Constraints on the birth of the universe and the origin of cosmic dark flow

Grant J. Mathews -University of Notre Dame

2015: The Spacetime Odyssey Continues Peperska Muren, Stockholm June 2-5, 2015

Some possible explanations for dip at $\ell = 10-40$

- Cosmic Variance
- Modified inflation effective potential
 - Harza, et al. arXiv:1405.2012
- Planck-mass particles coupled to inflation
 GJM, Gangopadhya, Ichiki, Kajino arXiv: 1504.06913

Possible evidence for Planck-scale resonant particle production during inflation

G JM., Gangopadhyay, Ichiki, Kajino, arXiv:1504.06913; D. Chung, E. W. Kolb, A. Riotto, and I. I. Tkachev, D62, 043508 (2000); GJM, D. Chung, K. Ichiki, T. Kajino, and M.Orito, PRD70, 083505 (2004).

- Planck-mass particles generically exist in compactification schemes of string theory from the:
 - Kaluza-Klein states
 - Winding modes
 - Massive excited (string) modes
- Coupling such particles with the inflaton field is also generic
- Premise of this idea:

– Suppose this coupling happens during the

 ~ 10 e-folds of inflation accessible to observation

• The total Lagrangian density is given as :

$$\mathcal{L}_{\text{tot}} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$$

+ $i \bar{\psi} \gamma^{\mu} \psi - m \bar{\psi} \psi + N \lambda \phi \bar{\psi} \psi$

• Then the fermion has the effective mass : $M(\phi) = m - N\lambda\phi$

• This vanishes for a critical value of the inflaton field, $\phi_* = m/N\lambda$

Fermions will be quickly generated at some time t_* when the effective mass vanishes at φ_*

• The fermion vacuum expectation value is :

$$\langle \bar{\psi}\psi \rangle = n_*\Theta(t-t_*)\exp\left[-3H_*(t-t_*)\right]$$

where Θ is a step function.

• The modified E.O.M. for the scalar field is:

$$\ddot{\phi} + 3H\dot{\phi} = -V'(\phi) + N\lambda \langle \bar{\psi}\psi
angle$$

 $(\phi) + N\lambda \langle \psi \psi \rangle$

-roll
$$\dot{\phi} = -$$

Slow

Fluctuation at horizon crossing:

$$\delta_H(a) = \frac{H^2}{5\pi\dot{\phi}}$$

Can relate to a given wave number k

$$\ln\frac{k}{a_0H_0} = 62 + \ln\left[\frac{a}{a_*}\right] + \ln\left[\frac{a_*}{a_{\text{end}}}\right] - \ln\frac{10^{16}\,\text{GeV}}{V_k^{1/4}} + \ln\frac{V_k^{1/4}}{V_{\text{end}}^{1/4}} - \frac{1}{3}\ln\frac{V_{\text{end}}^{1/4}}{\rho_{\text{reh}}^{1/4}}$$

=> Revised primordial power spectrum

$$\delta_H(k) = \frac{[\delta_H(a)]_{N\lambda=0}}{1 + \Theta(k - k_*)A(k_*/k)^3 \ln(k/k_*)}$$

A = amplitude $A = |\dot{\phi}_*|^{-1} N \lambda n_* H_*^{-1}$ k_* wave number associated with particle creation

Analysis

- Markov Chain Monte-Carlo analysis using Planck Data and the CosmoMC code
- Marginalized over A and k_* , along with the six parameters, $\Omega_b h^2$, $\Omega_c h^2$, θ , τ , n_s , A_s

$A = 1.7 \pm 1.5$ $k_* = 0.0011 \pm 0.0004 \ h \ Mpc^{-1}$

A and k_* relate to the inflaton coupling λ and the fermion mass *m* for a given inflation model: $A = |\dot{\phi}_{*}|^{-1} N \lambda n_{*} H_{*}^{-1}$ $n_* = \frac{2}{\pi^2} \int_0^\infty dk_p \, k_p^2 \, |\beta_k|^2 = \frac{N\lambda^{3/2}}{2\pi^3} |\dot{\phi}_*|^{3/2}$ $A \sim 1.3 N \lambda^{5/2}$ $A=1.5 => N\lambda^{5/2} \sim 1$ $m = N\lambda\phi_*$ $2/3 < \alpha < 2$ $m \sim 6-10 M_{pl} / \lambda^{3/2}$ $\phi_* = \sqrt{2\alpha \mathcal{N}} m_{pl}$

Is there another possibility?

• Modify the inflaton effective potential during inflation

Modified Inflaton effective potential $V(\varphi) = \frac{1}{2}m\varphi^2 + \lambda M_{Pl}^4 \exp\left[(-\varphi/\varphi_1)^{\alpha}\right]$

Could this potential have another consequence?

