Correlation Hunting

Generalizing Hanbury Brown - Twiss
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 From the perspective of guantum theory,
Interference arises from the possibility of getting
from the same initial state to the same final state
through several distinct paths.

* The probability for the overall process is then the
square of the sum of amplitudes, which differs from

the sum of the squares.



A+ B|* = |A|* + |B|* + (AB* + A*B)

/

INnterference term



* |nterference depends on the relative phase
between the different branches (as well as on their

magnitudes).

e For that reason, interference usually requires
coherence of the sources.



Hanbury Brown -
Twiss



* The radio astronomer Hanbury Brown, and his
assoclate Twiss, in 1949 discovered a new and
fascinating kind of interference eftect, that does not
require coherence.

 They used it to measure the diameter of several
stars, including Sirius.

* |n later years, their basic idea has found many
other applications, ranging from heavy ion
collisions to condensed matter.



the basic HBT setup



* Here one considers the probabillity for triggering of
two detectors A, B, due to reception of emissions

from two sources 1, 2.

e [he two sources can be different parts of the star,
or whatever.

* There are two distinct processes involved (red and
blue, above), and they interfere:



| DiaDsp + DoaDig |

DlADQBDTBDSA -+ C.C.



* Note that in this interference term random phases
assoclated with the emission events cancels out!

* The interference term depends only on the relative
phase, which is essentially geometrical.

* As one varies the distance between the detectors,
one gets positive or negative interference. The
distance between maxima reflects the separation of

the sources.



* For a single extended source, such as a star, the
contrast will wash out at large detector separations.

* The rate with which that happens reflects the
angular size of the source, and can be used to
measure |It.



Polarization



* |t was implicit, in our preceding discussion, that the
detector “couldn’t reveal” where its photon came
from. (The final states must overlap.)

 |f the photons have orthogonal polarizations, for
example, they will not interfere.

* For unpolarized sources, this simply halves the
HBT effect.



e [he question naturally arises: If the emitters do
have non-trivial polarization properties, can we
access them?

* For example: It we have two very nearby sources,
that emit in orthogonal polarizations, can we
resolve them?

 Unadorned HBT won't serve here, but (as we'll see)
a simple refinement accesses much more
information, and does the job.



Polarization Projections
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Density Matrices

e
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* We solve our model problem, by letting 11
Interpolate between the otherwise orthogonal

polarizations.

 More generally, protocols using a sequence of [[s
can significantly enhance our perception of the
sources (quantum state tomography).



Entanglement



e SO far, we have used selective projection to get
interference between non-identical emissions.

A more general and powerful technique exploits
entanglement of the detectors.



* As an extreme example, let us consider that one of
our emitters emits bosons B, while the other emits
fermions F.

* A detector that recelves a boson goes into state B,
a detector that receives a fermion goes into state F.






We would like to get interference between the terms Iin

S14 Dap| FBY + Doy Sip |BF)

Untortunately, they are orthogonal.



* Following a similar philosophy to our polarization
example, we change the state basis - and erase
information - to access interference.
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1
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So it we project on the entangled state

7(\FB> BF))

we measure

S1aDap + DaaSiB|*



e This consideration shows*, through a detfinite
physical eftect, that superselection cannot be
interpreted locally.



More Entanglement



* The projectors T1a, TIs encode density matrices
for the detectors A, B. When their states are

entangled, however, the density
entire system will not factorize, a

to employ a system density matri

matrix of the
nd we will need
X, In the form

(HA)al (HB)ﬁl N Ha1/31

g 32



* We should also allow for the interesting
possibility of entanglement in the emitters. That
IS accommodated according to



* With these notations, we can generalize our
master formula, in the form

1210 w252 | Dya|?|Dapl? + II2LG! w202 | Doal?| Dy

+TI205 w8292 Dy Dop Dy, Dip + T2G w22 DYy D pDaaDip

There Is a duality between sources and detectors.



By comparing experimental data with this
expression and determining whether it is
consistent with factorization™ of mwe become
sensitive to entanglement between the emitters.

* This effect, or its dual, could be used as a probe
for proposed exotic states of matter that feature
long-range entanglement.

* |n that application, we should use designed
sources, and consider the matter as “detector’.



Implementations and
a Variation



* Jools for operations with polarization are very
well developed (phase shifters, filters).



* \We can obtain entangled detector (or source)
states, In principle, with spatial swaps
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* Another promising idea is to interfere photons
emitted at different times. This can be done by
storing and “forgetting”.

* Impressive tools for storing photons, while
preserving their quantum state, are emerging:



Storage of Light in Atomic Vapor
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ABSTRACT

We report an experiment in which a light pulse is effectively decelerated and trapped in a vapor of Rb
atoms, stored for a controlled period of time, and then released on demand. We accomplish this
“storage of light” by dynamically reducing the group velocity of the light pulse to zero, so that the
coherent excitation of the light is reversibly mapped into a Zeeman (spin) coherence of the Rb vapor.
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Potential Applications



e Spinning or magnetized stars (polarization)

 Cosmic masers (coherence, polarization,
entanglement)

* With photon storage: structure of atmospheres



* Cosmic microwave background
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Abstract

The quantum theory of optical coherence is applied to the scrutiny of the statistical
properties of the relic inflaton quanta. After adapting the description of the quantized scalar
and tensor modes of the geometry to the analysis of intensity correlations, the normalized
degrees of first-order and second-order coherence are computed in the concordance paradigm
and are shown to encode faithfully the statistical properties of the initial quantum state. The
strongly bunched curvature phonons are not only super-Poissonian but also super-chaotic.
Testable inequalities are derived in the limit of large angular scales and can be physically
interpreted in the light of the tenets of Hanbury Brown-Twiss interferometry. The quantum
mechanical results are compared and contrasted with different situations including the one
where intensity correlations are the result of a classical stochastic process. The survival
of second-order correlations (not necessarily related to the purity of the initial quantum
state) is addressed by defining a generalized ensemble where super-Poissonian statistics is
an intrinsic property of the density matrix and turns out to be associated with finite volume

effects which are expected to vanish in the thermodynamic limit.



summary



e We can gain new information by intelligent erasure
of other (potential) information.

* Or as George Orwell put it:
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