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1. Is the cosmic acceleration due to something other than 
vacuum energy?

2. Does GR self-consistently describe the acceleration?

Big questions

ΩDE =
ρDE

ρcrit

w =

pDE

ρDE

Wish List

ΩDE, w

ρDE(z) or w(z)

Goals:

Measure 

Measure

Measure any clustering of DE





A difficulty:
DE theory target accuracy, in e.g. w(z), 

not known a priori
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(Δm2)atm ≃ 3×10−3 eV2 

Contrast this situation with:

1. Neutrino masses:
∑mi = 0.06 eV*  (normal)}
∑mi = 0.10 eV*  (inverted)
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2. Higgs Boson mass (before LHC 2012):

mH ≲ O(200) GeV
(assuming Standard Model Higgs)



Planck Collaboration: Planck 2015 results. XIV. Dark energy and modified gravity
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Fig. 7. PCA analysis constraints (described in Sect. 5.1.3). The
top panel shows the reconstructed equation of state w(z) after the
PCA analysis. Vertical error bars correspond to mean and stan-
dard deviations of the q vector parameters, while horizontal error
bars are the amplitude of the original binning. The bottom panel
shows the PCA corresponding weights on w(z) as a function of
redshift for the combination Planck TT+lowP+BSH.

equal. The function F(x) in Eq. (23) is defined as:

F(x) ⌘
p

1 + x3

x3/2 �
ln
⇣
x3/2 +

p
1 + x3

⌘

x3 . (25)

Eq. (23) parameterizes w(a) with one parameter ✏s, while ade
depends on ⌦m and ✏s and can be derived using an approxi-
mated fitting formula that facilitates numerical computation
(Huang et al. 2011). Positive (negative) values of ✏s correspond
to quintessence (phantom) models.

Eq. (23) is only valid for late-Universe slow-roll (✏V . 1
and ⌘V ⌘ M2

PV 00/V ⌧ 1) or the moderate-roll (✏V . 1 and
⌘V . 1) regime. For quintessence models, where the scalar field
rolls down from a very steep potential, at early times ✏V(a) � 1,
however the fractional density ⌦�(a) ! 0 and the combination
✏V(a)⌦�(a) aprroaches a constant, defined to be a second param-
eter ✏1 ⌘ lima!0 ✏V(a)⌦�(a).

One could also add a third parameter ⇣s to capture the time-
dependence of ✏V via corrections to the functional dependence
of w(a) at late time. This parameter is defined as the relative
di↵erence of d

p
✏V⌦�/dy at a = ade and at a ! 0, where y ⌘

(a/ade)3/2/
p

1 + (a/ade)3. If ✏1 ⌧ 1, ⇣s is proportional to the
second derivative of ln V(�), but for large ✏1, the dependence is
more complicated (Huang et al. 2011). In other words, while ✏s
is sensitive to the late time evolution of 1 + w(a), ✏1 captures
its early time behaviour. Quintessence/phantom models can be
mapped into ✏s–✏1 space and the classification can be further
refined with ⇣s. For ⇤CDM, all three parameters are zero.

In Fig. 8 we show the marginalized posterior distribu-
tions at 68.3 % and 95.4 % confidence levels in the param-
eter space ✏s–⌦m, marginalizing over the other parameters.
In Fig. 9 we show the current constraints on quintessence
models projected in ✏s–✏1 space. The constraints are ob-
tained by marginalizing over all other cosmological parameters.
The models here include exponentials V = V0 exp(���/MP)
(Wetterich 1988), cosines from pseudo-Nambu Goldstone
bosons (pnGB) V = V0[1 + cos(��/MP)] (Frieman et al.
1995; Kaloper & Sorbo 2006), power laws V = V0(�/MP)�n

(Ratra & Peebles 1988), and models motivated by supergrav-
ity (SUGRA) V = V0(�/MP)�↵ exp [(�/MP)2] (Brax & Martin
1999). The model projection is done with a fiducial ⌦m = 0.3
cosmology. We have verified that variations of 1 % compared to
the fiducial ⌦m lead to negligible changes in the constraints.

Mean values and uncertainties for a selection of cosmo-
logical parameters are shown in Table 2, for both the 1-
parameter case (i.e., ✏s only, with ✏1 = 0 and ⇣s = 0, de-
scribing “thawing” quintessence/phantom models, where �̇ =
0 in the early Universe) and the 3-parameter case (general
quintessence/phantom models where an early-Universe fast-
rolling phase is allowed). When we vary the data sets and the-
oretical prior (between the 1-parameter and 3-parameter cases),
the results are all compatible with ⇤CDM and mutually compat-
ible with each other. Because ✏s and ✏1 are correlated, caution
has to be taken when looking at the marginalized constraints
in the table. For instance, the constraint on ✏s is tighter for the
3-parameter case, because in this case flatter potentials are pre-
ferred in the late Universe in order to slow-down larger �̇ from
the early Universe. A better view of the mutual consistency can
be obtained from Fig. 9. We find that the addition of polariza-
tion data does not have a large impact on these DE parameters.
Adding polarization data to Planck+BSH shifts the mean of ✏s
by �1/6� and reduces the uncertainty of ✏s by 20 %, while the
95 % upper bound on ✏1 remains unchanged.

