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Fig. 2. Planck TT (top), high-` T E (centre), and high-` EE (bot-
tom) angular power spectra. HereD` ⌘ `(` + 1)C`/(2⇡).

tion mask the union of the WMAP P06 and Planck lowP polar-
ization masks and keeping 74 % of the sky. The polarization part
of the combined low-multipole likelihood is called lowP+WP.
This combined low-multipole likelihood gives ⌧ = 0.071+0.011

�0.013
(Planck Collaboration XI, 2015).

Planck high-` likelihood

Following Planck Collaboration XV (2014), and Planck
Collaboration XI (2015) for polarization, we use a Gaussian
approximation for the high-` part of the likelihood (30 < ` <
2500), so that

� logL
⇣
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where a constant offset has been discarded. Here Ĉ is the data
vector, C(✓) is the model prediction for the parameter value vec-
tor ✓, and M is the covariance matrix. For the data vector, we
use 100 GHz, 143 GHz, and 217 GHz half-mission cross-power
spectra, avoiding the Galactic plane as well as the brightest point

sources and the regions where the CO emission is the strongest.
We retain 66 % of the sky for 100 GHz, 57 % for 143 GHz, and
47 % for 217 GHz for the T masks, and respectively 70 %, 50 %,
and 41 % for the Q, U masks. Following Planck Collaboration
XXX (2014), we do not mask for any other Galactic polarized
emission. All the spectra are corrected for the beam and pixel
window functions using the same beam for temperature and po-
larization. (For details see Planck Collaboration XI (2015).)

The model for the cross-spectra can be written as

Cµ,⌫(✓) =
Ccmb(✓) +Cfg

µ,⌫(✓)pcµc⌫
, (13)

where Ccmb(✓) is the CMB power spectrum, which is indepen-
dent of the frequency, Cfg

µ,⌫(✓) is the foreground model contribu-
tion for the cross-frequency spectrum µ ⇥ ⌫, and cµ is the cal-
ibration factor for the µ ⇥ µ spectrum. The model for the fore-
ground residuals includes the following components: Galactic
dust, clustered CIB, tSZ, kSZ, tSZ correlations with CIB, and
point sources, for the TT foreground modeling; and for polar-
ization, only dust is included. All the components are modelled
by smooth C` templates with free amplitudes, which are deter-
mined along with the cosmological parameters as the likelihood
is explored. The tSZ and kSZ models are the same as in 2013
(see Planck Collaboration XV, 2014), while the CIB and tSZ-
CIB correlation models use the updated CIB models described
in Planck Collaboration XXX (2014). The point source contam-
ination is modelled as Poisson noise with an independent am-
plitude for each frequency pair. Finally, the dust contribution
uses an effective smooth model measured from high frequency
maps. Details of our dust and noise modelling can be found in
Planck Collaboration XI (2015). The dust is the dominant fore-
ground component for TT at ` < 500, while the point source
component, and for 217⇥217 also the CIB component, dom-
inate at high `. The other foreground components are poorly
determined by Planck. Finally, our treatment of the calibration
factors and beam uncertainties and mismatch are described in
Planck Collaboration XI (2015).

The covariance matrix accounts for the correlation due to
the mask and is computed following the equations in Planck
Collaboration XV (2014), extended to polarization in Planck
Collaboration XI (2015) and references therein. The fiducial
model used to compute the covariance is based on a joint fit of
base ⇤CDM and nuisance parameters obtained with a previous
version of the matrix. We iterate the process until the parame-
ters stop changing. For more details, see Planck Collaboration
XI (2015).

The joint unbinned covariance matrix is approximately of
size 23 000⇥ 23 000. The memory and speed requirements for
dealing with such a huge matrix are significant, so to reduce its
size, we bin the data and the covariance matrix to compress the
data vector size by a factor of 10. The binning uses varying bin
width with �` = 5 for 29 < ` < 100, �` = 9 for 99 < ` < 2014,
and �` = 33 for 2013 < ` < 2509, and a weighting in `(` + 1)
to flatten the spectrum. Where a higher resolution is desirable,
we also use a more finely binned version (“bin3”, unbinned up
to ` = 80 and �` = 3 beyond that) as well as a completely
unbinned version (“bin1”). We use odd bin sizes, since for an
azimuthally symmetric mask, the correlation between a multi-
pole and its neighbours is symmetric, oscillating between posi-
tive and negative values. Using the base ⇤CDM model and sin-
gle parameter classical extensions, we confirmed that the cos-
mological and nuisance parameter fits with or without binning
are indistinguishable.
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Ĉ �C(✓)
⌘

, (12)

where a constant offset has been discarded. Here Ĉ is the data
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Some possible explanations for 
dip at l = 10-40 

•  Cosmic Variance 
•  Modified inflation effective potential 

–  Harza, et al. arXiv:1405.2012 
•  Planck-mass particles coupled to inflation 

–  GJM, Gangopadhya, Ichiki, Kajino arXiv: 1504.06913 
•  …. 
•  …. 4 
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 Possible evidence for Planck-scale resonant particle 
production during inflation 

G JM., Gangopadhyay,. Ichiki, Kajino, arXiv:1504.06913; 
 D. Chung, E. W. Kolb, A. Riotto, and I. I. Tkachev,D62, 043508 (2000);  

GJM, D. Chung, K. Ichiki, T. Kajino, and M.Orito, PRD70, 083505 (2004). 
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•  Planck-mass particles generically exist in 
compactification schemes of string theory from the: 
–  Kaluza-Klein states 
–  Winding modes 
–  Massive excited (string) modes 

•  Coupling such particles with the inflaton field is also 
generic 

•  Premise of this idea:   
– Suppose this coupling happens during the  
~10 e-folds of inflation accessible to observation 
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Motivations Results Conclusions

Inflation Resonant particle Production

• Early rapid expansion of the universe is achieved through the
vacuum energy of the inflaton field

• Inflaton is coupled to the massive particles (mass ⇠ inflaton
field value)[Chung et al. arXiv hep-ph/9910437, Mathews et al. arXiv

astro-ph/0406046 ]

• The total Lagrangian density is given as :

L
tot

=
1

2
@µ�@

µ�� V (�)

+ i  ̄�µ �m ̄ + N�� ̄ (1)

Motivations Results Conclusions

• Then the fermion has the e↵ective mass :

M(�) = m � N�� (2)

• This vanishes for a critical value of the inflaton field,
�⇤ = m/N�

Motivations Results Conclusions

• Then the fermion has the e↵ective mass :
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Fermions will be quickly generated at some 
time t* when the effective mass vanishes at φ* 
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Motivations Results Conclusions

• The fermion vacuum expectation value is :

h ̄ i = n⇤⇥(t � t⇤) exp [�3H⇤(t � t⇤)] (3)

where ⇥ is a step function.

• The modified E.O.M. for the scalar field is:

�̈+ 3H�̇ = �V 0(�) + N�h ̄ i (4)

Motivations Results Conclusions

• The fermion vacuum expectation value is :

h ̄ i = n⇤⇥(t � t⇤) exp [�3H⇤(t � t⇤)] (3)

where ⇥ is a step function.

• The modified E.O.M. for the scalar field is:

�̈+ 3H�̇ = �V 0(�) + N�h ̄ i (4)

Slow-roll �̇ =
�V 0(�) +N�h ̄ i

3H
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Motivations Results Conclusions

• The density fluctuation when it crosses the Hubble radius in
case of simplest slow roll approximation is:

�H(k) ⇡
H2

5⇡�̇
(5)

• In this case using the above equation for the fluctuation as it
exists the horizon the perturbation in the primordial power
spectrum is :

�H =
[�H(a)]N�=0

1 +⇥(a� a⇤)(N�n⇤/|�̇⇤|H⇤)(a⇤/a)3 ln (a/a⇤)
(6)

Causes Dip 

Fluctuation at  horizon crossing: 

�H(a) =
H2

5⇡�̇



Can relate to a given wave number k 
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A = amplitude   
k* wave number associated with particle creation  

ln
k

a0H0
= 62 + ln


a

a⇤

�
+ ln


a⇤
aend

�
� ln
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1/4
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+ ln
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1/4
k
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1/4
end

� 1

3
ln
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1/4
end

⇢
1/4
reh

�H(k) =
[�H(a)]N�=0

1 +⇥(k � k⇤)A(k⇤/k)3 ln (k/k⇤)

=> Revised primordial power spectrum 

A = |�̇⇤|�1N�n⇤H
�1
⇤



Analysis 

•  Markov Chain Monte-Carlo analysis using 
Planck Data and the CosmoMC code  

•  Marginalized over A and k∗, along with the 
six parameters, Ωbh2,Ωch2,θ,τ,ns,As  
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Results 
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k* 

A 

A = 1.7± 1.5 k⇤ = 0.0011± 0.0004 h Mpc�1
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A and k∗ relate to the inflaton 
coupling λ and the fermion mass m 

for a given inflation model: 
 A = |�̇⇤|�1N�n⇤H

�1
⇤

A ⇠ 1.3N�5/2

�⇤ =
p
2↵Nmpl

m = N��⇤ ⇠ 15 mpl

A=1.5 => Nλ5/2 ~ 1 

n⇤ =
2

⇡2

Z 1

0
dkp k

2
p |�k|2 =

N�3/2

2⇡3
|�̇⇤|3/2

2/3 < α < 2 
 m ~ 6-10 Mpl /λ3/2  



Is there another possibility? 

