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Baryon asymmetry
BBN / Planck determination of η10

Planck

Incorporating ωb from
arXiv:1303.5076
(Planck 2013
Cosmological
Parameters)

J.Cline, McGill U. – p. 4

P.Ade et al, ArXiv:1502.01589 	
(Planck 2015 Cosmological Parameters)

Because of Inflation,

this cannot be initial condition.

⌦bh
2 = 0.02225± 0.00016

TBAU < 1.7⇥ 1016
⇣ r

0.2

⌘1/4
GeV

Tensors:

This leaves a fair amount of room to play:

100GeV < TBAU < 1016 GeV
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Baryon asymmetry / mechanisms

CP

B

Sakharov • Electroweak baryogenesis 
     - MSM, MSSM, NMSSM, 2HDM, SSM,… 
     
• Leptogenesis 
       - non-resonant 
       - resonant 
!
• Warm, Cold, WIMPy, Dark, … 
   Affleck-Dine mehanism, 
   from GUT, neutrino oscillations, 
   higher dimension operators,  
   inflation, preheating, ….  
    

TEWBG ≈ 100GeV:  works at the lowest  
possible energy:  By far most TESTABLE!

C
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EWBG in a nutshell H ⇠ 10�14T 2
100GeV

� ⇠ 10�5T100GeVEWBG in a nutshell
• At critical temperature Tc ∼ 100 GeV, bubbles of true vacuum
(⟨H⟩ ̸= 0) form and start expanding.

• Particles interact with wall in a CP violating way.

• Baryon asymmetry forms inside the bubble.

<H> = v

baryon #
conserved

<H> = 0
L
R
L
R

baryon
violation
by sphalerons

〈 〉 〉〈

J.Cline, McGill U. – p. 6

1st order PT   at  Tc ~100 GeV.

bubbles of true vacuum, ⟨H⟩ ≠	 0, form and start  
expanding into the false symmetric vacuum.

 1st

order

  PT
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Particles interact with wall in CP violating way

Baryon asymmetry forms inside the bubble
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Electroweak baryogenesis
and scalar dark matter

m=0

m>0

m>0

m>0

m>0

m>0

m>0

Jim Cline (McGill U.)

in⃝ν isibles13Workshop, Durham IPPP, 19 July 2013

J.Cline, McGill U. – p. 1

EWBG, A SIGHTLY BIGGER NUTSHELL

To keep BA

To make BA

Equilibrium / N
onperturbative / G

auge issues

Mostly out-of-equilibrium / q
uantum

CP

B

B

H

m  = 0f

m  = yf

Interaction

rate,

m  = 0fm  = 0f

z

b
(n-n)

source 

asymmetry

L

v
w

Broken phase

Symmetric phase

•Dim. reduction to a 3D-

  Higgs-gauge theory 

  simulated in Lattice

K.Kajantie, M.Laine, K.Rummukainen and M.E.Shaposhnikov, 	
NPB458 (1996) 90; NPB466 (1996) 189;	
PRL77, 2887 (1996)....

2-loop Veff in LG  
~OK
M.Laine, G.Nardini and	
K.Rummukainen, 	
JCAP 1301 (2013) 011...

Sphaleron rate in the symmetric phase
Ambjorn etal,... Moore; Rummukainen etal,..

Sphaleron rate in the broken phase
Kuzmin, Rubakov & Shapsohnkinov,  Arnold & McLerran, ... Moore; Rummukainen etal;

(CP-even) dynamics of the expanding wall
Parametrized by vw and �(z)

Espinosa, Konstandin, 	
No & Servant (2010),...

Kajantie etal, 	
Prokopec & Moore, John & Smith

•From Veff  compute
M.Garny and T.Konstandin, JHEP1207 (2012) 189, ....

H.H.Patel, M.J.Ramsey-Musolf, C.Wainwright, S.Profumo 	
JHEP 07 (2011) 029; PRD84 (2011) 023521; PRD86 (2012) 083537.
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 ... must be small

✓
v(Tc)

Tc

◆

Landau

> 1

CP-violating source in transport eqs.

SC force

“vev-insertion”

•Thin wall: quantum
•Thick wall SC: Joyce, Prokopec, Turok, 	

Cline, KK, Schmidt, 	
Weinstock, Konstandin, ...

Riotto, Carena, Quiros, Wagner, ...