5.1.5. Dark energy density at early times

Quintessence models can be divided into two classes, namely
cosmologies with or without DE at early times. Although the
equation of state and the DE density are related to each other,
it is often convenient to think directly in terms of DE density
rather than the equation of state. In this section we provide a
more direct estimate of how much DE is allowed by the data
as a function of time. A key parameter for this purpose is ⌦e,
which measures the amount of DE present at early times (“early
dark energy,” EDE) (Wetterich 2004). Early DE parameteriza-
tions encompass features of a large class of dynamical DE mo-
dels. The amount of early DE influences CMB peaks and can be
strongly constrained when including small-scale measurements
and CMB lensing. Assuming a constant fraction of ⌦e until re-
cent times (Doran & Robbers 2006), the DE density is parame-
terized as:

⌦de(a) =
⌦0

de �⌦e(1 � a�3w0 )
⌦0

de +⌦
0
ma3w0

+⌦e(1 � a�3w0 ) . (26)
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Planck XIV, “Dark Energy and Modified Gravity”, arXiv:1502.01590

Current constraints on w(z):
largely from geometrical measures

BAO+
SNIa+

Hubble const



Dark Energy suppresses 
the growth of density fluctuations

The Virgo Consortium (1996)

with DE

without 
DE

Today1/4 size of today 1/2 size of today
(a=1/4 or z=3) (a=1/2 or z=1) (a=1 or z=0)

Huterer et al, Snowmass report, 1309.5385



Using growth to separate GR from MG:

H2
− F (H) =

8πG

3
ρ, or H2 =

8πG

3

(

ρ +
3F (H)

8πG

)

For example:

Modified gravity GR + dark energy

Growth of density fluctuations can decide:

�̈ + 2H �̇ � 4⇡G⇢M� = 0
(assuming GR)



LSS tracers and their statistical probes

‣Clusters of galaxies
‣1-point function - cluster counts (dn/dlnM), sens to DE
‣2-pt function - sensitive to primordial NG

‣Galaxies: LRG, ELG, also quasars
‣2-point function: pretty well understood, easily measured
‣anisotropic 2-pt function - Redshift Space Distortions (RSD)
‣3-pt function: powerful, but issues in predicting bG(k, a, env)
‣also galaxy-CMB cross-correlation

‣Weak Lensing Shear:
‣2-point function: measurements systematics dominated
‣3-pt function: future; systematics a huge challenge
‣also gal-gal (γ-g), shear peaks, ....



Counting galaxy clusters

d2N

dΩ dz
= n(z)

r(z)2

H(z)

cluster number
(measure)

cluster num. density
(simulations)

distance factors
(theory)

Figure 7: Images of Abell 1835 (z = 0.25) at X-ray, optical and mm wavelengths, exemplifying the regular
multi-wavelength morphology of a massive, dynamically relaxed cluster. All three images are centered on
the X-ray peak position and have the same spatial scale, 5.2 arcmin or ∼ 1.2Mpc on a side (extending out
to ∼ r2500; Mantz et al. 2010a). Figure credits: Left: X-ray: Chandra X-ray Observatory/A. Mantz; Center,
Optical: Canada France Hawaii Telescope/A. von der Linden et al.; Right, SZ: Sunyaev Zel’dovich Array/D.
Marrone.

3.1.2 OPTICAL AND NEAR INFRARED OBSERVATIONS

The optical and near-IR emission from galaxy clusters is predominantly starlight. The galaxy populations
of clusters are dominated by ellipticals and lenticulars (i.e. early-type galaxies). This is particularly true in
the central regions, where the largest and most luminous galaxies are found (Figure 7).

The old and relatively homogeneous nature of their stellar populations leads to the majority of the
galaxies in clusters occupying relatively tight loci in color-magnitude diagrams (e.g. Bower, Lucey & Ellis
1992). This characteristic has proved important to modern cluster finding algorithms.

For optical surveys of clusters, the main observables are the richness (i.e. the number of galaxies within
the detection aperture), luminosity and color. For follow-up observations of individual clusters, aimed in
particular at measuring their masses, the primary observables are the galaxy number density, luminosity,
and velocity dispersion profiles. Typical velocity dispersions for large clusters are of order 1000 kms−1.

For reviews of optical studies of galaxy clusters including discussions of the development of the field, see
Bahcall (1977) and Biviano (2000).

3.1.3 SZ OBSERVATIONS

As CMB photons pass through a galaxy cluster they have a non-negligible chance to inverse Compton
scatter off the hot ICM electrons. This scattering boosts the photon energy and gives rise to a small but
significant frequency-dependent shift in the CMB spectrum observed through the cluster known as the
thermal Sunyaev-Zel’dovich (hereafter SZ or tSZ) effect (Sunyaev & Zeldovich 1972). The magnitude of the
effect is proportional to the line of sight integral of the product of the gas density and temperature. The
kinetic SZ (kSZ) effect is an additional, smaller distortion of the CMB spectrum due to the peculiar motion
of a cluster with respect to the Hubble Flow (i.e. the CMB rest frame). The magnitude of the kSZ effect is
proportional to the peculiar velocity. For a review see Carlstrom, Holder & Reese (2002).