•  Modify the inflaton effective potential 
during inflation 
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Modified Inflaton effective potential 
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Could this potential have another 
consequence? 

•  Cosmic Dark Flow 
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Landscape after inflation: 
“Tilt” due to quantum entanglement 
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4

that arise from the nonlocal entanglement of our domain with
modes and patches beyond the horizon. These noninflation-
ary superhorizon inhomogeneities are added to the inflation-
ary CMB, leading to a modification of the Newtonian potential
Φ Eq.3.1, derived in [3, 4]. The nonlocal modification to the
gravitational potential of the universe is relevant here because
the ’tilt’ induced by the modification in the potential drives the
bulk flow as we now demonstrate. The ’tilted’ potential with
the subsequent residual (noninflationary) quadrupole induced
by it, were calculated in Ref. [3, 4] to be:

Φ=Φ0+ δΦ!Φ0
[

1+
V (φ)F(b,V )

3M2
pl

(
r
L1

)

]

(3.1)

where Φ0 is the inflationary, standard gravitational poten-
tial before modifications δΦ are included, and the induced
quadrupole anisotropy resulting from this potential,

ΔT
T

∣

∣

∣

∣

quad
! 0.5

(

rH
L1

)2(V (φ)F(b,V (φ))

18M4
Pl

)

. (3.2)

From the ’tilt’ modification term δΦ in the potential Φ,
Eqs.3.1, 3.2, it is straighforward to derive the expression for
the induced dipole,

ΔT
T

∣

∣

∣

∣

dip
!
4π
15

(

rH
L1

)(

V (φ)F(b,V (φ))

18M4
Pl

)

. (3.3)

The nonlocal effects only modify the largest scales. We can
see this from Eq. (3.1), since the ratio r/L1 encoded in δΦ,
with L1" rH , can significantly affect power only to the CMB
multipoles of the largest scales, i.e. for r ! rH = H−1. In fact
as can be seen from our dipole expression, even the ampli-
tude of the induced quadrupole l = 2 is already suppressed
by a factor of order O(rH/L1) as compared to the dipole.
This is equivalent to the fact that since the distance scale for
our noninflationary perturbations is L1 ! 1/k1 then!k ·!x$ 1.
Thus, since δρ exp(−i!k ·!x) ! δρ[1− i!k ·!x− (!k·!x)2

2 + ...], the
multipole decomposition of the density perturbations will be
dominated by the lowest multipoles. We perceive such a long
wavelength perturbation as a linear gradient field because the
induced multipoles are dominated by the first correction term,
!k ·!x i.e. the induced dipole, with the next correction being the
quadrupole∼ (!k ·!x)2. Unlike the null primordial CMB dipole
produced by inflationary perturbations, the lack of cancelation
between the gradient term (first term) and the ’potential’ term
(second term) in the Sachs Wolfe equation Eq.4.1, results in
the nonzero dipole [12] of Eq.3.3. Thus the predicted dipole
and its subsequent bulk flow provide a preferred frame. Since
most of the power goes to the dipole, then naturally the align-
ment plane of the lowest induced multipoles, ≤ 2, ∼ (!k ·!x)l ,
is along the gradient of the induced dipole frame.
The natural alignment of the low multipoles for l ≤ 2, with

their axes normal to the frame determined by the dominant
dipole (!k ·!x), proves useful for discriminating our predictions
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by making use of polarization maps. The predicted dipole in
Eq.3.3 provides a preferred frame and it gives rise to a bulk
flow with velocity Eq.3.4. The flow along this dipole pre-
ferred frame is relative to the rest frame of the expansion of
the universe. The correlation length of such bulk flow, Eq.3.4,
induced by the noninflationary dipole is of order rH as we
show below. We can now readily estimate the peculiar ve-
locity field from the induced dipole temperature anisotropies
through the simple relation
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that arise from the nonlocal entanglement of our domain with
modes and patches beyond the horizon. These noninflation-
ary superhorizon inhomogeneities are added to the inflation-
ary CMB, leading to a modification of the Newtonian potential
Φ Eq.3.1, derived in [3, 4]. The nonlocal modification to the
gravitational potential of the universe is relevant here because
the ’tilt’ induced by the modification in the potential drives the
bulk flow as we now demonstrate. The ’tilted’ potential with
the subsequent residual (noninflationary) quadrupole induced
by it, were calculated in Ref. [3, 4] to be:

Φ=Φ0+ δΦ!Φ0
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where Φ0 is the inflationary, standard gravitational poten-
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From the ’tilt’ modification term δΦ in the potential Φ,
Eqs.3.1, 3.2, it is straighforward to derive the expression for
the induced dipole,
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The nonlocal effects only modify the largest scales. We can
see this from Eq. (3.1), since the ratio r/L1 encoded in δΦ,
with L1" rH , can significantly affect power only to the CMB
multipoles of the largest scales, i.e. for r ! rH = H−1. In fact
as can be seen from our dipole expression, even the ampli-
tude of the induced quadrupole l = 2 is already suppressed
by a factor of order O(rH/L1) as compared to the dipole.
This is equivalent to the fact that since the distance scale for
our noninflationary perturbations is L1 ! 1/k1 then!k ·!x$ 1.
Thus, since δρ exp(−i!k ·!x) ! δρ[1− i!k ·!x− (!k·!x)2

2 + ...], the
multipole decomposition of the density perturbations will be
dominated by the lowest multipoles. We perceive such a long
wavelength perturbation as a linear gradient field because the
induced multipoles are dominated by the first correction term,
!k ·!x i.e. the induced dipole, with the next correction being the
quadrupole∼ (!k ·!x)2. Unlike the null primordial CMB dipole
produced by inflationary perturbations, the lack of cancelation
between the gradient term (first term) and the ’potential’ term
(second term) in the Sachs Wolfe equation Eq.4.1, results in
the nonzero dipole [12] of Eq.3.3. Thus the predicted dipole
and its subsequent bulk flow provide a preferred frame. Since
most of the power goes to the dipole, then naturally the align-
ment plane of the lowest induced multipoles, ≤ 2, ∼ (!k ·!x)l ,
is along the gradient of the induced dipole frame.
The natural alignment of the low multipoles for l ≤ 2, with

their axes normal to the frame determined by the dominant
dipole (!k ·!x), proves useful for discriminating our predictions
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by making use of polarization maps. The predicted dipole in
Eq.3.3 provides a preferred frame and it gives rise to a bulk
flow with velocity Eq.3.4. The flow along this dipole pre-
ferred frame is relative to the rest frame of the expansion of
the universe. The correlation length of such bulk flow, Eq.3.4,
induced by the noninflationary dipole is of order rH as we
show below. We can now readily estimate the peculiar ve-
locity field from the induced dipole temperature anisotropies
through the simple relation
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that arise from the nonlocal entanglement of our domain with
modes and patches beyond the horizon. These noninflation-
ary superhorizon inhomogeneities are added to the inflation-
ary CMB, leading to a modification of the Newtonian potential
Φ Eq.3.1, derived in [3, 4]. The nonlocal modification to the
gravitational potential of the universe is relevant here because
the ’tilt’ induced by the modification in the potential drives the
bulk flow as we now demonstrate. The ’tilted’ potential with
the subsequent residual (noninflationary) quadrupole induced
by it, were calculated in Ref. [3, 4] to be:
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The nonlocal effects only modify the largest scales. We can
see this from Eq. (3.1), since the ratio r/L1 encoded in δΦ,
with L1" rH , can significantly affect power only to the CMB
multipoles of the largest scales, i.e. for r ! rH = H−1. In fact
as can be seen from our dipole expression, even the ampli-
tude of the induced quadrupole l = 2 is already suppressed
by a factor of order O(rH/L1) as compared to the dipole.
This is equivalent to the fact that since the distance scale for
our noninflationary perturbations is L1 ! 1/k1 then!k ·!x$ 1.
Thus, since δρ exp(−i!k ·!x) ! δρ[1− i!k ·!x− (!k·!x)2