• Cosmic Dark Flow

Landscape after inflation: "Tilt" due to quantum entanglement

Mersini-Houghton & Holman PRD (2008)

$$\Phi = \Phi^{0} + \delta \Phi \simeq \Phi^{0} \left[1 + \frac{V(\phi)F(b,V)}{3M_{pl}^{2}} \left(\frac{r}{L_{1}}\right) \right]$$

L₁ = scale of quantum interference ~ 1000 r_H

Dark flow velocity =

$$\beta = \frac{v}{c} \simeq \alpha \left(\frac{\Delta T}{T}\right) \Big|_{\text{dip}} \simeq \frac{4\pi}{15} \left(\frac{r_H}{L_1}\right) \left(\frac{V(\phi)F(b,V(\phi))}{18M_{\text{Pl}}^4}\right)$$

Predicted dark flow velocity ~700 km s⁻¹

 $V(\phi) = V_0 \exp\left(-\lambda \frac{\phi}{M_{\rm P}}\right)$

Mersini-Houghton & Holman PRD (2008)

Searches for Dark Flow GJM, Rose Garnavich, Yamazaki, Kajino, arXiv1412.1529

TABLE I. Summary of dark flow searches. Distance and redshifts are either the maximum or a characteristic value if available.

Reference	Obj. Type	No. Obj.	Redshift Range	$\begin{array}{c} \text{Distance} \\ (h^{-1} \text{ Mpc})^{\text{a}} \end{array}$	$v_{\rm bf}~({\rm km~s^{-1}})$	$(l,b)^\circ$
Kashlinsky et al. (2010) , $[2]$	kSZ	516	z < 0.12	< 345	934 ± 352	$(282 \pm 34, 22 \pm 20)$
		547	z < 0.16	< 430	1230 ± 331	$(292 \pm 21, 27 \pm 15)$
		694	z < 0.20	< 540	1042 ± 295	$(284 \pm 24, 30 \pm 16)$
		838	z < 0.25	< 640	1005 ± 267	$(296 \pm 29, 39 \pm 15)$
Dai et al. (2011), [23]	SN Ia	132	z < 0.05	< 145	188 ± 120	$(290 \pm 39, 20 \pm 32)$
		425	z > 0.05	> 145		
Weyant et al. (2011), [26]	SN Ia	112	z < 0.028	< 85	538 ± 86	$(250 \pm 100, 36 \pm 11)$
Ma et al. (2011), [22]	galaxies & SN Ia	4536	z < 0.011	< 33	340 ± 130	$(285 \pm 23, 9 \pm 19)$
Colin et al. (2011), [27]	SN Ia	142	z < 0.06	< 175	260 ± 130	$(298 \pm 40, 8 \pm 40)$
Turnbull et al. (2012), [28]	SN Ia	245	z < 0.05	< 145	245 ± 76	$(319 \pm 18, 7 \pm 14)$
Feindt et al. (2013), [29]	SN Ia	128	0.015 < z < 0.035	45 - 108	243 ± 88	$(298 \pm 25, 15 \pm 20)$
		36	0.035 < z < 0.045	108 - 140	452 ± 314	$(302 \pm 48, -12 \pm 26)$
		38	0.045 < z < 0.060	140 - 188	650 ± 398	$(359 \pm 32, 14 \pm 27)$
		77	0.060 < z < 0.100	188 - 322	105 ± 401	$(285 \pm 234, -23 \pm 112)$
Ma & Scott (2013), [25]	galaxies	2404	z < 0.026	< 80	280 ± 8	$(280 \pm 8, 5.1 \pm 6)$
Rathaus et al. (2013), [30]	SN Ia	200	z < 0.2	< 550	260	(295, 5)
Planck XIII (2014), [6]	kSZ	95	0.01 < z < 0.03	30 - 90	< 700	
		1743	z < 0.5	< 2000	< 254	_
Appleby et al. (2014), [31]	SN Ia	187	0.015 < z < 0.045	45 - 130		$(276 \pm 29, 20 \pm 12)$
Cartesian fit - present work	SN Ia	198	z < 0.05	< 145	270 ± 50	$(295 \pm 30, 10 \pm 15)$
		432	z > 0.05	> 145	1000 ± 600	$(120 \pm 80, -5 \pm 30)$
Cosine fit - present work	SN Ia	191^{b}	z < 0.05	< 145	325 ± 54	$(276 \pm 15, 37 \pm 13)$
		387	z > 0.05	> 145	460 ± 260	$(180 \pm 34, 65 \pm 340)$

Would need a very high bulk flow to be detectable at z > 0.05

GJM, Rose Garnavich, Yamazaki, Kajino, arXiv1412.1529

Need reduced Error in Distance Modulus

Need 30,000 Redshifts out to z~0.3

LSST?