3.1.4 GRAVITATIONAL LENSING

According to general relativity, the gravity associated with a mass concentration will bend light rays passing
near to it in a phenomenon known as gravitational lensing. This can both magnify and distort the images
of background galaxies. With modern data, gravitational lensing can be detected clearly in the statistical
appearance of background galaxies observed through clusters (weak lensing), and in the field (often termed
cosmic shear). Occasionally, lensing can also lead to strong distortions and multiple images of individual
sources (strong lensing). For a galaxy cluster and background galaxies of known redshifts, the measured
gravitational shear can be used to infer the cluster mass. For a recent review of gravitational lensing, see
Bartelmann (2010).
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Figure 9: Examples of cluster data used in recent cosmological work. Top: Measured mass functions of
clusters at low and high redshifts are compared with predictions of a flat, ΛCDM model and an open model
without dark energy (from Vikhlinin et al. 2009b). Bottom: fgas(z) measurements for relaxed clusters are
compared for a Ωm = 0.3, ΩΛ = 0.7, h = 0.7 model (left, consistent with the expectation of no evolution) and
a Ωm = 1.0, ΩΛ = 0.0, h = 0.5 model (right; from Allen et al. 2008). For purposes of illustration, cosmology-
dependent derived quantities are shown (mass and fgas); in practice, model predictions are compared with
cosmology-independent measurements.

cosmological models. In particular, an open universe with no dark energy clearly under-predicts the evolution
of the mass function over the redshift range of the data.

The optically selected maxBCG sample (Koester et al. 2007) employed by Rozo et al. (2010) probes a
different part of the cluster population; it is restricted to lower redshifts than the X-ray samples described
above (0.1 < z < 0.3), but extends to lower masses (M500 > 7 × 1013 M!). This lower effective mass limit,
which changes less strongly with redshift compared to X-ray surveys, makes the maxBCG sample significantly
larger than the others, with > 104 clusters divided into 9 bins based on optical richness. Mean masses for 5
richness ranges were estimated through a weak gravitational lensing analysis of stacked clusters, providing
information from which to constrain the richness–mass relation. The cosmological analysis accounts for the
covariance between cluster counts in each richness bin and the mean lensing mass estimates.

The results obtained by these three groups on flat ΛCDM and constant w models are summarized in
Table 2. Note that, for the two works which fit w models, the results on Ωm and σ8 are dominated by the
low-redshift data and so are not degraded noticeably by the introduction of w as a free parameter; thus all
three sets of constraints are directly comparable. The agreement between the different works, as well as
others listed in Table 2, is encouraging; in particular, the close agreement in the constraints on σ8 reflects
the relatively recent convergence in cluster mass estimates using different techniques, and our improved
understanding of the relevant systematics (Section 3.3; see also, e.g., Henry et al. 2009). Importantly, the

26

Allen, Evrard & Mantz review, 2011

Vikhlinin et al, 2009



12

FIG. 11. Complete set of the two-point functions we use. The top row shows the CMB-galaxy correlation functions, while the
remaining panels are the galaxy-galaxy correlations. Error bars are from 10,000 Monte Carlos, whose means are the red dashed
lines, and the blue line is the standard ⇤CDM cosmology from WMAP7, with constant biases (not a fit to these data).

address systematic concerns using the methods outlined
in Refs. [53, 56].

However, we do not expect these issues to be corre-
lated with other samples, and should be able to trust
correlations between the quasars and other data sets. In
particular, the quasars have a large overlap in redshift
with the NVSS data. Potential SDSS systematics, such
as airmass and seeing, are survey-specific and should thus
have no correlation with NVSS data. In addition, we find
no correlation with NVSS data and potential systematics
(Galactic extinction, stellar density, synchrotron emis-
sion) that trace the structure of the Galaxy. Further,
we trust correlations between the quasars and the LRGs,
as the LRG sample has already proven to be robust to
systematic fluctuations. Thus, while we do not consider
the quasar ACF as a reliable probe of PNG, we will ex-

ploit the external correlations between the quasars and
the other data sets. Also in this case, this includes the
cross-correlation with the CMB, which for the same rea-
sons should be relatively free from contamination, as also
confirmed by its fequency independence shown in G12.

IV. MODELING THE DATA

A. Data Considered

We have discussed six di↵erent large-scale structure
data sets, which yield six auto-correlations, fifteen cross-
correlations and six correlations with the WMAP CMB
temperature. Our final data set is shown in Fig. 11,
including the galaxy-CMB cross-correlations and the

Giannantonio et al. 2013

“Cross - correlations”: galaxy - galaxy
galaxy - QSO
galaxy - CMB
shear -shear
shear-galaxy

apple - orange
.....
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FIG. 5: The total covariance matrix obtained with 5000
Monte Carlos, normalised. The top panel shows the
temperature-only Monte Carlos, while the bottom panel is the
result of the full Monte Carlos. While the diagonal (single ex-
periment) covariances are similar, those between experiments
(off-diagonal) are somewhat different.