2 + ...], the
multipole decomposition of the density perturbations will be
dominated by the lowest multipoles. We perceive such a long
wavelength perturbation as a linear gradient field because the
induced multipoles are dominated by the first correction term,
!k ·!x i.e. the induced dipole, with the next correction being the
quadrupole∼ (!k ·!x)2. Unlike the null primordial CMB dipole
produced by inflationary perturbations, the lack of cancelation
between the gradient term (first term) and the ’potential’ term
(second term) in the Sachs Wolfe equation Eq.4.1, results in
the nonzero dipole [12] of Eq.3.3. Thus the predicted dipole
and its subsequent bulk flow provide a preferred frame. Since
most of the power goes to the dipole, then naturally the align-
ment plane of the lowest induced multipoles, ≤ 2, ∼ (!k ·!x)l ,
is along the gradient of the induced dipole frame.
The natural alignment of the low multipoles for l ≤ 2, with

their axes normal to the frame determined by the dominant
dipole (!k ·!x), proves useful for discriminating our predictions
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by making use of polarization maps. The predicted dipole in
Eq.3.3 provides a preferred frame and it gives rise to a bulk
flow with velocity Eq.3.4. The flow along this dipole pre-
ferred frame is relative to the rest frame of the expansion of
the universe. The correlation length of such bulk flow, Eq.3.4,
induced by the noninflationary dipole is of order rH as we
show below. We can now readily estimate the peculiar ve-
locity field from the induced dipole temperature anisotropies
through the simple relation
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Cosmological Avatars of the Landscape II:
CMB and LSS Signatures
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This is the second paper in the series that confronts predictions of a model of the landscape with cosmological
observations. We show here how the modifications of the Friedmann equation due to the decohering effects of
long wavelength modes on the wavefunction of the Universe defined on the landscape leave unique signatures on
the CMB spectra and large scale structure (LSS). We show that the effect of the string corrections is to suppress
σ8 and the CMB TT spectrum at large angles, thereby bringing WMAP and SDSS data for σ8 into agreement.
We find interesting features imprinted on the matter power spectrum P(k): power is suppressed at large scales
indicating the possibility of primordial voids competing with the ISW effect. Furthermore, power is enhanced at
structure and substructure scales, k " 10−2−0h Mpc−1. Our smoking gun for discriminating this proposal from
others with similar CMB and LSS predictions come from correlations between cosmic shear and temperature
anisotropies, which here indicate a noninflationary channel of contribution to LSS, with unique ringing features
of nonlocal entanglement displayed at structure and substructure scales.

PACS numbers: 98.80.Qc, 11.25.Wx

I. INTRODUCTION

While finding a dynamical reason for why certain initial
conditions for the Universe were preferred over others would
be a major step forward in our understanding of Nature, such
a proposal must also be falsifiable. In previous work [1, 2],
we have argued that the quantum dynamics of gravity acting
on the string landscape, treated as the configuration space of
initial conditions [3, 4], could in fact show why the initial con-
ditions for high scale inflation are natural.

In the previous paper of this series (hereafter referred to
as paper I) [7], we showed how tracing out long wavelength
modes of metric and matter field fluctuations could decohere
the wavefunction of the Universe, defined on this configura-
tion space. This results in both inducing a highly nonlocal
entanglement between our horizon patch with others as well
as giving rise to corrections to the Friedmann equation. We
then used these cosmological effects to bracket the scale of
SUSY breaking b which appears as one of the parameters de-
termining the size of the nonlocality of entanglement. The
SUSY breaking bounds were derived by requiring that con-
straints on the flatness of the modified inflaton potential and
the ammount of density perturbations be satisfied when the
quantum gravity corrections are taken into account.

The backreaction effects that modify the Friedmann equa-
tions during inflation (essentially correcting the potential) will

∗rh4a@andrew.cmu.edu
†mersini@physics.unc.edu
‡tomot@cc.saga-u.ac.jp

also modify the power spectrum. These modifications affect a
number of cosmological observables, such as the CMB tem-
perature anisortopy (the TT spectrum), large scale structure
(LSS), the creation and statistics of voids as well as running
of the scalar spectral index ns. We discuss these in detail in
Sec. III. In particular, we find a natural explanation for the
disagreeement between SDSS and WMAP data on the low
value of σ8 and for the observed low l anomaly in the CMB
(temperature anisotropies) TT− spectrum observed both by
COBE [8] as well as by WMAP [9]. We then turn to a dis-
cussion of how the backreaction effects may contribute with a
negative density contrast that gives rise to the creation of pri-
mordial voids in Sec. III. We also show how the effects we
find here can be distinguished from other effects predicted by
other models of quantum gravity. The main tool we use to do
this is the cross-correlation Cl,TL of temperature (T) with the
lensing potential of cosmic shear (L).

We collect all of our results and discuss their regimes of
validity in Sec. IV, and then conclude.

II. QUANTUM EFFECTS OF THE LANDSCAPE

For completeness, we recall some of the basic relations
found in paper I. As in paper I, we follow Ref. [10] and use
the following inflaton potential

V (φ) =V0 exp
(

−λ
φ
MP

)

. (2.1)

While this potential can appear in supergravity based models
of inflation, we use it more for illustrative purposes, due to its
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TABLE I. Summary of dark flow searches. Distance and redshifts are either the maximum or a characteristic value if available.

Reference Obj. Type No. Obj. Redshift Range
Distance

(h�1 Mpc)a
v
bf

(km s�1) (l, b)�

Kashlinsky et al. (2010), [2] kSZ 516 z < 0.12 < 345 934± 352 (282± 34, 22± 20)

547 z < 0.16 < 430 1230± 331 (292± 21, 27± 15)

694 z < 0.20 < 540 1042± 295 (284± 24, 30± 16)

838 z < 0.25 < 640 1005± 267 (296± 29, 39± 15)

Dai et al. (2011), [23] SN Ia 132 z < 0.05 < 145 188± 120 (290± 39, 20± 32)

425 z > 0.05 > 145 —– ——-

Weyant et al. (2011), [26] SN Ia 112 z < 0.028 < 85 538± 86 (250± 100, 36± 11)

Ma et al. (2011), [22] galaxies & SN Ia 4536 z < 0.011 < 33 340± 130 (285± 23, 9± 19)

Colin et al. (2011), [27] SN Ia 142 z < 0.06 < 175 260± 130 (298± 40, 8± 40)

Turnbull et al. (2012), [28] SN Ia 245 z < 0.05 < 145 245± 76 (319± 18, 7± 14)

Feindt et al. (2013), [29] SN Ia 128 0.015 < z < 0.035 45� 108 243± 88 (298± 25, 15± 20)

36 0.035 < z < 0.045 108� 140 452± 314 (302± 48,�12± 26)

38 0.045 < z < 0.060 140� 188 650± 398 (359± 32, 14± 27)

77 0.060 < z < 0.100 188� 322 105± 401 (285± 234,�23± 112)

Ma & Scott (2013), [25] galaxies 2404 z < 0.026 < 80 280± 8 (280± 8, 5.1± 6)

Rathaus et al. (2013), [30] SN Ia 200 z < 0.2 < 550 260 (295, 5)

Planck XIII (2014), [6] kSZ 95 0.01 < z < 0.03 30 - 90 < 700 ——-

1743 z < 0.5 < 2000 < 254 ——-

Appleby et al. (2014), [31] SN Ia 187 0.015 < z < 0.045 45 - 130 —– (276± 29, 20± 12)

Cartesian fit - present work SN Ia 198 z < 0.05 < 145 270± 50 (295± 30, 10± 15)

432 z > 0.05 > 145 1000± 600 (120± 80,�5± 30)

Cosine fit - present work SN Ia 191b z < 0.05 < 145 325± 54 (276± 15, 37± 13)

387 z > 0.05 > 145 460± 260 (180± 34, 65± 340)

a

If distance and redshift were not both given in text, calculated distances vs. redshift were done with WMAP parameters, ⌦M = 0.288
and ⌦

⇤

= 0.712.
b

Di↵erence from the Cartesian fit is due to the µ
error

< 0.4 mag cut.