Status

There appears to be a dark flow <300 km s⁻¹ out to > 150 Mpc h⁻¹
Dark flow is not ruled out at higher redshifts
Is it possible to lower the landscape prediction?

$$\beta = \frac{v}{c} \simeq \alpha(\frac{\Delta T}{T}) \bigg|_{\text{dip}} \simeq \frac{4\pi}{15} \left(\frac{r_H}{L_1}\right) \left(\frac{V(\phi)F(b, V(\phi))}{18M_{\text{Pl}}^4}\right)$$

Yes, for an effective potential with a steep drop

Apparent Bulk flow velocities (km s⁻¹)

$$V(\varphi) = \frac{1}{2}m\varphi^2 + \lambda M_{Pl}^4 \exp\left[(-\varphi/\varphi_1)^{\alpha}\right]$$

Redshift

 V_{bf}

Conclusions

- Possible evidence of new Planck-scale physics in the CMB power spectrum for $\ell = 20-40$.
- Or an abrupt change in the inflation effective potential
- There is a possible existence of dark flow of $\sim 250~km$ s $^{-1}$ out to a scale of nearly 200 Mpc h^{-1}
- However, detection of dark flow at high redshift remains ambiguous.
- Need a more complete sky coverage and larger sample of SNIa (*LSST*)

Theoretical Motivation for Dark/Bulk Flow

- Open inflation => pre-inflation isocurvature fluctuations visible (Kurki-Suonio, GJM (1991), Sasaki et al (1993), ...
 - CMB dipole \neq CMB rest frame
- Existence of other fields in addition to inflation Turner (1981), Linde (1995) ...
- Double Inflation (Langlois 1996)
- Pre-inflation landscape Quantum entanglement of the wavefunction for the universe with those of super-horizon modes
 - Mersini-Houghton (2005), Holman & Mersini-Houghton (2006) and Holman, Mersini- Houghton & Takahashi (2008a)

CMB Dipole

	$V \ (\rm km/sec)$	$(l_{ m Gal}, b_{ m Gal})^{\circ}$	Refs
Sun-CMB	369.5 ± 3.0	$(264.44 \pm 0.3, 48.4 \pm 0.5)$	Kogut et al (1993)
(COBE/DMR-based)			
Sun-LSR	20.0 ± 1.4	$(57 \pm 4, 23 \pm 4)$	Kerr & Lynden-Bell (1986)
LSR-GC	222 ± 5	$(91.1 \pm 0.4, 0)$	Fich et al (1989)
GC - CMB	552.2 ± 5.5	$(266.5\pm0.3,29.1\pm0.4)$	Kogut et al (1993)
Sun - LG	308 ± 23	$(105 \pm 5, -7 \pm 4)$	Yahil et al (1977)
LG-CMB	627 ± 22	$(276 \pm 3, 30 \pm 3)$	Kogut et al (1993)

Great Attractor: 35h⁻¹ Mpc Lynden-Bell (1983)

Large Scale Structure in the Local Universe

Graphic created by T. Jarrett (IPAC/Caltech)

Laniakea Supercluster ~160 Mpc h⁻¹

R. B. Tully, et al. Nature 513, 71 (2014)

28

Is it possible to detect bulk flow out to larger distances? GJM, Rose, Garnavich, Yamazaki, Kajino arXiv1412.1529

2) Distant objects at rest in the CMB frame

motion

 \bigcirc

1) Objects moving together in one direction

CMB Frame

Kinetic Sunyev-Zeldovich Effect Kashlinsky (2012)

$$\langle \tau \frac{\Delta \nu}{\nu} \rangle = -\langle \tau \frac{\vec{v}}{c} \rangle \hat{x}_{obs}$$

$$\langle \vec{v} \rangle = \bar{\tau} \vec{v}_{cl}$$

CMB photons

Net effect: Redshift of CMB photons along line of sight to the cluster.

Dark Flow

"Dark flow" galaxy clusters and flow direction by distance

Clusters from 0.8 – 1.2 billion light-years away (250 to 370 megaparsecs) Clusters from 1.2 – 1.7 billion light-years away (370 to 540 megaparsecs) Clusters from 1.3 – 2.1 billion light-years away (380 to 650 megapa Clusters from 1.3 – 2.5 billion light-years away (380 to 755 megapa

Kashlinsky (2012) $V_{BF} = 800 \pm 200 \text{ km s}^{-1}$ $(1,b) = (283 \pm 14, 12 \pm 14)$

But!! Planck Data seem to contradict this: arXive:1303.5090

Fig. 8. Mollweide projection in Galactic coordinates of the upper limit (at 95 % C.L.) of the kSZ dipole amplitude from applying the uMMF approach to HFI frequency maps using the whole MCXC cluster sample. In no direction is the dipole detected at more than 2σ .

See However: Atrio-Barandela arXive:1303.6614 => detection with Planck 1411.4180- detection in $_{32}$ WMAP9 + Planck

MCMC Analysis of Cartesian velocity components 640 SNIa distances Union 2.1 Data Set

GJM, Rose, Garnavich, Yamazaki, Kajino arXiv1412.1529

SNIa Bulk Flow

 $(l, b) = (295 \pm 30, 10 \pm 15)^{\circ}$ Z < 0.05

 $v_{bf} = 270 \pm 50 \text{ km s}^{-1}$

Z > 0.05

 $v_{bf} = 1000 \pm 600 \text{ km s}^{-1}$

Need more statistics at high redshift

What about SDSS II?

Mathews, Rose, Garnavich, Yamazaki Kajino (2014)

1.8 billion galaxies > 1000 SNe

Not enough sky coverage along the direction of flow