(cQPA) Herranen, KK, Rahkila,…
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Short history of the EWBG
B-violation in SM Transition strength Baryon creation, QKE’s

NMSSM, 2HDM’s, SM+S, 
portals,…

Renewed interest on 

Kuzmin, Rubakov, Shaposhnikov,  
fast B at high T in SM1985

HIGGS2012
cQPA combines SCBG 
and QR, using CTP 
Herranen, KK, Rahkila 

~2009-

Cohen, Kaplan, Nelson 
    spontaneous BG, …

1990

Farrar, Shaposhnikov, 
Gavela, Hernandez,Orloff,Pene,.. 
    Quantum Reflection 

1993-4

CTP mostly used to 
defelop QKE’s for 
(resonant) 
Leptogenesis  
Pilaftisis etal, 
Buchmuller etal,  Garny etal, 
Garbrecht etal, Herranen etal, 

2003- 
!
!

TOP1993 -1995

Weinberg,Jackiw,Kiritsis,Linde,Niemi,Semenoff,… 
FTFT, Veff(ϕ,T)197n

Kajantie, Rummukainen, 
Laine, Shaposhnikov:  
       DR+Lattice => SM dead

1995-1996

LSS in MSSM,  
Carena, Quiros, Wagner, J.R.Espinosa,… (Veff) 
Cline, KK, Rummukainen, Laine, Losada…  
DR+Lattice

1996 
~ 

2000

MSSM / phenomenology 
Carena, Quiros, Wagner, Nardini,.. 
Rummukainen, Laine, … 
constraints on LSS getting worse…

2000- 
!

J.R.Espinosa, Gripaios, Konstandin, Riva:  
    strong 2-step trans. in SM+S

2011

Arnold, McLerran,.. 
Affleck-Langer, broken phase1987

� ⇠ Ae�E/T

Ambjørn, Krasniz, Shaposh… 
first Lattice results (symm.ph)

Rummukainen, Laine, 
Moore, Bödeker,… 
ChS-# diffusion in Lattice,  
HTL, Langevin eqs,..

1990 
!
!
- 
!
!

200n

� ⇠ #↵4T

� ⇠ #↵5T

Arnold, O.Espinosa, Buchmuller 
Fodor,…  EWPT industry using Veff

Carrington: Veff(ϕ,T)SM1992
1993 -

Rummukainen, d’Onofrio, 
Tranberg: definite results SM-Lattice

2014

Rummukainen, Moore,… 
updates 
Ramsey-Musolf, 
Garny Konstandin, 
gauge dep. 
RIotto,… 
B-dependence,…

My most sincere apologies for 
the many, many people who did  
not get mentioned here despite 
their work of great importance ! 

( Morrissey, Ramsey-Musolf,… 
  Prokopec, Konstandin,…  
  Flavour mixing … )

~2010-

M.Joyce, T.Prokopec, N.Turok, 
Cline, KK, MJ,TP, Schmidt,Konstandin… 
    Semiclassical force BG 
    WKB / CTP

Riotto, Carena, Quiros, Wagner,…. 
 “vev-insertion method”, 
 also from CTP 
  … Profumo,Ramsey-Musolf,Tulin,..

 1994 
-2002

 1996 
-200n

SCP(z)

’t Hooft -76 
Klinkhamer, Manton -84
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EWPT and B-violation in the SM; 
latest results

PT in SM, is a cross-over with

Tc ≈ 160 GeV

K.Rummukainen, M.d’Onofrio and A.Tranberg, PRL113.141602 
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FIG. 2: The Higgs expectation value as a function of tem-
perature, compared with the perturbative result [2].

real-time runs are made to calculate the dynamical pref-
actors of the tunneling process. The physical rate is then
obtained by reweighting the measurements. For details
of this intricate technique, we refer to [12, 27]. As we will
observe, in the temperature range where both methods
work, they overlap smoothly.
Simulation results: We perform the simulations using lat-
tice spacing a = 4/(9g23) (i.e. βG = 4/(g23a) = 9 in
conventional lattice units), and volume V = 323a3. In
ref. [12] we observed that the rate measured with this
lattice spacing in the symmetric phase is in practice in-
distinguishable from the continuum rate, and deep in the
broken phase it is within a factor of two of our estimate
for the continuum value, well within our accuracy goals.
In fact, algorithmic inefficiences in multicanonical simu-
lations become severe at significantly smaller lattice spac-
ing, making simulations there very costly in the broken
phase. The simulation volume is large enough for the
finite volume effects to be negligible [12].