Of particular relevance to the present applica-
tion(e.g. [23]) is that the peculiar velocities of supernovae
can alter the luminosity-distance relationship since the
observed redshift z depends upon both the original (un-
perturbed) redshift z̃ and the relative peculiar velocities
of the observer v

o

and the source, v
s

. Specifically,

z = z̃ + (1 + z̃)~n · (~v
s

� ~v
o

) , (4)

where ~n is the unit vector along the line of sight, point-
ing from the observer to the supernova. The observed
luminosity distance D

L

then relates to the unperturbed
luminosity distance D̃

L

via:

D
L

(z) = (1 + 2~n · ~v
s

� ~n · ~v
o

)D̃
L

(z̃) . (5)

If the unperturbed frame is taken to be the CMB
frame, then one can set ~v

o

= 0. Nevertheless, the physics
is not invariant under the exchange of ~v

o

and ~v
s

. This
allows one to search for the local reference frame that
moves with velocity ~v

o

with respect to the background
space-time of the CMB frame. As in [23] we assume that
when averaged over a large number of supernovae, v

s

can
be represented by an average bulk flow velocity for the

entire system, i.e. v
s

= v
bf

, where v
bf

is the desired bulk
flow velocity.

A. Analysis of Cartesian Velocity Components

There is an inherent coordinate uncertainty in search-
ing for the direction of a dark flow in Galactic coordi-
nates. This is because the CMB dipole is not for from
the Galactic north pole. To treat the coordinates more
symmetrically, therefore, we transformed the observed
redshifts and angular coordinates on the sky into Carte-
sian velocity components (U

x

, U
y

, U
z

) . In so doing, we
found that it was somewhat easier to obtain results. As
noted above in this search we have utilized Union2.1 [33]
and SDSS-II to implement an MCMC search of the pa-
rameter space of the three cartesian velocity components
using the COSMOMC code [38]. In this analysis, stan-
dard parameters were fixed at the best fit values from
the WMAP 9yr analysis [21] for a flat cosmology, i.e.
(⌦

m

,⌦
⇤

, H
0

) = (0.282, 0.718, 69.7). No priors were im-
posed upon the velocity components. We did separate
analyses in which we also varied H

0

in the analysis with
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that arise from the nonlocal entanglement of our domain with
modes and patches beyond the horizon. These noninflation-
ary superhorizon inhomogeneities are added to the inflation-
ary CMB, leading to a modification of the Newtonian potential
Φ Eq.3.1, derived in [3, 4]. The nonlocal modification to the
gravitational potential of the universe is relevant here because
the ’tilt’ induced by the modification in the potential drives the
bulk flow as we now demonstrate. The ’tilted’ potential with
the subsequent residual (noninflationary) quadrupole induced
by it, were calculated in Ref. [3, 4] to be:

Φ=Φ0+ δΦ!Φ0
[

1+
V (φ)F(b,V )

3M2
pl
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r
L1

)

]

(3.1)

where Φ0 is the inflationary, standard gravitational poten-
tial before modifications δΦ are included, and the induced
quadrupole anisotropy resulting from this potential,
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From the ’tilt’ modification term δΦ in the potential Φ,
Eqs.3.1, 3.2, it is straighforward to derive the expression for
the induced dipole,
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The nonlocal effects only modify the largest scales. We can
see this from Eq. (3.1), since the ratio r/L1 encoded in δΦ,
with L1" rH , can significantly affect power only to the CMB
multipoles of the largest scales, i.e. for r ! rH = H−1. In fact
as can be seen from our dipole expression, even the ampli-
tude of the induced quadrupole l = 2 is already suppressed
by a factor of order O(rH/L1) as compared to the dipole.
This is equivalent to the fact that since the distance scale for
our noninflationary perturbations is L1 ! 1/k1 then!k ·!x$ 1.
Thus, since δρ exp(−i!k ·!x) ! δρ[1− i!k ·!x− (!k·!x)2

2 + ...], the
multipole decomposition of the density perturbations will be
dominated by the lowest multipoles. We perceive such a long
wavelength perturbation as a linear gradient field because the
induced multipoles are dominated by the first correction term,
!k ·!x i.e. the induced dipole, with the next correction being the
quadrupole∼ (!k ·!x)2. Unlike the null primordial CMB dipole
produced by inflationary perturbations, the lack of cancelation
between the gradient term (first term) and the ’potential’ term
(second term) in the Sachs Wolfe equation Eq.4.1, results in
the nonzero dipole [12] of Eq.3.3. Thus the predicted dipole
and its subsequent bulk flow provide a preferred frame. Since
most of the power goes to the dipole, then naturally the align-
ment plane of the lowest induced multipoles, ≤ 2, ∼ (!k ·!x)l ,
is along the gradient of the induced dipole frame.
The natural alignment of the low multipoles for l ≤ 2, with

their axes normal to the frame determined by the dominant
dipole (!k ·!x), proves useful for discriminating our predictions

2 4 6 8 10
z

!0.001660

!0.001655

!0.001650

!0.001645

!0.001640

!0.001635

!0.001630

Quadrupole Temperature in µK

2 4 6 8 10
z

!2.80

!2.78

!2.76

!2.74

!2.72

Dipole Temperature in µ K

2 4 6 8 10
z

!700

!695

!690

!685

!680

Bulk Flow Velocity Hkm �sL

FIG. 1: The bulk velocities in km/s generated by entanglement ef-
fects and the temperature of the induced quadrupole and dipole in
µK for representative values of the parameters b ! 3.810−9Mpl and
V0 of order the GUT scale.

by making use of polarization maps. The predicted dipole in
Eq.3.3 provides a preferred frame and it gives rise to a bulk
flow with velocity Eq.3.4. The flow along this dipole pre-
ferred frame is relative to the rest frame of the expansion of
the universe. The correlation length of such bulk flow, Eq.3.4,
induced by the noninflationary dipole is of order rH as we
show below. We can now readily estimate the peculiar ve-
locity field from the induced dipole temperature anisotropies
through the simple relation
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Yes, for an effective potential with a steep drop 
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Now we can get the e↵ect on anisotropy for dipole as :

V (') =
1

2

m'2
+ �M4

Pl exp [(�'/'1)
↵
]



24 

Conclusions 
•  Possible evidence of new Planck-scale physics in the 

CMB power spectrum for l = 20-40. 
•  Or an abrupt change in the inflation effective 

potential 
•  There is a possible existence of dark flow of ~ 250 km 

s-1 out to a scale of nearly 200 Mpc h-1     
•  However, detection of dark flow at high redshift 

remains ambiguous.  
•  Need a more complete sky coverage and larger 

sample of SNIa (LSST) 



Theoretical Motivation for  
Dark/Bulk  Flow 

•  Open inflation => pre-inflation isocurvature fluctuations visible 
(Kurki-Suonio, GJM (1991), Sasaki et al (1993), … 
–  CMB dipole ≠ CMB rest frame 

•  Existence of other fields in addition to inflation – Turner (1981), 
Linde (1995) … 

•  Double Inflation (Langlois 1996) 
•  Pre-inflation landscape – Quantum entanglement of the wave-

function for the universe with those of super-horizon modes  
–  Mersini-Houghton (2005), Holman & Mersini-Houghton (2006) and 

Holman, Mersini- Houghton & Takahashi (2008a)  
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CMB Dipole 
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where the expansion assumed β ! 1 with the dominant fluctuation generated in the (second)

dipole term, followed by small contributions to the quadrupole and negligible contributions
to octupole and higher moments (Peebles & Wilkinson 1968).

If the entire CMB dipole is of kinematic origin, its observed amplitude in the Sun-centric
system corresponds to velocity of V = 370 km/sec in that direction. At least a substantial

part of this motion must originate from the local motions of the Sun and the Galaxy, so the
conventional paradigm has been that all of the CMB dipole can be accounted for by motions
within the nearby 30− 100 Mpc neighborhood. This then allows to translate the measured

CMB dipole into the corresponding velocity under the assumption that its origin is purely
kinematic. However, in order to isolate truly cosmological motions, one should subtract from

the CMB dipole measured in the Sun-centric system the motions of the Sun with respect to
the Galaxy and the motion of the latter with respect to the Local Group. Table 5.1 adopts

the values from Kogut et al (1993, Table 3) in this conversion to the motion of the Local
Group with respect to the CMB.