1. 2MASS

From Fig. 3 it is clear that the CCF for the 2MASS
survey is consistent with zero. Previous analyses of
these data found some evidence for a positive correla-
tion [11, 12]; however, these were performed in Fourier
space and included modelling of the SZ effect, which man-
ifests itself with anti-correlations at small angular scales.
Indeed, it appears in Fig. 3 that the observed CCF turns
over at small angles. If the smallest four angular bins
are removed, the fit to the CCF is consistent with the
ΛCDM theory; however, it is only significant at the ∼ 1σ
level. In any case, 2MASS appears to have the least sig-

nificant evidence for cross-correlations.

2. SDSS galaxies

The main galaxy sample from the SDSS has a mea-
sured CCF which is also in good agreement with the the-
ory. In this case, we note that we do not find agreement
with the previous result of [13], who reported a measured
CCF of almost double the amplitude that we detect.

After discussions with the authors [13], we jointly
found this discrepancy resulted from an additional clean-
ing cut, where they discarded all galaxies with a large
error on their Petrosian r magnitude, imposing the con-
dition petroMagErr r < 0.2. Imposing this same condi-
tion, we found that we could reproduce their result. Fur-
ther, masking those areas with high proportion of Pet-
rosian error also gave similar results.

However, the motivation for such a cut is unclear. It
is known that the Petrosian magnitudes are not accu-
rate for faint objects, for which the best estimator is
the model magnitude [55]. While having objects with
a well measured magnitude is desirable, we see no reason
why cutting galaxies on the basis of a poor estimate of
their magnitudes should double the correlation with the
CMB. This could happen if it were produced by some
foreground mechanism, such as seeing or reddening, but
we checked that none of the possible foreground maskings
raised the CCF in any way comparable to the aforemen-
tioned cut.

Therefore, lacking a valid reason to include this cut,
and preferring to be conservative, we do not make the
Petrosian error cut and our CCF is thus lower than seen
by Cabré et al. [13]. While it is worrying that a choice of
masking has such a dramatic effect on the amplitude of
the observed cross-correlation, it should be noted that the
cross-correlation was largely independent of other mask-
ing choices.

3. SDSS MegaZ LRGs

The result for the LRG is the highest in comparison
with the ΛCDM theory. It agrees with the result of [13].
A direct comparison with [17] and [16] is more difficult
because these analyses use multiple photometric redshift
bins. Concentrating on [17] (since it also does its analy-
sis in physical space, rather than Fourier space), we find
approximately the same detection significance as their
single redshift bin measurements for similar data sets.
An updated version of this paper (available on the astro-
ph archive, but also unpublished) calculates a global χ2

value using all four of their LRG samples, and detects
a CCF with significance somewhat higher than we mea-
sure in this work. This is likely due in part to a somewhat
larger redshift baseline for their measurement as well as
the fact that they calculated their covariance matrix us-
ing a method similar to our MC1 case. As one can see

Giannantonio et al. 2013

Hardest part of this: 
simulating/calculating the covariance matrix

(that is: clustering in nonlinear regime)
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Figure 2. The observed two-point correlation function ξ̂
ij
+ (θ ). The panels show the different ij redshift bin combinations, ordered with increasing redshift bin

i from left to right, and increasing redshift bin j from lower to upper. Refer to Table 1 for the redshift ranges of each tomographic bin. The errors are estimated
from an analysis of N-body lensing simulations as discussed in Section 3.3. The theoretical curves show our fiducial total GG+GI+II signal as a solid line.
When distinguishable from the total, the GG only signal is shown dashed. The magnitude of the GI signal is shown dot–dashed (our fiducial GI model has a
negative anti-correlated signal) and the II signal is shown dotted, where the amplitude is more than 10−7. The results of the broad two-bin tomographic analysis
of Benjamin et al. (2013) are shown in the lower right corner.

to upper, where the redshift distributions of each bin are shown
and tabulated in Section 3.4. The autocorrelated bins lie along the
diagonal. The data points are calculated using the shear correla-
tion function estimator in equation (4), correlating pairs of galaxies
within the full mosaic catalogue for each of the four CFHTLS
fields. The measurements from each field are then combined using
a weighted average, where the field weight is given by the effective
number of galaxy pairs in each angular bin. Note that the results for
each ij bin from each field were found to be noisy but consistent
[see Kilbinger et al. (2013) for measurements of the higher signal-
to-noise 2D shear correlation function for each CFHTLS field]. The
errors, which include sample variance, are estimated from an anal-
ysis of N-body lensing simulations as discussed in Section 3.3. We
remind the reader that the data are highly correlated, particularly
in the low-redshift bins. The theoretical curves show our fiducial
WMAP7 best-fitting cosmological parameter model, with an A = 1
non-linear intrinsic alignment model, to be a good fit to the data. A
possible exception to this is data from tomographic bin combina-
tions that include the lowest redshift bin, which we discuss further
in Section 4.1. The individual components are shown; GG (dashed),

GI (dot–dashed) and II (dotted) models with the total GG+GI+II
shown as a solid line. For comparison, we also show the results of
the broad two-bin tomographic analysis of Benjamin et al. (2013)
in the lower-right corner to demonstrate the low level of II and GI
contamination expected for this high-redshift selected analysis.