The expectation value of the square of the Higgs field,
v2/T 2 = 2⟨φ†φ⟩/T (here φ is in 3d units), measures the
“turning on” of the Higgs mechanism, see Fig. 2. As
mentioned above, there is no proper phase transition and
v2(T ) behaves smoothly as a function of the tempera-
ture. Nevertheless, the cross-over is rather sharp, and
the pseudocritical temperature can be estimated to be
Tc = 159± 1GeV. If the temperature is below Tc, v2(T )
is approximately linear in T , and at T > Tc, it is close to
zero. The observable ⟨φ†φ⟩ is ultraviolet divergent and
is additively renormalized; because of additive renormal-
ization, v2(T ) can become negative.
We also show the two-loop RG-improved perturbative

result [2] for v2(T ) in the broken phase. Perturbation

130 140 150 160 170
T / GeV

-45

-40

-35

-30

-25

-20

-15

-10

lo
g 
Γ
/Τ

4

standard
multicanonical
fit
perturbative
perturbative + correction

pure gauge

log[αH(T)/T]

FIG. 3: The measured sphaleron rate and the fit to the bro-
ken phase rate, Eq. (7), shown with a shaded error band.
Perturbative result is from Burnier et al. [11] with the non-
perturbative correction used there removed; see main text.
The corrected perturbative result includes a new ad hoc cor-
rection. Pure gauge refers to the rate in hot SU(2) gauge
theory [19]. The freeze-out temperature T∗ is solved from the
crossing of Γ and the appropriately scaled Hubble rate, shown
with the almost horizontal line.

theory reproduces Tc perfectly, and v2 is slightly larger
than the lattice measurement. In the continuum limit we
expect this difference to decrease for this observable; in
ref. [12] we extrapolated v2(T ) to the continuum at a few
temperature values and with Higgs mass 115GeV. The
continuum limit in the broken phase was observed to be
about 6% larger than the result at βG = 9. Thus, for
v2(T ) perturbation theory and lattice results match very
well.
Finally, in Fig. 3 we show the sphaleron rate as a func-

tion of temperature. The straightforward Langevin re-
sults cover the high-temperature phase, where the rate
is not too strongly suppressed by the sphaleron barrier.
In fact, we were able to extend the range of the method
through the cross-over and into the broken phase, down
to relative suppression of 10−3.

Using the multicanonical simulation methods we are
able to compute the rate further 4 orders of magnitude
down into the broken low-temperature phase. The results
nicely interpolate with the canonical simulations in the
range where both exist. In the interval 140<∼T<∼155GeV
the broken phase rate is very close to a pure exponential,
and can be parametrized as

log
ΓBroken

T 4
= (0.83± 0.01)

T

GeV
− (147.7± 1.9). (7)

The error in the second constant is completely dominated

v2
(T

)/
T

2

T/GeV

4

by systematics. We conservatively estimate that the the
uncertainties of the leading logarithmic approximation
and remaining lattice spacing effects [12] may affect rate
by a factor of two. The omitted hypercharge U(1) in
the effective action (with physical θW ) can change the
sphaleron energy by ≈ 1% [14] and shift the pseudocriti-
cal temperature by ≈ 1GeV [15]. These errors have been
added linearly together to obtain the error above.
In the symmetric phase the rate is approximately con-

stant, and can be presented as

ΓSymm./T
4 = (8.0± 1.3)× 10−7 ≈ (18± 3)α5

W , (8)

where, in the last form, factors of lnαW have been ab-
sorbed in the numerical constant. In pure SU(2) gauge
theory the rate is Γ ≈ (25±2)α5

WT 4 [22, 28]. A difference
of this magnitude was also observed in ref. [25].

In Fig. 3 we also show the perturbative result cal-
culated by Burnier et al. [11]. We note that the
full rate in [11] is obtained by including a large
non-perturbative correction to the perturbative rate,
log(Γ/T 4) = log(Γpert./T 4)− (3.6± 0.6), where the cor-
rection is obtained by matching with earlier simulations
in the broken phase [27]. However, these simulations
were done with Higgs mass ≈ 50GeV, which is far from
the physical one studied here. With the correction in-
cluded their result is a factor of ≈ 150 below our rate,
albeit with large uncertainty. In Fig. 3 we have re-
moved this ad hoc correction altogether, and the result-
ing purely perturbative rate agrees with our results well
within the given uncertainties of both the lattice and
the perturbative computation (δ logΓpert./T 4 = ±2).
Indeed, by applying a smaller but opposite correction,
log(Γ/T 4) ≈ log(Γpert./T 4)+1.6, the central value agrees
perfectly with our measurements, as shown in Fig. 3. Be-
cause the perturbative result is expected to work well
deep in the broken phase, the match gives us confidence
to extend the range of validity of our fit (7) down to
T ≈ 130GeV, in order to cover the physically interesting
range.

