Growth of Cosmic Structure: the Next Frontier

Dragan Huterer Physics Department University of Michigan

[On sabbatical at MPA Garching, Jan-Aug 2015]

 $w \equiv \frac{p_{\rm DE}}{\rho_{\rm DE}}$

Current evidence for dark energy is impressively strong

Current evidence for dark energy is impressively strong

Big questions

1. Is the cosmic acceleration due to something other than vacuum energy?

2. Does GR self-consistently describe the acceleration?

Wish List

Goals:

 $w = \frac{p_{\rm DE}}{\rho_{\rm DE}}$ $\Omega_{\rm DE} = \frac{\rho_{\rm DE}}{\rho_{\rm crit}}$

Measure Ω_{DE}, w Measure $\rho_{DE}(z)$ or w(z)Measure any clustering of DE

A difficulty:

DE theory target accuracy, in e.g. w(z), not known *a priori*

Contrast this situation with:

A difficulty:

DE theory target accuracy, in e.g. w(z), not known *a priori* Contrast this situation with:

1. Neutrino masses: $(\Delta m^2)_{sol} \approx 8 \times 10^{-5} \text{ eV}^2$ $(\Delta m^2)_{atm} \approx 3 \times 10^{-3} \text{ eV}^2$ $\sum_{i=0.10 \text{ eV}^* \text{ (inverted)}}^* (\text{assuming } m_3=0)$

A difficulty:

DE theory target accuracy, in e.g. w(z), not known *a priori* Contrast this situation with:

1. Neutrino masses:

$$(\Delta m^2)_{sol} \approx 8 \times 10^{-5} \text{ eV}^2$$

 $(\Delta m^2)_{atm} \approx 3 \times 10^{-3} \text{ eV}^2$

$$\sum_{i=0.10 \text{ eV}^* \text{ (inverted)}} \sum_{i=0.10 \text{ eV}^* \text{ (inverted)}}$$

2. Higgs Boson mass (before LHC 2012): m_H ≤ O(200) GeV (assuming Standard Model Higgs)

Current constraints on w(z): largely from geometrical measures

Planck XIV, "Dark Energy and Modified Gravity", arXiv:1502.01590

Dark Energy suppresses the growth of density fluctuations

(a=1/4 or z=3) 1/4 size of today (a=1/2 or z=1) 1/2 size of today

(a=1 or z=0) Today

with DE

without DE

Huterer et al, Snowmass report, 1309.5385

The Virgo Consortium (1996)

Using growth to separate GR from MG:

For example:

Modified gravity

GR + dark energy

Growth of density fluctuations can decide: $\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_M \delta = 0$ (assuming GR) LSS tracers and their statistical probes

Clusters of galaxies

1-point function - cluster counts (dn/dlnM), sens to DE
2-pt function - sensitive to primordial NG

Galaxies: LRG, ELG, also quasars

2-point function: pretty well understood, easily measured
anisotropic 2-pt function - Redshift Space Distortions (RSD)
3-pt function: powerful, but issues in predicting b_G(k, a, env)
also galaxy-CMB cross-correlation

•Weak Lensing Shear:

2-point function: measurements systematics dominated
3-pt function: future; systematics a huge challenge
also gal-gal (γ-g), shear peaks,

Counting galaxy clusters

Allen, Evrard & Mantz review, 2011

cluster number (measure)

Hardest part of this: simulating/calculating the covariance matrix (that is: clustering in nonlinear regime)

Giannantonio et al. 2013

Weak Gravitational Lensing

WL systematics are very challenging: $\gamma^{\rm obs} = \gamma^{\rm true}(1+m) + \gamma^{\rm add} + \gamma^{\rm noise}$

Measured 2-pt correlation func from CFHTLens

Next Frontier: Growth (+geom) from LSS

	CMB	LSS
dimension	2D	3D
# modes	$\propto l_{\rm max}^2$	∝k _{max} ³
can slice in	λonly	λ, M, bias
temporal evol.	no	yes
systematics?	relatively clean	relatively messy
theory modeling	easy	can be hard

Systematic Errors, top two:

Photometric Redshift errors
 (photometric) Calibration errors

Poster child for the systematics: photometric redshift errors

Zphot-Zspec from "training set"

Ma, Hu & Huterer 2006

(Photometric) calibration errors

Detector sensitivity: sensitivity of the pixels on the camera vary along focal plane.
 Observing conditions: spatial and temporal variations.