4.1 Tomographic data visualization

With 21 tomographic bin combinations, two statistics ξ̂
ij
+ (θ ) and

ξ̂
ij
− (θ ) and five angular scales, we have a total of p = 210 data

points, half of which are shown in Fig. 2. In the cosmological pa-
rameter constraints that follow, it is this large data vector, and a
correspondingly large covariance matrix, that we use in the likeli-
hood analysis. Purely for improving the visualization of this large
data set, however, we propose the following method to compress
the data, motivated by the different methods of Massey et al. (2007)
and Schrabback et al. (2010).

To compress angular scales, we first calculate a WMAP7 cosmol-
ogy GG-only theory model ξ

ij
fid for each redshift bin combination
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Measured 2-pt correlation func from CFHTLens

CFHTLenS: Tomographic weak lensing 9

Figure 1. Tomographic redshift distribution. The upper panel shows the
effective weighted number of galaxies as a function of their maximum pos-
terior photometric redshift estimate, separated into six tomographic bins
between 0.2 < z

BPZ

< 1.3. The effective weighted number of galaxies in
each redshift bin is constant. The lower panel shows the redshift distribution
for each selected bin as estimated from the weighted sum of the photometric
redshift probability distributions P (z).

P (z) redshift distributions displayed in the lower panel of Figure 1
that we use in this analysis.

3.5 Population Monte Carlo Sampling likelihood analysis
method

In this study we perform a Bayesian likelihood analysis of
CFHTLenS and the auxiliary data, discussed in Section 2, to con-
strain the parameters of a range of cosmological models. To calcu-
late the likelihood values we use the Population Monte Carlo sam-
pling software COSMOPMC4 (Kilbinger et al. 2011), modified to
include an optional simultaneous fit of cosmic shear and the intrin-
sic alignment model outlined in Section 3.2. Future releases of this
software package will include this option. The Population Monte
Carlo method is described in Wraith et al. (2009) along with a com-
parison to the more standard Markov-Chain Monte Carlo method
for cosmological parameter estimation. We also refer the reader to a
detailed discussion of the COSMOPMC analysis of 2D CFHTLenS
cosmic shear data in Kilbinger et al. (2013) for further information
about the methodology.

We assume a matter power spectrum derived from the Eisen-
stein & Hu (1998) transfer function with a Smith et al. (2003) non-
linear correction. For dark energy cosmologies, where the equa-
tion of state of dark energy parameter, w

0

6= �1, a modulation
of the non-linear power is required (McDonald et al. 2006) which
we apply using of the scaling correction from Schrabback et al.
(2010); Refregier et al. (2011). The Smith et al. (2003) halo-model
prescription for the non-linear correction has been calibrated on
numerical simulations and shown to be accurate to between 5 per
cent and 10 per cent over a wide range of k scales (Eifler 2011)
and found to be of sufficient accuracy for the statistical power of
CFHTLenS (Vanderveld et al. 2012). Whilst our assumed transfer

4 CosmoPMC: www.cosmopmc.info

function includes baryonic oscillations on large scales, we are un-
able to include the uncertain effects of baryons on small physical
scales. Semboloni et al. (2011) present an analysis of cosmological
hydrodynamic simulations to quantify the effect of baryon physics
on the weak gravitational lensing shear signal, using a range of dif-
ferent baryonic feedback models. For the ⇠

+

angular scales we use
we would expect baryons to induce at most a ⇠ 10 per cent de-
crease in the signal relative to a dark matter only Universe, in the
mid-to-high redshift tomographic bins where our highest signal-to-
noise measurements are made. This is assuming the ‘AGN feed-
back’ model which leads to the largest changes in the matter power
spectrum of the simulations that were studied by Semboloni et al.
(2011), where we note that this scenario is the one that matches
observed gas fractions in groups. In the cosmological analysis that
follows, we present an additional conservative analysis where the
tomographic data most susceptible to significant errors caused by
baryonic or non-linear effects are removed (see Benjamin et al.
2013, for further discussion). If significant errors exist, however,
the inclusion and marginalisation over the intrinsic alignment am-
plitude A in our analysis, which modulates the amplitude of the
observed shear power spectrum, should work to some extent, to
reduce the impact of these effects in addition to mitigating contam-
ination by intrinsic galaxy alignments.

We use COSMOPMC to analyse CFHTLenS and WMAP7 in-
dependently. For the combined results with BOSS and our assumed
H

0

prior from R11, we importance-sample the WMAP7-only like-
lihood chain, multiplying each sample point with the CFHTLenS,
BOSS and R11 posterior probability. For our CFHTLenS-only flat
⇤CDM analysis we limit our parameter set to the matter density
parameter, ⌦

m

, the amplitude of the matter power spectrum con-
trolled by �

8

, the baryon density parameter ⌦b, the Hubble param-
eter h, and the power spectrum spectral index n

s

. With WMAP7 we
also include into the parameter set the reionisation optical depth ⌧ ,
the Sunyaev-Zel’dovich template amplitude A

SZ

, and the primor-
dial amplitude of the matter perturbations �2

R

, from which we de-
rive �

8

. The equation of state of dark energy parameter, w
0

and
dark energy density parameter ⌦

de

are also included for non-flat or
non-⇤ cosmological models. We use flat priors throughout which
are broad enough to cover the full 3� posterior distribution in each
parameter direction for each combination of data. Throughout the
paper we quote and plot 68 per cent and 95 per cent Bayesian con-
fidence or credibility regions. These regions contain 68 per cent
and 95 per cent of the posterior probability determined from the
multi-dimensional distribution of points from the PMC parameter
sample. All figures showing the resulting joint-constraints on two
parameters, are marginalised over the multi-dimensional parameter
space that is not shown.