Finally, we can use the sphaleron rate to estimate when
the diffusive sphaleron rate, and hence the baryon num-
ber, becomes frozen in the early Universe. The cooling
rate of the radiation dominated Universe is given by the
Hubble rate H(T ): Ṫ = −HT . The freeze-out tempera-
ture T∗ can now be solved from [11]

Γ(T∗)/T
3
∗ = αH(T∗) (9)

where α is a function of the Higgs expectation value
v(T ), but can be approximated by a constant α = 0.1015
to better than 0.5% accuracy in the physically rele-
vant range. Taking H2(T ) = π2g∗T 4/(90M2

Planck), with
g∗ = 106.75,1 we find T∗ = (131.7 ± 2.3)GeV, as shown

1 We neglect g∗ changing slightly as the top quark becomes mas-

in Fig. 3. This temperature enters baryogenesis scenarios
where the baryon number is sourced at the electroweak
scale, e.g. low-scale leptogenesis scenarios (see [11, 29]
and references therein). For a more detailed baryon pro-
duction calculation the rates (7) and (8) can be entered
directly into Boltzmann equations.

Conclusions: The discovery of the Higgs particle of mass
125–126GeV enables us to fully determine the properties
of the symmetry breaking at high temperatures. Using
lattice simulations of a three-dimensional effective the-
ory, we have located the transition (cross-over) point to
Tc = (159 ± 1)GeV, determined the baryon number vi-
olation rate both above and well below the cross-over
point, and calculated the baryon freeze-out temperature
in the early Universe, T∗ = (131.7±2.3)GeV. Beyond be-
ing intrinsic properties of the Minimal Standard Model,
these results provide input for leptogenesis calculations,
in particular for models with electroweak scale leptons.
It also provides a benchmark for future computations of
the sphaleron rate in extensions of the Standard Model.

We thank Mikko Laine for discussions. This work was
supported in part by a Villum Young Investigator Grant
(AT), by the Magnus Ehrnrooth Foundation (MDO) and
by the Finnish Academy through grants 1134018 and
1267286. The numerical work was performed using the
resources at the Finnish IT Center for Science, CSC.
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by systematics. We conservatively estimate that the the
uncertainties of the leading logarithmic approximation
and remaining lattice spacing effects [12] may affect rate
by a factor of two. The omitted hypercharge U(1) in
the effective action (with physical θW ) can change the
sphaleron energy by ≈ 1% [14] and shift the pseudocriti-
cal temperature by ≈ 1GeV [15]. These errors have been
added linearly together to obtain the error above.
In the symmetric phase the rate is approximately con-

stant, and can be presented as

ΓSymm./T
4 = (8.0± 1.3)× 10−7 ≈ (18± 3)α5

W , (8)

where, in the last form, factors of lnαW have been ab-
sorbed in the numerical constant. In pure SU(2) gauge
theory the rate is Γ ≈ (25±2)α5

WT 4 [22, 28]. A difference
of this magnitude was also observed in ref. [25].
In Fig. 3 we also show the perturbative result cal-

culated by Burnier et al. [11]. We note that the
full rate in [11] is obtained by including a large
non-perturbative correction to the perturbative rate,
log(Γ/T 4) = log(Γpert./T 4)− (3.6± 0.6), where the cor-
rection is obtained by matching with earlier simulations
in the broken phase [27]. However, these simulations
were done with Higgs mass ≈ 50GeV, which is far from
the physical one studied here. With the correction in-
cluded their result is a factor of ≈ 150 below our rate,
albeit with large uncertainty. In Fig. 3 we have re-
moved this ad hoc correction altogether, and the result-
ing purely perturbative rate agrees with our results well
within the given uncertainties of both the lattice and
the perturbative computation (δ logΓpert./T 4 = ±2).
Indeed, by applying a smaller but opposite correction,
log(Γ/T 4) ≈ log(Γpert./T 4)+1.6, the central value agrees
perfectly with our measurements, as shown in Fig. 3. Be-
cause the perturbative result is expected to work well
deep in the broken phase, the match gives us confidence
to extend the range of validity of our fit (7) down to
T ≈ 130GeV, in order to cover the physically interesting
range.
Finally, we can use the sphaleron rate to estimate when

the diffusive sphaleron rate, and hence the baryon num-
ber, becomes frozen in the early Universe. The cooling
rate of the radiation dominated Universe is given by the
Hubble rate H(T ): Ṫ = −HT . The freeze-out tempera-
ture T∗ can now be solved from [11]

Γ(T∗)/T
3
∗ = αH(T∗) (9)

where α is a function of the Higgs expectation value
v(T ), but can be approximated by a constant α = 0.1015
to better than 0.5% accuracy in the physically rele-
vant range. Taking H2(T ) = π2g∗T 4/(90M2

Planck), with
g∗ = 106.75,1 we find T∗ = (131.7 ± 2.3)GeV, as shown

1 We neglect g∗ changing slightly as the top quark becomes mas-

in Fig. 3. This temperature enters baryogenesis scenarios
where the baryon number is sourced at the electroweak
scale, e.g. low-scale leptogenesis scenarios (see [11, 29]
and references therein). For a more detailed baryon pro-
duction calculation the rates (7) and (8) can be entered
directly into Boltzmann equations.