CMB dipole is not equal to the Local Group velocity and is in the direction ∼ 45◦ away
from Virgo. The motion of the Local Group with respect to the CMB appears to be at $ 630

km/sec in the direction given in the last entry of Table 5.1. The difference was used by Lilje
et al (1986) to predict bulk motion of the Local Supercluster at ∼ 600 km/sec.

The big question in this context is at what scale is the matter frame, as defined by the
uniform and isotropic expansion of galaxies and clusters, at rest with respect to the CMB

as defined by its dipole. We next move to discussing the early (mostly late 20th century)
important attempts at answering this question. The progress toward this goal was advanced
in two independent directions: 1) reconstructing the peculiar velocity field directly with

measurements of deviations from the Hubble flow using various galaxy distance indicators,
and 2) reconstructing peculiar gravitational field, using galaxy and cluster surveys, which

presumably drives this flow. In the gravitational instability paradigm the direction of the

Table 5.1. Summary of local motion data reproduced from Kogut et al (1993).

V (km/sec) (lGal, bGal)
◦ Refs

Sun-CMB 369.5 ± 3.0 (264.44 ± 0.3, 48.4± 0.5) Kogut et al (1993)
(COBE/DMR-based)

Sun-LSR 20.0± 1.4 (57 ± 4, 23± 4) Kerr & Lynden-Bell (1986)
LSR-GC 222 ± 5 (91.1± 0.4, 0) Fich et al (1989)

GC - CMB 552.2 ± 5.5 (266.5± 0.3, 29.1± 0.4) Kogut et al (1993)

Sun - LG 308 ± 23 (105 ± 5,−7± 4) Yahil et al (1977)

LG-CMB 627 ± 22 (276 ± 3, 30± 3) Kogut et al (1993)

 β  = V/c 

T (✓) = TCMB(1� � cos ✓)



Great Attractor: 35h-1 Mpc  
Lynden-Bell (1983) 
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Matheson (1996) 
1)  Bulk flow extends 
beyond 130 h-1 Mpc 
2) No infall detected 
from other side 



Laniakea Supercluster ~160 Mpc h-1 
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The outer surface (blue) demarcates the limits of local velocity flows. The plot is in supergalactic coordinates with axes SGX and SGY shown in
the plane at SGZ = 0. Our Milky Way galaxy is at the origin. Units of 1,000 km s−1 in velocity correspond to roughly 13.3 Mpc. Velocity
streamlines are shown in black and terminate in the vicinity of the Norma cluster. Individual galaxies from a redshift catalogue are given colours
to distinguish major components within the Laniakea supercluster: the historical Local supercluster in green, the Great Attractor region in
orange, the Pavo-Indus filament in purple, and structures including the Antlia wall and Fornax-Eridanus cloud in magenta. Several major entities
are named. Norma, Hydra, Centaurus, Virgo, Ophiuchus, A2870, A3581 and A3656 are individual clusters of galaxies embedded within the
Laniakea supercluster. Shapley, Hercules, Coma and Perseus–Pisces are complexes of galaxies outside Laniakea. The outer black circle
defines the domain used to separate between local and tidal flows. The panels provide two perspectives of the same scene.

Figure 2: A slice of the Laniakea supercluster in the supergalactic equatorial plane.

Shaded contours represent density values within the equatorial slice, with red at high densities, green at intermediate densities and blue in
voids. Our Milky Way galaxy is located at the black dot at the origin of the supergalactic coordinates system: a red arrow points right from the
black dot toward increasing SGX and a green arrow points up toward increasing SGY. Individual galaxies from a redshift catalogue are given as
white dots. Velocity flow streams within the Laniakea basin of attraction are shown in white. The orange contour encloses the outer limits of
these streams. This domain has a extent of ~12,000 km s−1(~160 Mpc diameter) and encloses ~1017 solar masses,  .

Methods
The present discussion draws on a new catalogue of galaxy distances and peculiar velocities19, one that extends to recession velocities
of 30,000 km s−1 (redshift z = 0.1) and with 8,161 entries provides a density of coverage previously unknown. The new catalogue is
called Cosmicflows-2 and the six main methodologies for the distance estimates rely on the characteristics of Cepheid star pulsations,
the luminosity terminus of stars at the tip of the red giant branch, surface brightness fluctuations of the ensemble of stars in elliptical
galaxies, the standard candle nature of supernovae of type Ia, the adherence by elliptical galaxies to a fundamental plane in luminosity,
radius, and velocity dispersion, and the correlation between the luminosities of spirals and their rates of rotation. Each of the
methodologies has strengths and weaknesses. The Cepheid and tip of the red giant branch techniques provide high precision distances
but only to very nearby galaxies. The elliptical fundamental plane and spiral luminosity–rotation methods provide individually less
accurate distances but can be used to acquire samples of thousands of galaxies in a large volume. Type Ia supernovae are excellent
distance indicators and can be seen far away but they arise serendipitously and current samples are small. Jointly the sky coverage is
now substantial within ~100 Mpc, with only spotty coverage out to ~400 Mpc.

When the Cosmicflows-2 compendium was being compiled, considerable effort went into ensuring that the six independent
methodologies were on a common scale. This scale determines the value of the Hubble constant. In Cosmicflows-2, this parameter is
determined from the velocities and distances of type Ia supernovae at redshifts 0.03 < z <0.5, in a domain where peculiar velocities

R. B. Tully, et al. Nature 513, 71 (2014) 



Is it possible to detect bulk flow out to larger distances? 
GJM, Rose, Garnavich, Yamazaki, Kajino arXiv1412.1529 
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Kinetic Sunyev-Zeldovich Effect 
Kashlinsky (2012) 
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Net effect:  Redshift of CMB 
photons along line of sight to the  
cluster. 
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in eq. (6.2) can be expanded in Taylor series. On average, one “typical” scattering leads to

the following fractional frequency shift:
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In this expression, the direction of the incoming photon is random, but the outgoing photon
must be in the direction of observation x̂obs = −x̂′. When eq. (6.3) is averaged over all

possible incoming photon directions then all terms linear in x̂ are zero.

To obtain the net energy-momentum transfer between the CMB radiation and the hot

X-ray gas one needs to average over the entire electron population. On average CMB pho-
tons undergo τ scatterings, where τ is the projected cluster optical depth due to Thomson

scattering. If ne(r) denotes the number density of electrons in the cluster measured from the
center of the cluster, τ is given by

τ = σT

∫

ne(r)dl ∼ 6× 10−3 (
ne

10−3cm−3
) (

Rcluster

3 Mpc
) (6.4)

where the integration is taken along the line of sight. The averaged frequency shift induced
on a photon of frequency ν by the cluster electron population is
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with averages taken over the cluster distribution. The two terms on the RHS above are

different in nature. The first of these corresponds to the temperature shift due to the motion
of the cluster as a whole; it is termed the Kinematic (sometimes called kinetic) SZ (KSZ)
effect. The second term is due to the thermal motions of electrons in the cluster potential

well. It is usually expressed in terms of the electron temperature, i.e. 〈("vx̂obs)2〉 ∝ kBTe/mec2

and is commonly known as the Thermal SZ (TSZ) effect.

The KSZ effect has a clear physical interpretation. If we neglect the random motion of

the electrons in the potential well of the cluster, and consider only their motion due to the
peculiar velocity "vcl of the cluster, then 〈"v〉 = τ̄"vcl. If in the observer rest frame the CMB
photons are isotropic, in the cluster rest frame the radiation field will have a dipole pattern.

At the velocities and frequencies involved, Compton scattering is elastic, and there is no net
transfer of energy. Scattering produces only a change in the direction of the photons. The

effect on the observer reference frame is different, however. For example, if the cluster is
moving away along the direction of observation x̂obs, photons coming towards the observer
are blue-shifted in the reference frame of the cluster as they are scattered off their trajectory

while other photons, less energetic, are scattered back towards the observer. The net effect

CMB  
photons 
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Fig. 10.22.— The bulk flows per Table 10.3. Shaded grey region shows the velocity that
95% of cosmic observers would measure in the standard ΛCDM model. Black and dashed

solid lines correspond to the rms expectation for top-hta/Gaussian windows assuming the
standard ΛCDM model. Reproduced from KAEEK.