4 RESULTS

Figure 2 presents the observed two-point correlation function
ˆ⇠ij
+

(✓) for every tomographic bin combination in our chosen six
redshift bin analysis. With N

t

tomographic bins, there are N
t

(N
t

+

1)/2 independent combinations, or 21 combinations in our case.
The panels show the different ij bin combinations, ordered with
increasing redshift bin i from left to right, and increasing redshift
bin j from lower to upper, where the redshift distributions of each
bin are shown and tabulated in Section 3.4. The auto-correlated
bins lie along the diagonal. The data points are calculated using
the shear correlation function estimator in Equation 4, correlat-
ing pairs of galaxies within the full mosaic catalogue for each of

c� 0000 RAS, MNRAS 000, 000–000

Heymans et al (CFHTLens team), 2013



Next Frontier: Growth (+geom) from LSS

CMB LSS

dimension 2D 3D

# modes ∝lmax
2 ∝kmax

3

can slice in λ only λ, M, bias...

temporal evol. no yes

systematics? relatively 
clean relatively messy

theory modeling easy can be hard



Systematic Errors, top two:

1. Photometric Redshift errors
2. (photometric) Calibration errors



Poster child for the systematics: 
photometric redshift errors

Ma, Hu & Huterer 2006

log (Bias)
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zphot-zspec
from “training set”

Requirements

C. Cunha



(Photometric) calibration errors

‣Detector sensitivity: sensitivity of the pixels on the camera vary along focal plane.  

‣Observing conditions: spatial and temporal variations.

‣Bright objects: The light from foreground bright stars and galaxies.

‣Dust extinction: Dust in the MW absorbs light from the distant galaxies. 

‣Star-galaxy separation: Faint stars erroneously included in the galaxy sample. 

‣Deblending: Galaxy images can overlap. Huterer, Cunha & Fang 2013
Shafer & Huterer 2015 

The large-scale angular power spectrum in the presence of systematics: a case study of SDSS quasars 11

(a) Stellar density (b) Extinction (c) Airmass (d) Seeing (e) Sky brightness

Figure 11. Systematics templates used in this analysis, and the (dimensionless) angular power spectra C̃` of their overdensity maps.

(a) Mask 1 (b) Mask 2 (c) Mask 3

Figure 12. Masks used for the power spectrum analysis of RQCat, in Equa-
torial coordinates. Retained regions are based on thresholds summarised in
Table 2 and the systematics templates of Fig. 11. Additional excised rect-
angles follow Pullen & Hirata (2012). The three masks respectively have
f
sky

= 0.148, 0.121, and 0.101.

3.5 Power spectrum results

We obtained angular band-power estimates with the QML estima-
tor and multipole bins of size �` = 11, which led to a good
balance in terms of multipole resolution and variance of the esti-
mates. We did not use the PCL estimator for the final results be-
cause the geometry of the second and third masks, in addition to
the presence of systematics, yielded significantly suboptimal esti-
mates. To illustrate this point, Fig. 13 shows a comparison of the
PCL and QML covariance matrices and the band-power estimates
of the Mid+High-z subsample for the three masks. Any signifi-
cant increase of the PCL variance compared to that of QML, es-
pecially on diagonal- and nearly-diagonal elements which contain
the most significant contributions, demonstrates the suboptimality
of the PCL prior. For the first mask, the PCL variance of these el-
ements is at most ⇠ 20% greater than the QML variance, indicat-
ing that the resulting estimates are nearly optimal. However, for
the second and third masks, these elements have a PCL variance
up to ⇠ 50% greater than that of QML, and the resulting PCL
estimates significantly differ from the optimal QML estimates, as
shown in the bottom panel of Fig. 13. This effect is less pronounced
for larger multipole bins (e.g., �` = 31), as the likelihood be-
comes less sensitive to the priors on the pixel-pixel covariance ma-
trix. However, the resulting loss of resolution prevents the study of
localised multipole ranges affected by systematics. For these rea-
sons we opted for the QML estimator with �` = 11 in the fi-
nal analysis. We systematically marginalised over the values of the
monopole and the dipole by projecting them out. We used the val-
ues ¯

G

�1

= 1.95 · 10�5

, 1.55 · 10�5

, 1.85 · 10�5 and 8.15 · 10�6

respectively for the shot noise of the four RQCat subsamples, cal-
culated from the average number count per steradian assuming 5%

stellar contamination.