Conclusions: The discovery of the Higgs particle of mass
125–126GeV enables us to fully determine the properties
of the symmetry breaking at high temperatures. Using
lattice simulations of a three-dimensional effective the-
ory, we have located the transition (cross-over) point to
Tc = (159 ± 1)GeV, determined the baryon number vi-
olation rate both above and well below the cross-over
point, and calculated the baryon freeze-out temperature
in the early Universe, T∗ = (131.7±2.3)GeV. Beyond be-
ing intrinsic properties of the Minimal Standard Model,
these results provide input for leptogenesis calculations,
in particular for models with electroweak scale leptons.
It also provides a benchmark for future computations of
the sphaleron rate in extensions of the Standard Model.
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FIG. 2: The Higgs expectation value as a function of tem-
perature, compared with the perturbative result [2].

real-time runs are made to calculate the dynamical pref-
actors of the tunneling process. The physical rate is then
obtained by reweighting the measurements. For details
of this intricate technique, we refer to [12, 27]. As we will
observe, in the temperature range where both methods
work, they overlap smoothly.
Simulation results: We perform the simulations using lat-
tice spacing a = 4/(9g23) (i.e. βG = 4/(g23a) = 9 in
conventional lattice units), and volume V = 323a3. In
ref. [12] we observed that the rate measured with this
lattice spacing in the symmetric phase is in practice in-
distinguishable from the continuum rate, and deep in the
broken phase it is within a factor of two of our estimate
for the continuum value, well within our accuracy goals.
In fact, algorithmic inefficiences in multicanonical simu-
lations become severe at significantly smaller lattice spac-
ing, making simulations there very costly in the broken
phase. The simulation volume is large enough for the
finite volume effects to be negligible [12].

The expectation value of the square of the Higgs field,
v2/T 2 = 2⟨φ†φ⟩/T (here φ is in 3d units), measures the
“turning on” of the Higgs mechanism, see Fig. 2. As
mentioned above, there is no proper phase transition and
v2(T ) behaves smoothly as a function of the tempera-
ture. Nevertheless, the cross-over is rather sharp, and
the pseudocritical temperature can be estimated to be
Tc = 159± 1GeV. If the temperature is below Tc, v2(T )
is approximately linear in T , and at T > Tc, it is close to
zero. The observable ⟨φ†φ⟩ is ultraviolet divergent and
is additively renormalized; because of additive renormal-
ization, v2(T ) can become negative.

We also show the two-loop RG-improved perturbative
result [2] for v2(T ) in the broken phase. Perturbation
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FIG. 3: The measured sphaleron rate and the fit to the bro-
ken phase rate, Eq. (7), shown with a shaded error band.
Perturbative result is from Burnier et al. [11] with the non-
perturbative correction used there removed; see main text.
The corrected perturbative result includes a new ad hoc cor-
rection. Pure gauge refers to the rate in hot SU(2) gauge
theory [19]. The freeze-out temperature T∗ is solved from the
crossing of Γ and the appropriately scaled Hubble rate, shown
with the almost horizontal line.

theory reproduces Tc perfectly, and v2 is slightly larger
than the lattice measurement. In the continuum limit we
expect this difference to decrease for this observable; in
ref. [12] we extrapolated v2(T ) to the continuum at a few
temperature values and with Higgs mass 115GeV. The
continuum limit in the broken phase was observed to be
about 6% larger than the result at βG = 9. Thus, for
v2(T ) perturbation theory and lattice results match very
well.

Finally, in Fig. 3 we show the sphaleron rate as a func-
tion of temperature. The straightforward Langevin re-
sults cover the high-temperature phase, where the rate
is not too strongly suppressed by the sphaleron barrier.
In fact, we were able to extend the range of the method
through the cross-over and into the broken phase, down
to relative suppression of 10−3.