2. The CMB pixels within the identified clusters display a negative monopole, 〈δT 〉 < 0

so their CMB signature arises from hot X-ray gas these clusters contain.

3. The final dipole signal is measured at zero monopole and hence the TSZ contribution
to the dipole is small (and limited in magnitude by the residual monopole).

4. The amplitude of the measured dipole correlates well with the LX-threshold of cluster
sample which is consistent with its SZ origin and is highly unlikely to have been

produced by some putative systematics.

5. The dipole disappears at larger apertures as shown in Fig. 10 of KABKE2.

6. An all-sky filter cannot imprint a dipole with the above properties whereas inappropri-
ate filtering can reduce the KSZ component enough to make the measurement (with
such a filter) statistically insignificant.

7. The direction/axis and amplitude of the flow agree remarkably well with the galaxy
distance indicator measurements on much smaller scales.

VBF = 800±200 km s-1 

(l,b) = (283±14, 12±14) 

Kashlinsky (2012) 



But!! Planck Data seem to 
contradict this: arXive:1303.5090 
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Planck Collaboration: Peculiar velocity constraints from Planck data

Fig. 9.Bulk flow amplitudemeasured in Planck data with the all-
sky method, after subtraction (vectorially) of the Galactic contri-
bution (black crosses), compared with 95% upper limits derived
from simulations containing CMB and instrumental noise only
(blue arrows) or also including tSZ signal (black arrows). The
fact that the crosses are below the arrows at all scales shows that
there is no significant bulk flow detection.

ulations show that the directions of bulk flows of the magnitude
seen in the data cannot be recovered with great precision. Errors
are of the order of tens of degrees, depending on the bulk flow
direction (Mak et al. 2011).

Finally, we notice that the upper limits to the bulk flow that
we find with this method are above those found in the previ-
ous subsection. This is not surprising, as we are fitting here for
both the velocity direction and amplitude, and we compute er-
rors in a different way. The upper limits obtained with this ap-
proach should be considered as more conservative. Nevertheless
they are about a factor of five better than what was found using
WMAP data.

4.2.3. Revisiting the Kashlinsky et al. (2010) filter

The idea of constraining the local bulk flow of matter by look-
ing at the dipolar pattern of the kSZ in the galaxy cluster pop-
ulation was first discussed by Haehnelt & Tegmark (1996) and
further developed by Kashlinsky & Atrio-Barandela (2000). The
method was applied by Kashlinsky et al. (2008, 2009) toWMAP
data, analyses that have been followed by more recent studies
(Kashlinsky et al. 2010, 2011). In this section, we perform a di-
rect application of their filter to both WMAP and Planck data,
and interpret it at the light of the results already outlined in this
work.

We first implement the filter of Kashlinsky et al. (2010) on
the MCXC cluster sample and theWMAP-7 data. After using the
extended temperature KQ75 mask, we obtain filtered maps from
the cleaned Q, V and W band WMAP data. Since the filtered
maps for the four W-band Differencing Assemblies (DAs) used
by those authors are publicly available3, a direct comparison of

3 The data were downloaded from the URL site
http://www.kashlinsky.info.

the filtered maps can be performed: for instance, for the filtered
maps corresponding to the fourth W-band DA, the temperature
rms outside the joint mask in our filtered map is 74µK, very
close to the 77µK obtained from the map used by Kashlinsky
et al. (2010). The rms of the difference map amounts to 35 µK,
and a visual inspection shows the similarity between both maps.
Each cluster is assigned a radius of 25′, and the remove dipole
routine from HEALPix is used when computing the monopole
and dipole in the subset of pixels surrounding the clusters. The
monopole and dipole components obtained for the WMAP W
band are displayed by the black, vertical dot-dashed lines in
Fig. 10. These are in very good agreement with the results ob-
tained by Kashlinsky et al. (2010).

We next distribute the same number of clusters surviving the
mask randomly on the unmasked sky 1000 times, assign them a
circle of radius 25′ and repeat the monopole and dipole compu-
tation. For each of the 1000 cluster configurations, we separately
compute the monopole and dipole for each of the DAs. This per-
mits us to obtain the rms for each component and DA, in such
a way that a combined estimate of the monopole and dipole can
be extracted from all DAs by inverse-variance weighting the es-
timate for each DA. This is carried out for the real cluster con-
figuration on the sky and for the 1000 mock (random) configura-
tions. From the latter, we obtain the histograms shown in Fig. 10.
The average quantities out of the 1000 simulations are displayed
by the solid, vertical lines. Black lines refer to WMAP data, and
our results show that the y-component of the dipole is peculiar,
in the sense that it falls far in the negative tail of the distribution.

When repeating these analyses with the 2D-ILCmap, we ob-
tain the results displayed by the red lines in the same figure. In
this case, the dipole components from the real data fall further
outside the distribution provided by the histograms, as none of
the 1000 mock cluster configurations provides a dipole of larger
amplitude than the one measured from the real MCXC sample.
These results suggest that the dipole measured at the MCXC
cluster positions is indeed peculiar if compared to dipole esti-
mates from randomized cluster positions.

Nevertheless, there is one aspect to be studied more closely,
namely the angular distribution of clusters on the sky. In what
follows, the filtered map built upon the 2D-ILC data will be used.
So far our Monte Carlo simulations assumed that clusters were
placed randomly on the sky, i.e., the clustering of our sources
has been neglected. We next perform tests in which the angu-
lar configuration of our MCXC cluster sample is preserved. The
first test consists of repeating the filtering and subsequent dipole
computation on 1000 CMB mock skies following the WMAP-
7 best-fit model. These mock CMB maps contain no kSZ and
hence should give rise to no significant kSZ dipole. Out of this
ensemble of mock skies, we compute the dipole using the posi-
tions of MCXC clusters (as described above) and obtain a his-
togram from the recovered dipole amplitude. This permits us to
judge how peculiar our measurement is with respect to the sim-
ulation outputs. In a second test, we rotate the clusters’ angular
positions around the Galactic z-axis on the real filtered map ob-
tained from the 2D-ILC data. We conduct 360 rotations of one
degree step size, in Galactic longitude, while preservingGalactic
latitude, and the relative angular configuration of MCXC clus-
ters on the sky. Since the mask mostly discards pixels at low
Galactic latitude (close to the Galactic plane), most clusters that
are originally outside the mask remain outside the mask after ro-
tating. For each rotation a new value of the dipole is recorded,
and information on dipole statistics is then built up using outputs
obtained from the real map with the real rotated cluster config-
uration on the sky. This rotation test, unlike the one based upon
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Fig. 8.Mollweide projection in Galactic coordinates of the upper
limit (at 95% C.L.) of the kSZ dipole amplitude from applying
the uMMF approach to HFI frequency maps using the whole
MCXC cluster sample. In no direction is the dipole detected at
more than 2σ.

displays the corresponding upper limits (at the 95% confidence
level, calculated as 2σ, assuming a Gaussian distribution) on the
dipole values for different radii and both AP and uMMF meth-
ods on HFI frequency maps: for both methods, the 95% C.L.
upper limit for radii of 90 h−1 Mpc amounts to ∼ 2000 km s−1,
but it decreases rapidly as the volume increases. For spheres
of radius around 350 h−1 Mpc, the uMMF limits fall to about
390 km s−1, and the correspondingAP limit is just slightly higher
(520 km s−1). In the largest volume probed by the MCXC clus-
ters, the 95% C.L. upper limits become 329 and 254 km s−1 for
the AP and uMMF filters, respectively. Despite being very differ-
ent in their definition, the two methods give rise to a very similar
pattern in the bulk flow constraints inside different volumes, and
in all cases the measured dipoles are compatible with zero.

