry that protects the model from radiative corrections

Higgs couplings to W/Z determined by the gauge groups involved SO(5) → SO(4)

Giudice, Grojean, Pomarol Rattazzi'07; Montull, Riva, Salvioni, Torre'13; M.C., Da Rold, Ponton'14

Generic features:

Suppression of all partial decay widths Suppression of all production modes Enhancement/Suppression of BR's dep. on the effect of the total width suppression

Higgs couplings to SM fermions depend on fermion embedding

With Notation MCHM_{Q-U-D} 5, 10, 5-5-10, 5-10-10, 10-5-10 14-14-10, 14-1-10

Representations of SO(5)

Driven by the idea that heavy SM fermions are a mixture of elementary and composite states

Falkowski'07;Azatov et al '11 Montull et al'13; MC, Da Rold, Ponton'14

Minimal Composite Higgs models confronting data h to di-photons h to ZZ

M.C., Da Rold, Ponton'14

After EWSB: $\varepsilon = v_{SM}/f$ and precision data demands f > 500 GeV More data on Higgs observables will distinguish between different realizations in the fermionic sector, providing information on the nature of the UV dynamics Other global symmetry patterns allow for additional Higgs Bosons in the spectrum

Composite pNGB Higgs Models predict light Fermions

Pair production, single production, or exotic Higgs production of vector-like fermions [masses in the TeV range and possibly with exotic charges: Q = 2/3, -1/3, 5/3, 8/3, -4/3]

LHC exclusion for $M_f < 800 \text{ GeV}$]

SUSY has great credentials

•Allows a hierarchy between the electroweak and the Planck/unification scales

 Generates EWSB automatically from corrections to the Higgs potential

Allows gauge coupling unification at ~10¹⁶ GeV

Provides a good dark matter candidate:

Allows the possibility of electroweak baryogenesis

String friendly

Extended Higgs sector

scale

SUSY and Naturalness

• Higgs mass parameter protected by the fermion-boson symmetry: $\delta \mathbf{m^2} = \mathbf{0}$

In practice, no SUSY particles seen yet \rightarrow SUSY broken in nature: $\delta m^2 \propto M_{SUSY}^2$

If $M_{SUSY} \sim M_{weak} \longrightarrow Natural SUSY$ If $M_{SUSY} \ll M_{GUT} \longrightarrow big hierarchy problem solved$

Where are the superpartners?

 Not all SUSY particles play a role in the Higgs Naturalness issue

Higgsinos, stops (sbottoms) and gluinos are special

 So why didn't we discover any SUSY particle already at LEP, Tevatron, or LHC8?

SUSY Weltschmerz*?

ATLAS/CMS are aggressively pursuing the signatures of "naturalness". Specific SUSY models: MSUGRA/CMSSM,GMSB, AMSB, RPV, mini-split SUSY, ... and Simplified Models

prompt decays, long lived/detector-stable particles, displaced vertices, disappearing tracks

*The feeling experienced by someone who understands that physical reality can never satisfy the demands of the mind

Is SUSY hiding?

It is possible to have SUSY models with super-partners well within LHC8 kinematic reach, but with *degraded* missing energy signatures or event activity

Compressed spectra: e.g. stop mass ~ charm mass + LSP mass

M.C., Freitas, Wagner '08

- Stealth SUSY: long decay chains soften the spectrum of observed ATLAS/CMS closing the gaps particles from SUSY decays
- The LSP is not the dark matter, but decays

Still many opportunities for non-minimal "Natural" SUSY models, not yet badly threaten by LHC:

- address flavor as part of the SUSY breaking mechanism connect lightness of 3rd generation sfermions to heaviness of 3rd generation fermions
- alleviate the tension of a Higgs mass that needs sizeable radiative corrections from stop contributions, by raising its tree level value additional SM singlets or triplets or models with enhanced weak gauge symmetries

What does a 125 GeV Higgs implies in SUSY?

SUSY also predicts *at least* four kinds of Higgs bosons, differing in their masses and other properties

Minimal SUSY : $\begin{array}{l} 2 \text{ CP-even Higgs: h and H with mixing angle } \alpha \\ 1 \text{ CP-odd Higgs A and 1 charged Higgs H}^+ \end{array}$

h may be the SM Higgs with $m_h \sim 125 \text{ GeV}$

 $m_h^2 = M_Z^2 \cos^2 2\beta + \Delta m_h^2$

< (91 GeV)²

MSSM large stop mixing or large stop masses (> 5 TeV)

One stop can be light and the other heavy or in the case of similar stop soft masses both stops should be > 500 GeV

Arbey, Battaglia, Djouadi, Mahmoudi, Quevillon; Draper Meade, Reece, Shih Heinemeyer, Stal, Weiglein'11; Ellwanger'11; Shirman et al.

Important radiative corrections with strong dependence on top/stop sector

 $\tan\beta = v_2/v_1$

 $v = \sqrt{(v_1^2 + v_2^2)}$

M. C., Gori, Shah, Wagner '11

The new era of precision Higgs Physics There could be one or more "large" ~10% deviations in Higgs couplings versus the SM, detectable at LHC or HL-LHC running ILC, CEPC, 100 TeV HC?