Using the multicanonical simulation methods we are
able to compute the rate further 4 orders of magnitude
down into the broken low-temperature phase. The results
nicely interpolate with the canonical simulations in the
range where both exist. In the interval 140<∼T<∼155GeV
the broken phase rate is very close to a pure exponential,
and can be parametrized as

log
ΓBroken

T 4
= (0.83± 0.01)

T

GeV
− (147.7± 1.9). (7)

The error in the second constant is completely dominated
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obtained by reweighting the measurements. For details
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observe, in the temperature range where both methods
work, they overlap smoothly.
Simulation results: We perform the simulations using lat-
tice spacing a = 4/(9g23) (i.e. βG = 4/(g23a) = 9 in
conventional lattice units), and volume V = 323a3. In
ref. [12] we observed that the rate measured with this
lattice spacing in the symmetric phase is in practice in-
distinguishable from the continuum rate, and deep in the
broken phase it is within a factor of two of our estimate
for the continuum value, well within our accuracy goals.
In fact, algorithmic inefficiences in multicanonical simu-
lations become severe at significantly smaller lattice spac-
ing, making simulations there very costly in the broken
phase. The simulation volume is large enough for the
finite volume effects to be negligible [12].

The expectation value of the square of the Higgs field,
v2/T 2 = 2⟨φ†φ⟩/T (here φ is in 3d units), measures the
“turning on” of the Higgs mechanism, see Fig. 2. As
mentioned above, there is no proper phase transition and
v2(T ) behaves smoothly as a function of the tempera-
ture. Nevertheless, the cross-over is rather sharp, and
the pseudocritical temperature can be estimated to be
Tc = 159± 1GeV. If the temperature is below Tc, v2(T )
is approximately linear in T , and at T > Tc, it is close to
zero. The observable ⟨φ†φ⟩ is ultraviolet divergent and
is additively renormalized; because of additive renormal-
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We also show the two-loop RG-improved perturbative
result [2] for v2(T ) in the broken phase. Perturbation
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theory reproduces Tc perfectly, and v2 is slightly larger
than the lattice measurement. In the continuum limit we
expect this difference to decrease for this observable; in
ref. [12] we extrapolated v2(T ) to the continuum at a few
temperature values and with Higgs mass 115GeV. The
continuum limit in the broken phase was observed to be
about 6% larger than the result at βG = 9. Thus, for
v2(T ) perturbation theory and lattice results match very
well.

Finally, in Fig. 3 we show the sphaleron rate as a func-
tion of temperature. The straightforward Langevin re-
sults cover the high-temperature phase, where the rate
is not too strongly suppressed by the sphaleron barrier.
In fact, we were able to extend the range of the method
through the cross-over and into the broken phase, down
to relative suppression of 10−3.

Using the multicanonical simulation methods we are
able to compute the rate further 4 orders of magnitude
down into the broken low-temperature phase. The results
nicely interpolate with the canonical simulations in the
range where both exist. In the interval 140<∼T<∼155GeV
the broken phase rate is very close to a pure exponential,
and can be parametrized as

log
ΓBroken

T 4
= (0.83± 0.01)

T

GeV
− (147.7± 1.9). (7)

The error in the second constant is completely dominated
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Models with a strong PT  /  Loop corrections / MSSM

Most effort has been put to increase the effective cubic coupling 
by loop corrections

Need new light (mi < T) bosonic fields strongly coupled to 
Higgs
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FIG. 3. Shape of the Higgs potential at the critical tem-
perature and its dependence on di↵erent choices of parame-
ters: DM self-interaction �D (left panel) and SM Higgs bo-
son mass mh (right panel). While varying �D, we have fixed
mh = 120GeV, mS = 60GeV, mA = mC = 300GeV and
while varying mh, we have fixed �D = 0, mS = 76GeV,
mA = mC = 300GeV, respectively.

the improved one-loop approximation for the e↵ective po-
tential at non-zero temperature, and so one can question
its reliability at higher orders in perturbation theory. In
the examples studied up to now, such as MSSM, it turns
out the two-loop e↵ects [26] only help to strengthen the
phase transition. Similarly, the non-perturbative lattice
simulations tend to do the same over the perturbative
results [27].

Another uncertainty lies in the possibly e↵ect of the
magnetic field during the phase transition [5]. The size
of the magnetic field has been up to now only roughly
estimated [28], thus its e↵ect is not completely clear. It
was argued recently [29] though, in the context of the
MSSM, that it may have an impact on the upper limit of
the Higgs mass.

Recently, the issue of gauge invariance has been
brought up [30]. It is claimed that one may again need a
complete two-loop finite-temperature e↵ective potential
for this purpose.