In Fig. 8 we display the 95% upper limit on the kSZ ampli-
tude from the uMMF filter using the whole MCXC cluster set
(for which 〈z〉 = 0.18) and HFI frequency maps. In no direction
does the measured dipole exceed 2σ, and the direction with the
highest α̂/σα̂ value is close to the Galactic plane. This is to be
expected if the errors in the Galactic x- and y-components of the
dipole are larger than the z-component, due to the lack of clusters
at low Galactic latitudes. When restricting ourselves to clusters
below z = 0.25, the dipole amplitude along the CMB dipole
direction (l, b) = (264◦, 48◦) (Hinshaw et al. 2009) amounts to
80±150km s−1, and limits to 50±160km s−1 along the direction
of apparent motion of the Local Group with respect to the CMB,
(l, b) = (276◦, 30◦) (Kogut et al. 1993). This result is in clear con-
tradiction with Kashlinsky et al. (2010), who find a bulk flow of
about 1000 km s−1 amplitude within radii of 300–800h−1 Mpc at
∼ 3σ C.L. Since our error bars are a factor of about 2 smaller,
this suggests that we test the outcome of the filter used by those
authors on our data (see Sect. 4.2.3 below).

4.2.2. Constraints from all-sky method

We can also compute the bulk flow according to the procedure
outlined in Sect. 3.4. We filter the observed HFI maps and fit
monopole and dipole velocity coefficients to the filtered data, as
well as to simulations of the data (PSM diffuse component, tSZ
and CMB plus instrumental noise simulations; see Sect. 2.3).
Simulations provide one way of estimating uncertainties which

allow one to propagate errors on cluster-derived measurements,
mainly induced by dispersion in the scaling relations, throughout
the whole pipeline. An alternative procedure to derive uncertain-
ties consists of randomizing the positions of the clusters on the
sky and computing the monopole and dipole from these random
directions, adopting the same procedure used on the real data.
We use the latter to show the typical variations of the diffuse
component’s contribution for small displacements around clus-
ter locations. Specifically, we consider directions displaced by
30′ to 1◦ from the cluster nominal locations, while also avoiding
mask boundaries (these are the “shifted positions” in Table 2).

Values for the resulting velocity dipole coefficients are pre-
sented in Table 2. The main result is that Planck data give dipole
coefficient amplitudes consistent with those expected from the
ΛCDM scenario, once one has taken into account the contamina-
tion from Galactic foregrounds and other signals. The apparent
bulk flow measured is 614 km s−1. However, with this particular
configuration for cluster positions, the diffuse Galactic compo-
nent provides a non-negligible contribution to the dipole signal,
529 km s−1, as measured in the PSM simulations. The errors on
the diffuse component, as estimated by randomizing the clus-
ter directions on the PSM diffuse component simulations, are
smaller than those induced by the thermal SZ and CMB plus
instrumental noise simulations (see Table 2).

Simulations of the tSZ component, which account for un-
certainties in the SZ signal for clusters with a given temperature,
induce a 1σ uncertainty on the bulk velocity of 40 km s−1, and an
overall bias in the velocity estimation of the order of 400 km s−1.

Uncertainties from CMB confusion and instrumental noise
(140–290km s−1 in the different directions) are dominant over
tSZ ones. The fraction of the observed bulk flow not accounted
for by Galactic foregrounds (by subtracting the dipole as a vec-
tor, this amounts to 350 km s−1) is within 95% of the error on
bulk flows induced by the tSZ, CMB and instrumental noise
(893 km s−1) and below the 95% level of CMB plus instrumental
noise alone (543 km s−1).

By restricting the cluster sample to the objects within a spec-
ified distance from us, it is possible to constrain the bulk flow
within spheres of a given comoving radius. This is what is dis-
played in Fig. 9, where the Galactic component has been sub-
tracted. We notice that, for all distances, the measured bulk
flow is below the 95% confidence level as measured from
maps including only CMB, instrumental noise, and tSZ clusters.
The upper limits reach an approximately constant value above
scales around 500h−1 Mpc, as a small fraction of the clusters
in this sample are at larger distances. The 95% upper limits at
2400 h−1 Mpc are 893 km s−1 when all sources of noise are con-
sidered, reducing to 543 km s−1 when CMB plus instrumental
noise are taken into account.

The results reported in Fig. 9 refer to the nominal mask,
while in Table 2 we also quote results for the more restrictive
mask. The two sets of results are very similar, however.

In this analysis, we also fit for the direction of the measured
bulk flow. Even although the detection is not significant, it might
still be instructive to compare the best fit direction to other po-
tentially relevant directions. Results for various cluster configu-
rations and Planck data are displayed in Fig. 2, together with the
CMB dipole and the claimed dipole direction of Kashlinsky et al.
(2008). We notice that the direction we determine from Planck
data and MCXC clusters is quite different from both the CMB
dipole and the result of Kashlinsky et al. (2008). It aligns better
with the direction of the collection of clusters in the map, which
happen to be in a low instrumental noise area of the sky, as one
would expect from a noise–induced measurement. Indeed, sim-
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1 Introduction

One of the most recent puzzles raised by the cosmological observational data is the so-
called “bulk flow” — a coherent motion of a large part of our visible universe. Originally,
Kashlinsky et al. [1, 2] claimed the detection of bulk flow using the Sunyaev-Zel’dovich e↵ect
in the Cosmic Microwave Background (CMB) radiation. The bulk flow velocity magnitude
between 600 km/s and 1000 km/s directed toward the point given in galactic coordinates by
(l, b) = (283 ± 14�, 12 ± 14�) at scales surpassing 800 Mpc was measured. This result was
later reinforced in [3, 4] by using a compilation of peculiar velocity redshift surveys. Their
analysis showed a bulk flow of 407 ± 81 km/s towards (l, b) = (287 ± 9�, 8 ± 6�), which is
still large enough to be at odds with the ⇤CDM model. Other work on the topic includes
refs. [5–11]. Though the directions of the bulk flow are very consistent, the magnitudes of
the bulk flow velocities are less consistent and vary from analysis to analysis.

In this paper we study the peculiar velocities of Type IA supernovae. If the bulk
flow is real, then some imprint must be left on supernovae motion. Since the recession
velocities of the high redshift supernovae are large and the magnitude of the bulk flow is
moderate, one can expect the largest contribution to come from low redshift supernovae.
Our results are consistent with this expectation. We find the bulk flow in the direction
(l, b) = (290+39

�31
�
, 20+32

�32
�) with a magnitude of vbulk = 188+119

�103 km/s at 68% confidence for
the low redshift (i.e. z < 0.05) supernovae.

2 Analysis

The e↵ects of Type IA supernovae peculiar velocities have been studied for a while [12, 13]
(for some earlier studies see [14, 15]) because of their importance in cosmology as standard
candles. In particular, the peculiar velocities can change the luminosity-distance relation-
ship. The measured (perturbed) luminosity-distance depends on the original (unperturbed)
luminosity-distance and peculiar velocities of the observer and the source.
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are peculiar velocities of the observer and the source (supernova) respectively. n̂ is
the unit vector along the line of sight, and points from the observer to the supernova. z and
D
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(z) are the redshift and luminosity distance from the Type Ia Supernova measurements.
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& Plionis (2006) re-analysed the same data set and found that
significant power was required on large scales, which was missed
by the original analysis. Other studies have been based on the Two
Micron All Sky Survey (2MASS) Redshift Survey (2MRS; Huchra
et al. 2011): Erdoğdu et al. (2006) and found probable conver-
gence, but Lavaux et al. (2010) concluded that convergence was
not obtained by 12 000 km s−1, and may not be until well beyond
20 000 km s−1. In another study, using only the infrared fluxes,
Bilicki et al. (2011) concluded that even at an effective distance
∼300 h−1 Mpc (Ks < 13.5) the flux dipole had not converged.

In this paper, we use Type Ia supernovae (SNeIa) as our peculiar
velocity tracers. SNe have also been used as peculiar velocity probes
by a number of authors (Riess, Press & Kirshner 1995; Riess et al.
1997; Radburn-Smith, Lucey & Hudson 2004; Lucey, Radburn-
Smith & Hudson 2005; Pike & Hudson 2005; Haugbølle et al.
2007; Colin et al. 2011; Dai, Kinney & Stojkovic 2011; Weyant
et al. 2011).

An outline of this paper is as follows. In Section 2, we introduce
the data sets that were used. Section 3 presents the bulk flow of the
SNe, using both simple weighting schemes and the ‘MV’ scheme
of Watkins et al. (2009). Section 4 compares individual SN peculiar
velocities to the predictions of the IRAS PSCz density field. We
discuss the implications of our results in Section 5 and present our
conclusions in Section 6. Throughout, we adopt !m = 0.3 and
!" = 0.7, and quote distances in units of km s−1.