New light charged or colored particles in loop-induced processes

 Modification of tree level couplings due to Higgs mixing effects

M.C., Gori, Shah, Liantao Wang, Wagner'12

- Through vertex corrections to Higgs-fermion couplings: Very SUSY model dependent This destroys SM relation BR(h \rightarrow bb)/BR(h \rightarrow TT) ~ m_{h}^{2}/m_{T}^{2}
- Decays to new or invisible particles

The new era of precision Higgs Physics (cont'd) All other 3 Higgs bosons may be heavy ~ TeV range ~ (Decoupling) Or as light as a few hundred GeV (Alignment)

Additional Higgs Bosons Searches: $A/H \rightarrow \tau\tau$ (shaded) Vs Precision Higgs Physics: $h \rightarrow WW/ZZ$ (dashed lines)

Complementarity crucial to probe SUSY Higgs sector

> Correlations between deviations may reveal underlying physics

At low tan β : important to look for $H \rightarrow WW+ZZ$, hh, tt ; $A \rightarrow Zh$, tt

M.C., Haber, Low, Shah, Wagner'14 m_A [GeV]

Similar effects in Extensions of the MSSM ~ Add new degrees of freedom that contribute at tree level to m_h ~ e.g. additional SM singlets or triplets or models with enhanced weak gauge symmetries

Two Higgs Doublet models and a Theory of Flavor

• The Froggatt Nielsen mechanism: Effective Yukawa coupling

$$\mathcal{L}_{\mathrm{Yuk}} = \mathbf{y}_t \, \bar{\mathbf{Q}}_L \tilde{\mathbf{H}} t_R + \mathbf{y}_b \, \left(\frac{\mathbf{S}}{\Lambda}\right)^{n_b} \, \bar{\mathbf{Q}}_L \mathbf{H} \, \mathbf{b}_R + \cdots$$

$$egin{aligned} \mathbf{m_t} = \mathbf{y_t} rac{\mathbf{v}}{\sqrt{2}} & \mathbf{m_b} = \mathbf{y_b} rac{\mathbf{v}}{\sqrt{2}} \left(rac{\mathbf{f}}{\Lambda}
ight)^{\mathbf{n_f}} \ & \mathbf{y_{eff}} = \epsilon^{\mathbf{n_f}} \mathbf{y} \quad \epsilon = \mathbf{f}/\Lambda \end{aligned}$$

- New scalar singlet S obtains a vev: <S>=f
 - Quarks & scalars are charged under a global U(1)_F flavor symmetry
- Lighter quarks, more S insertions Issue: Scales undetermined
- How to define the scales? Can the Higgs play the role of the Flavon?

$$V_b \left(rac{S}{\Lambda}
ight)^{n_b} \bar{Q}_L H \, b_R o y_b \left(rac{H^{\dagger} H}{\Lambda^2}
ight)^{n_b} \bar{Q}_L H \, b_R$$

$$\epsilon = {f v^2}/{2\Lambda^2} \equiv {f m_b}/{f m_t} o \Lambda pprox (5-6){f v}$$

Two Main Problems

- The flavon is a flavor singlet
- The Higgs coupling to Bottom quarks is too large $g_{hbb} \propto 3 \; m_b/v$

Babu '03, Giudice-Lebedev '08

Two Higgs Doublet models and a Theory of Flavor (cont'd)

• Type II 2HDM with different flavor charges for H_u and H_d

$$y_b \left(\frac{S}{\Lambda}\right)^{n_b} \bar{Q}_L H b_R \to y_b \left(\frac{H_u H_d}{\Lambda^2}\right)^{n_b} \bar{Q}_L H_d b_R$$

Bauer, MC, Gemmler '15

With effective Yukawa coupling suppression factor

$$\epsilon = {f v_u v_d}/{2\Lambda^2} \equiv {m_b}/{m_t} o \Lambda pprox (5-6) v \left(rac{ aneta}{1+ an^2eta}
ight)^{1/2}$$

The value of $\Lambda \sim 4 \text{ v} \sim 1 \text{TeV}$ (maximizes for tan $\beta = 1$) and can be slightly larger depending on the specific UV completion

Flavor from the Electroweak Scale

 $(V_{\rm CKM})_{12} \approx \varepsilon^0$,

• Flavor Structure by fixing flavor charges

 $m_t \approx \frac{v_u}{\sqrt{2}}, \quad \frac{m_b}{m_t} \approx \frac{m_c}{m_t} \approx \varepsilon^1, \quad \frac{m_s}{m_t} \approx \varepsilon^2, \quad \frac{m_d}{m_t} \approx \frac{m_u}{m_t} \approx \varepsilon^3$

- Higgs couplings to gauge bosons and top quark as in 2HDM
- Light quark coupling to Higgs special!
 ~ in particular Higgs-bottom coupling ~

A predictive model with new Physics at LHC reach (shaded green)

- Interplay of flavor phyiscs with precision Higgs global fit {ATLAS/CMS)
- Great possibilities for direct collider searches for additional Higgs bosons
- New particles in the few TeV range

 $(V_{
m CKM})_{13}pprox (V_{
m CKM})_{23}pprox arepsilon^1$

We are exploring the Higgs connections

- In there a Higgs portal to dark matter and/or other dark sectors?
- Is Baryogenesis generated at the EWSB scale?
- How does the Higgs talk to neutrinos ?
- What are the implications of the Higgs sector for flavor?
- Is the Higgs a portal to new particles and new energy scales?
- Is the Higgs related to inflation or dark energy?
- What is the dynamical origin of the electroweak scale?

Revolutionary advances in our understanding of the Universe are driven by powerful ideas and powerful instruments

Higgs Mechanism $\leftarrow \rightarrow$ LHC

What's Next?

The existence of Dark Matter and the Matter-Antimatter Imbalance implies new physics which may be accessible to experiment in this decade

The Higgs boson may play a key role in understanding both mysteries of matter and even connecting with neutrinos