Why not a singlet? Before turning to higher representa-
tions, let us discuss explicitly the case of the singlet DM.
After all, this is a simpler possibility with fewer couplings
and thus more constrained. In fact, it fails to do the job.
More precisely, while the singlet by itself can actually
help the phase transition to be of the first order [31], it
cannot simultaneously be the DM [32], and vice versa.

What happens is the following. In this case, there is
only one coupling with the Higgs and �A ⌘ �C ⌘ �S .
We survey all the points in Fig. 2 and find they all satisfy
�A,C & 1. On the other hand, direct detection, as shown
in Eq. (5), constrains this coupling to be much smaller
than what is needed to trigger a strong first-order phase
transition. The failure of the real singlet thus makes the

choice of the inert doublet scalar the simplest one.
One can further extend the real scalar singlet case to

a complex one. It was shown [33] that the double job of
dark matter and strong electroweak phase transition can
be achieved in this case.
On the other hand, the scalar singlet could be the car-

rier of the force between the SM sector and the dark mat-
ter one [34], instead of being DM itself. Such a singlet
can actually trigger [34] the first order phase transition.
This can be successfully embedded [35] in the NMSSM.

Higher representation alternative? It could be appeal-
ing to resort to higher SU(2)L representations for DM
candidate, since then there are fewer Z

2

odd couplings
which destabilize them.
Let us start with integer isospin representations �. In

order to have a neutral particle, needed for the DM, they
must have even hypercharge. Therefore, they only have
two gauge invariant terms with the SM Higgs, out of
which only one can split their masses

�
�†T a�

� �
�†�a�

�
, (11)

where T a are the appropriate generators of �. In the
case of the real multiplet with Y = 0, the spectrum is
degenerate, while in the case of the complex one, the mass
splits are proportional to the electromagnetic charge once
the Higgs gets the vev.
The former case works only for a heavy DM, above

TeV, due to strong co-annihilating e↵ects on the relic
density [36]. This makes it too heavy to have an impact
on the phase transition. The latter case implies degener-
ate real and imaginary components of the neutral parti-
cle, which couple to the Z. Direct detection limits can be
evaded again with a TeV scale DM. In short, as remarked
in the Introduction, the integer isospin candidates fail to
render the phase transition be first order.
How about higher half-integer isospin multiplets? A

natural choice Y = 1/2, accommodates another term in
the potential

�
�TT a�

� �
�T�a�

�⇤
, (12)

where we ignore for simplicity the SU(2) conjugation.
In general, this term splits the real and imaginary neu-
tral components and in principle allows for light DM and
heavy enough other states, just as in the case of the dou-
blet discussed above. We will return to this intriguing
possibility in a future publication [37].

Outlook: what about genesis? Before closing let us
comment on a few related issues.

Sources of CP Violation. Successful baryogenesis re-
quires CP violation, not only the first order phase tran-
sition. It is easy to imagine new sources of CP violation,
but the problem then arises as to whether the new physics
behind it a↵ects the nature of the phase transition. In
this sense, new fermions are more welcome, at least in

�

V
e↵
(�
)

increase ��Ve↵ = �
X

i

Tm3
i (�, T )

12⇡
+ ...

=>  Light Stop Scenario in the MSSM
[Carena, Quiros, Wagner (1996),...]

Σ

Σ

Σ

Figure 2: The daisy diagrams that are resummed.
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Figure 3: The leading contributions to the self-energy of the gauge bosons.

butions to the self-energies are UV finite. Once the sum over the Matsubara
frequencies is performed (or if the real time formalism is used), the integrand
contains the particle distribution functions that are exponentially suppressed
for momenta larger than the temperature. Hence, the graphs that are ap-
parently UV divergent can be estimated to be of order of the temperature.
In particular, tadpole diagrams of the self-energy that arise from the gauge
interaction are of order g2T 2 (e.g. the contributions to the self-energy of the
gauge bosons shown in Fig. 3).

If the particle in the loop has a mass ml and the self-energy is of order
g2T 2, adding self-energies leads to additional factors

g2T 2

(2πnT )2 + p2 +m2
l

. (30)

As long as n > 0, this yields only a subleading correction of order g2. Still,
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Fig. 1. Two-loop graphs involving third generation squarks. 

The extra supersymmetric diagrams 7 we have to consider are depicted in Fig. 1. 
Note that, with our assumptions on the supersymmetric spectrum, R-parity conservation 
implies that squarks appear always in closed loops. Furthermore, there are no fermionic 
diagrams because all R = - 1  fermions are assumed heavy (two-loop diagrams with e.g. 
a top quark and a stop involve also higgsinos or gluinos to close the fermion loop).  We 
label the diagrams in a similar way as in Ref. [7] .  By qi we represent a squark of  a 
given fiavour q and chirality i = L, R. Then, ~7~. would stand for a squark o f  different 
flavour and different chirality. 