2 DATA A N D C A L I B R AT I O N

In this study, three primary data sets of nearby SNe (with distances
less than 20 000 km s−1) are combined.

We refer to the first of these data sets as the ‘Old’ sample, and
it contains 106 SNe, the youngest being from 2002, drawn from
two sources: Jha, Riess & Kirshner (2007) and Hicken et al. (2009).
Of the SNe in the ‘Old’ sample, 34 are from Jha et al. (2007).
The remaining 72 SNe in ‘Old’ are from Hicken et al. (2009).
The second data set, which we refer to as ‘Hicken’, contains the
remaining 113 SNe from Hicken et al. (2009) after cutting objects
at distances larger than 20 000 km s−1 and cutting two more objects
(sn2007bz and sn2007ba) because they deviated by more than 3σ

after the first round of fitting (as described below). The last set
is the recently released data set from ‘The Carnegie Supernova
Project’ (CSP; Folatelli et al. 2010), containing 28 SNe. Two of
these objects were discarded due to our 20 000 km s−1 distance
cut, leaving 26 usable SNe. The CSP’s reported uncertainties only
reflected the derived distance modulus residual spread. A second
intrinsic uncertainty(σ SN) in the magnitude of the SNe was added in
quadrature by fitting a flow model and reducing the reduced χ2 fit to
1.00. The intrinsic uncertainty was found to be 0.107 mag (slightly
smaller than the 0.12 mag found by the CSP due to cuts and the
additional free parameters of bulk flow). For further discussion of
the light-curve fitting, and consequences thereof, for the ‘Old’ and
‘Hicken’ data sets, see Appendix A.

We combine these three sets to create a new sample that we dub
the ‘First Amendment’ (A1) compilation which we consider to be
an extension to the ‘Constitution’ data set.1

1 The ‘Old’ and ‘Hicken’ sets combined resemble very closely the ‘Consti-
tution’ set from Hicken et al. (2009) in terms of which SNe are included.
The light-curve fitter used here multicolour light-curve shapes (MLCS2k2)
differs from that of the ‘Constitution’ data set spectral adaptive light-curve
template for Type Ia supernovae (SALT2).

Where the observed SNe in the data sets were known to be
contained within a cluster of galaxies, the redshift of the cluster was
used for the observed velocity distance rather than the redshift of the
SN itself. Substituting cluster velocities for SN velocities removes
a significant source of thermal noise as objects in clusters can have
a velocity rms of thousands of km s−1. This process was applied to
all the three data sets. For galaxies not in clusters, the redshift of
the host galaxy was used if the host galaxy redshift was recorded in
NASA/IPAC Extragalactic Database (NED), which occurred in all
but two cases. For the remaining two cases, we used the redshifts
of the SNe. Galactic longitudes and latitudes for the Carnegie set
were also taken from NED.

The A1 data set has a characteristic or uncertainty-weighted depth
of 58 h−1 Mpc, where we define the characteristic depth to be

r∗ = % r/σ 2

% 1/σ 2
, (2)

where σ is the total uncertainty in each SN’s peculiar velocity and
r are the coordinates in units of km s−1.

In Fig. 1, we present our results, our raw data and the bulk flow
directions that other surveys have found in an Aitoff projection. In
Fig. 2, we present the A1 data set in a Hubble diagram divided into
its three subsets. For all three data sets, the intrinsic uncertainty of
SNe is the dominant source of error. Thus, for all our SNe, the per
cent error is approximately 6 per cent of the measured distance, with
the scatter for the ‘Old’ and ‘Hicken’ subsets being larger.

3 BU LK FLOW

In this section, we discuss the bulk flow, which is the simplest
statistic that can be derived from a peculiar velocity survey.

3.1 Methods

We use two methods to measure the bulk flow. The first is a max-
imum likelihood (ML) method that minimizes the measurement
uncertainties. The ML method is the traditional method used, and
we consider it in order to compare new results with previous ML
results. However, ML methods have the disadvantage of returning
the bulk flow of a specific sparse sample of peculiar velocity tracers
rather than the bulk flow of a regular volume. Comparisons be-
tween ML results are complicated by the different spatial sampling.
Instead, what is of greater interest is the bulk flow of a standard-
ized volume. To estimate this, we calculate the ‘minimum variance’
(MV) bulk flow as first introduced by Watkins et al. (2009).

3.1.1 Maximum likelihood

In general, we fit a simple flow model (vpred) to the SNIa peculiar
velocity data. In the case of the bulk flow V in the CMB frame, this
flow model reduces to the radial component of the bulk flow vector
for each SN, i.e.

vpred,i = V · r̂ i , (3)

where r̂i is the unit vector pointing to each SN.
In the ML method, the weights are simply determined by the total

uncertainty on the peculiar velocity of each object. Uncertainties
in the observed peculiar velocity can be approximated well by a
Gaussian, in which case the ML solution can be approximated by
the following χ2:

χ2 =
∑

i

[czobs,i − (ri + vpred,i)]2

σ 2
i

, (4)
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FIG. 2. (color online) Hammer projection of the sky distribu-
tion of the bulk flow velocity from the MCMC analysis using
low redshifts z < 0.05 from the Union 2.1 data set. Contours
are drawn for the 1� dark shading and 2� (light shading)
confidence limits.

the Cartesian components analysis. Figure 3 shows a
comparison of the Union2.1 data set with the best fit
curve for both the low redshift (upper) and high red-
shift (lower) data. Although the scatter in the data
is large, the low-redshift data are well fit by a cosine
function. However, the high-redshift data has a much
larger scatter (note the change of scale). The fit yields
a bulk flow of v

bf

= 460 ± 260 km s�1 in the direction
of (l, b) = (180 ± 34, 65 ± 340)� as summarized in Ta-
ble I. This is at best marginally significant (1.8�) and is
consistent with no bulk flow.

C. Analysis of SDSS Stripe 82

In the hope of finding a better constraint in a larger
data set we also applied both the Cartesian-velocity and
the global cosine analyses to the SDSS-II SN Ia data [?
? ], including both spectroscopic and photometrically
classified Type Ia Supernovae [? ]. Hence, it was deemed
worthwhile to examine the viability to detect a bulk flow
with the SDSS-II data.

Although there is a large sample of galaxies with well
measured SN Ia distances in the SDSS data, there is
only a single stripe (Stripe 82) for which the data re-
sides near the expected bulk flow direction determined
from the analysis of the Union2.1 data set. This makes
an identification of the bulk flow di�cult. Indeed,o bulk
flow could be detected in either the cartesian-component
analysis or the cosine fit. When analyzing these data
and testing a null hypothesis with a simulated data set

FIG. 3. (color online) The result of the cosine analysis of
the Union2.1 data with SNIa at low redshift, z < 0.05 (upper
plot), and high redshift z > 0.05 (lower plot). The blue line is
the cosine with an amplitude of 325 km s�1. Colors indicate
the redshift of each SN Ia. The black points are binned data
with one standard deviation error bars.

similar to SDSS in location, redshift distribution, and ob-
servable errors, the results easily gave bulk flow velocities
upwards of 104 km s�1 as can be seen in Figure 4. How-
ever, the deduced velocities are in inconsistent directions
in the sky. Any deduced bulk flow fwas consistent with
zero. More analysis was done and the cosine fit was only
marginally better at detecting a bulk flow if it was at the
edge of Stripe 82. This means that, although a uniform
analysis of dense SN Ia from an SDSS-like survey could
be very helpful, the currently existing single stripe, even
in the direction of the bulk flow, provides insu�cient sky
coverage.

III. ANALYSIS OF SIMULATED DATA SETS

A. Simulated bulk flow at low redshift

As a means to test the robustness of determining a bulk
flow velocity from the sample noise, multiple SN Ia data
sets were created that mimicked the low redshift bin of
the Union2.1 data set, but in which a known bulk flow ve-
locity could be imposed. These simulated data sets were
created to have the identical positions and errors to that

Z < 0.05 

Z > 0.05 

vbf = 270 ± 50 km s−1
  

 

(l, b) = (295 ± 30, 10 ± 15)◦  

vbf = 1000 ± 600 km s−1
  

 



Need more statistics at high 
redshift 

36 



What about SDSS II? 

37 

Mathews, Rose, Garnavich, Yamazaki Kajino (2014) 

1.8 billion galaxies 
> 1000 SNe 
 



SDSS 

38 
Not enough sky coverage along the direction of flow 