The auto- and cross-spectra of the four RQCat samples are
presented in Figs. 14 and 15, and the �

2 values of the theory pre-
diction are listed in Table 3. We subtracted the shot noise from the
auto-spectra, and used a constant bias, bg = 2.3, following pre-
vious studies of these data (Slosar et al. 2008; Giannantonio et al.
2006, 2008; Xia et al. 2010; Pullen & Hirata 2012). The theory pre-
dictions are summarised in Fig. 10. We also used the exact window
functions Wb` for converting the theory power spectra into band-
powers; see Eq. (17). Figure 16 shows the cross-correlation power
spectra of the quasar samples with the systematics templates, and
Table 4 lists the corresponding �

2 values. Details of the �2 compu-
tation are contained in Appendix C.

In Figs. 14 and 15, the top panels show the final band-power
estimates, where the modes corresponding to the five systematics
templates were projected out. The effect of mode projection on the
estimates is illustrated in the bottom panels, showing the differ-
ences in the QML estimates. Hence, these values can be added to
the estimates in the top panels to recover the results without mode
projection. The change in the covariance of the estimates due to
mode projection is negligible.

3.5.1 Reference mask

Our first mask, which is similar to that used in previous studies
of RQCat (Slosar et al. 2008; Giannantonio et al. 2006, 2008; Xia
et al. 2010; Pullen & Hirata 2012), is mostly based on extinction,
stellar density and seeing cuts, and also excises a few pixels with
extreme values of airmass and sky brightness. When using this ref-
erence mask, the auto-spectrum estimates of the four RQCat sub-
samples exhibit significant excess power in the first multipole bin.
In particular, the cross-correlation of the Low-z sample with the
other samples confirm the presence of systematics in common. The
cross-spectra of the quasar subsamples with the systematics tem-
plates, shown in Fig. 16, enable us to identify the main sources
of contamination responsible for this excess power. In addition to
seeing and airmass, which are the main contaminants in the four
samples, stellar contamination affects the Low-z sample, and dust
extinction and sky brightness contaminate the Mid-z and High-z
samples.

The auto- and cross-spectra are marginally improved by pro-
jecting out the modes corresponding to the systematics templates,
as shown by the small decrease in the �

2 values, summarised in
Tables 3 and 4. In particular, the large-scale power excess persists,
confirming the conclusions by Pullen & Hirata (2012) that the con-

c� 2013 RAS, MNRAS 000, ??–??

Leistedt et al 2013



Explicitly separating information
from growth and geometry

using current data

Ruiz & Huterer, PRD 2015, arXiv:1410.5832



Sensitivity to geometry and growth
2

program has been started very successfully byWang et al.
[17] (see also [18–20] which contained very similar ideas),
who used data available at the time; the constraints how-
ever were weak. Our overall philosophy and approach
are similar as those in Refs. [17–20], but we benefit enor-
mously from the new data and increased sophistication
in understanding and modeling them, as well as the avail-
ability of a few additional cosmological probes not avail-
able in 2007.

The paper is divided as follows: we present the reason-
ing behind our approach in section II. In section III we
review the cosmological probes used in the analysis. A
review of the analysis method is provided in section IV,
and we present our constraints on parameters in section
V. We discuss these results in section VI, and give final
remarks in section VII.

II. PHILOSOPHY OF OUR APPROACH

We would like to perform stringent but general consis-
tency tests of the currently favored ⇤CDM cosmological
model with ⇠25% dark plus baryonic matter and ⇠75%
dark energy, as well as the more general wCDM model.
The ⇤CDM model, favored since even before the direct
discovery of the accelerating universe (e.g. [21]), is in ex-
cellent agreement with essentially all cosmological data,
despite occasional mild warnings to the contrary ([22–
25]). There has been a huge amount of e↵ort devoted
to tests alternative to wCDM – most notably, modified
gravity models where modifications to Einstein’s Gen-
eral Theory of Relativity, imposed to become important
at late times in the evolution of the universe and at large
spatial scales, make it appear as if the universe is accel-
erating if interpreted assuming standard GR.

Here we take a complementary approach, and study
the internal consistency of the wCDM model itself, with-
out assuming any alternative model. We split the cosmo-
logical information describing the late universe into two
classes:

• Geometry: expansion rate H(z) and the comoving
distance r(z), and associated derived quantities.

• Growth: growth rate of density fluctuations in lin-
ear (D(z) ⌘ �(z)/�(0)) and non-linear regime.

Regardless of the parametric description of the geome-
try and growth sectors, one thing is clear: in the standard
model that assumes General Relativity with its usual re-
lations between the growth and distances, the split pa-
rameters Xgeom

i and Xgrow
i have to agree – that is, be

consistent with each other at some statistically appro-
priate confidence level. Any disagreement between the
parameters in the two sectors, barring unforseen remain-
ing systematic errors, can be interpreted as the violation
of the standard cosmological model assumption.