Bright objects: The light from foreground bright stars and galaxies.

Dust extinction: Dust in the MW absorbs light from the distant galaxies.

Star-galaxy separation: Faint stars erroneously included in the galaxy sample.

Deblending: Galaxy images can overlap.

Huterer, Cunha & Fang 2013 Shafer & Huterer 2015

Leistedt et al 2013

Explicitly separating information from growth and geometry using current data

Ruiz & Huterer, PRD 2015, arXiv:1410.5832

Sensitivity to geometry and growth

Cosmological Probe	Geometry	Growth
SN Ia	$H_0 D_L(z)$	
BAO	$\left(\frac{D_A^2(z)}{H(z)}\right)^{1/3}/r_s(z_d)$	
CMB peak loc.	$R \propto \sqrt{\Omega_m H_0^2} D_A(z_*)$	
Cluster counts	$rac{dV}{dz}$	$rac{dn}{dM}$
Weak lens 2pt	$\frac{r^2(z)}{H(z)}W_i(z)W_j(z)$	$P\left(k = \frac{\ell}{r(z)}\right)$
RSD	$F(z) \propto D_A(z)H(z)$	$f(z)\sigma_8(z)$

Idea: compare geometry and growth

e.g. Wang, Hui, May & Haiman 2007

Our approach:

Double the standard DE parameter space $(\Omega_{M}=1-\Omega_{DE} \text{ and } w):$ $\Rightarrow \Omega_{M}^{\text{geom}}, w^{\text{geom}} \Omega_{M}^{\text{grow}}, w^{\text{grow}}$ [In addition to other:

standard parameters: $\Omega_{M}h^{2} \Omega_{B}h^{2}$, n_s, A) nuisance parameters: probe-dependent]

Ruiz & Huterer, 2015

(Current) Data used

CMB (Planck peak location) Weak Lensing (CFHTLens) BAO (6dF, SDSS LRG, BOSS CMASS)

Standard parameter space

EU = Early Universe prior from Planck ($\Omega_M h^2$, $\Omega_B h^2$, n_s , A) SH = Sound Horizon prior from Planck ($\Omega_M h^2$, $\Omega_B h^2$)

Omega matter: geometry vs. growth

* SN not the recalibrated JLA compilation - need to update; will move Ω_M^{grow} up

w (eq of state of DE): geometry vs. growth

Therefore: growth probes point to even less growth than LCDM with ~Planck parameters (i.e. $w^{grow} > -1$)

(but the evidence is still not very strong...)

Probably equivalent to these recent findings:

 $\bullet \ \sigma_8 \ from \ clusters \ is \ lower \ than \ that \ from \ CMB \ (eg. \ Hou \ et \ al, Bocquet \ et \ al, Costanzi \ et \ al)$

- $\bullet~\sigma_8~from~WL~is~lower~than~that~from~CMB$ (eg. MacCrann et al)
- evidence for neutrino mass (eg. Beutler et al, Dvorkin et al)
- evidence for interactions in the dark energy sector (eg. Salvatelli et al)

RSD prefer $w^{grow} > -1$ (slower growth than in LCDM)

RSD prefer $w^{grow} > -1$ (slower growth than in LCDM)

"Are there cracks in the Cosmic Egg?"

Michael Turner, Aspen, summer 2014

Dark Energy Survey Instrument (DESI)

- Huge spectroscopic survey on Mayall telescope (Arizona)
 ~5000 fibres, ~15,000 sqdeg, ~30 million spectra
- LRG in 0 < z < 1, ELG in 0 < z < 1.5, QSO 2.2 < z < 3.5
- Great for dark energy (RSD, BAO)
- Great for primordial non-Gaussianity P(k, z), bispectrum...
- Start ~2018, funding DOE + institutions

Conclusions

- **Growth of structure** gives an extremely powerful set of measurements to complement geometrical measures
- Systematics are challenging but entirely possible to overcome: require sophisticated statistical techniques.
 Principal challenge: photometric calibration errors.
- Separating growth from geometry is a good way to get a) constraints b) insights into DE constraints; it now indicates a 3-sigma growth ≠ geometry discrepancy

EXTRA SLIDES

Redshift Space Distortion data

(Pretty high) neutrino mass can relieve the tension

Ruiz & Huterer, arXiv:1410.5832