The split parameter constraints provide very general,
yet powerful, tests of the dominant paradigm. They can

Cosmological Probe Geometry Growth

SN Ia H
0

DL(z) —–

BAO

✓
D2

A(z)
H(z)

◆
1/3

/rs(zd) —–

CMB peak loc. R /
p

⌦mH2

0

DA(z⇤) —–

Cluster counts
dV

dz

dn

dM

Weak lens 2pt
r2(z)
H(z)

Wi(z)Wj(z) P

✓
k =

`

r(z)

◆

RSD F (z) / DA(z)H(z) f(z)�
8

(z)

TABLE I. Summary of cosmological probes that we used and
aspects of geometry and growth that they are sensitive to.
The assignments in the second and third column are neces-
sarily approximate given the short space in the table; more
detail is given in respective sections covering our use of these
cosmological probes. Here rs(zd) refers to the sound horizon
evaluated at the baryon drag epoch zd.

be compared to more specific parametrizations of depar-
tures from GR — for example, the � parametrization
[26], or the various schemes of the aforementioned com-
parison of the Newtonian potentials. Our approach is
complementary to these more specific parametrizations:
while perhaps not as powerful in specific instances, it is
equipped with more freedom to capture departures from
the standard model.
Most of the cosmological measurements involve large

amounts of raw data, and their information is often com-
pressed into a very small number of meta-parameters.
For example, weak lensing shows the two-point cor-
relation function, cluster number counts are given in
mass bins, while baryon acoustic oscillations, cosmic
microwave background, and redshift space distortions
information is often captured in a small number of
meta-parameters which are defined and presented below.
[Type Ia supernovae are somewhat of an exception, since
we use individual magnitude measurements from each
SN from the beginning.] Given that in some cases one
assumes the cosmological model (often ⇤CDM) to derive
these intermediate parameters, the question is whether
we should worry about using the meta-parameters to
constrain the wider class of cosmological models where
growth history is decoupled from geometry. Fortunately,
in this particular case our constraints are robust: cer-
tainly for surveys that specialize in either geometry and
growth alone, the meta-parameters are de facto correct
by construction, and capture nearly all cosmological in-
formation of interest. For probes that are sensitive to
both growth and geometry, like the weak lensing and
cluster counts, the quantities used for the analysis —
correlation functions and number counts, respectively —
provide a general enough representation of the raw data
that one can relax the assumption that growth and ge-
ometry are consistent without the loss of robustness and



Idea: compare geometry and growth
e.g. Wang, Hui, May & Haiman 2007

Ruiz & Huterer, 2015

Our approach:

Double the standard DE parameter space
(ΩM=1−ΩDE and w):

⇒ ΩM
geom

, wgeom ΩM
grow

, wgrow

[In addition to other:
standard parameters: ΩMh2 ΩBh2, ns, A)
nuisance parameters: probe-dependent]



(Current) Data used

SNIa

Clusters 
(MaxBCG)

BAO (6dF, SDSS LRG, BOSS CMASS)

Weak Lensing (CFHTLens)

CMB (Planck peak location)

RSD

r⟂

r‖



Standard parameter space

EU = Early Universe prior from Planck (ΩMh2, ΩBh2, ns, A)
SH = Sound Horizon prior from Planck (ΩMh2, ΩBh2)



Omega matter: geometry vs. growth

* SN not the 
recalibrated JLA 

compilation - need 
to update; will 
move ΩM

grow up



w (eq of state of DE): geometry vs. growth

Evidence for
wgrow > wgeom:

3.3-σ

Ruiz & Huterer, 2015



Therefore:
growth probes point to even less growth

than LCDM with ~Planck parameters

(i.e. wgrow > −1)

Probably equivalent to these recent findings:
● σ8 from clusters is lower than that from CMB (eg. Hou et al, 
Bocquet et al, Costanzi et al)

● σ8 from WL is lower than that from CMB (eg. MacCrann et al)

● evidence for neutrino mass (eg. Beutler et al, Dvorkin et al)

● evidence for interactions in the dark energy sector (eg. 
Salvatelli et al)

(but the evidence is still not very strong...)





RSD prefer wgrow > −1 (slower growth than in LCDM)

(evidence 3.1-σ)
(evidence 2.3-σ)



RSD prefer wgrow > −1 (slower growth than in LCDM)

(evidence 3.1-σ)

“Are there cracks in the Cosmic Egg?”
Michael Turner, Aspen, summer 2014

(evidence 2.3-σ)



Dark Energy Survey Instrument (DESI)

•Huge spectroscopic survey on Mayall telescope (Arizona)
•~5000 fibres, ~15,000 sqdeg, ~30 million spectra
•LRG in 0 < z < 1, ELG in 0 < z < 1.5, QSO 2.2 < z < 3.5
•Great for dark energy (RSD, BAO)
•Great for primordial non-Gaussianity - P(k, z), bispectrum...
•Start ~2018, funding DOE + institutions

Logo 

5 

Dave Moore, Artist 
Pick up from Masaaki after lunch…. 



Conclusions

‣ Growth of structure gives an extremely powerful set 
of measurements to complement geometrical measures 

‣ Systematics are challenging but entirely possible to 
overcome: require sophisticated statistical techniques. 
Principal challenge: photometric calibration errors.

‣Separating growth from geometry is a good way to 
get a) constraints b) insights into DE constraints; it now 

indicates a 3-sigma growth ≠ geometry discrepancy



EXTRA 
SLIDES



Redshift Space Distortion data



(Pretty high) neutrino mass can relieve the 
tension

Ruiz & Huterer, arXiv:1410.5832