The dominant logarithmic contribution (plus linear terms) can then be written, in the 
high-temperature expansion (see Appendix B for the integral expression), as the sum 
of  the following pieces (Nc = 3 is the number of  colours):  

2 2 2 - -  "1 gs ( Nc - 1 ) T [=2 • 2mTL 2~R --2 2mbL 
v(~,) = y6~¢ J [m~ ,og 5~-  + ~" log 5 ~ -  + "~ log (28)  

7 For MSSM Feynman rules, see e.g. Ref. [ 12]. 

However, also higgs mass mostly from

Tension:    light tR   =>  very heavy tL

m2
h ⇠ y2t log

m2
t̃R
m2

t̃L

m4
t

eg. a very large SYSY breaking mQ

!
   

Espinosa, Quiros, Zwirner, 	
Carena, Wagner, John,	
Schmidt,… 

ALSO, to keep mstop(T) small need

Heavy gluino: mg > 500 GeV
Small or negative mR    =>  mstop <≈ mtop

                        and danger of colour-breaking

etc (EDM’s) …  ==>  Effective LSS / MSSM theory with  
only the light stop and a light neutralino.
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MSSM-EWBG: alive (?) but perhaps not so well

M.Carena, G.Nardini, M.Quiros & C.Wagner, 2013 

Stop mass bounds generically m > few x 100 GeV 
Stop-enhanced H—>gg-fusion 
One can get around these if there is   
a light neutralino (bino) (m < 60 GeV)

LHC:

Laine, Nardini and Rummukainen. 2013
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Figure 8: Comparison of perturbative and lattice results for the properties of the phase transition

(here v(T ∗) refers, strictly speaking, to different quantities on the two sides; cf. sec. 4.2).

volume we cite a conservative but unprecise estimate of the error:

σ

(T ∗
c )

3
= 0.035 ± 0.005 . (3.9)

4. Comparison with perturbation theory

With a view of learning about generic features of the dynamics of the theory, probably appli-

cable also to other parameter values than the very ones considered here but nevertheless close

to mh ≃ 126 GeV, we proceed to comparing the lattice results with those of 2-loop pertur-

bation theory within the 3d theory. We stress that since both results are based on the same

3d theory, the comparison is not jeopardized by perturbative uncertainties in dimensional

reduction and vacuum renormalization as discussed in sec. 2.1. Indeed, these ultraviolet fea-

tures play a role only in the relation of the approximate parameters (T ∗,m∗
h,m

∗
t̃R
, etc) to the

physical ones (T,mh,mt̃R
, etc). For conceptual clarity, we furthermore split the comparison

into two parts, given that some of the perturbative numbers cited are specific to Landau

gauge, in accordance with established (although not necessary) conventions of the field.

4.1. Identical observables

Two of the observables, namely the critical temperature and latent heat, have definitions

[see eq. (3.6) for the latter] that can be operatively applied both to lattice and perturbative
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= 1.117(5)
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⌘

Landau
= 0.9

Lattice + DR:  3D-theory contains also light squarks

mh ⇡ 126 GeV mt̃r < 155 GeV

GOOD NEWS TO BRING HOME WITH: 
Transition typically much stronger than 
the (1-) loop caclulations of Veff indicate.

technical framework for the treatment of the light stop scenario, in the presence of a very
heavy stop, was defined by using an effective theory approach and it was subsequently

applied to the EWBG scenario in Ref. [23]. For completeness, and in order to define a
few representative updated points, we present the results of such an analysis here.

In order to properly analyze the issue of EWBG we have complemented the zero tem-

perature results with the two-loop finite temperature effective potential [12]. Light stops
may be associated with the presence of additional minima in the stop–Higgs V (t̃, h) po-

tential, and therefore the question of vacuum stability is relevant and should be considered
by a simultaneous analysis of the stop and Higgs scalar potentials. All points shown in

Fig. 1 fulfill the vacuum stability requirement 1.
For values of the heavy stop mass mQ below a few tens of TeV, the maximal Higgs

mass that can be achieved consistent with a strong first order phase transition is about

122 GeV. The main reason is that larger values of the Higgs boson mass would demand
large values of the mixing parameter Xt, for which the effective coupling ghht̃t̃ of the

lightest stop to the Higgs is suppressed, turning the electroweak phase transition too
weak. In the effective theory the coupling ghht̃t̃ is given by
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Figure 1: The window with ⟨φ(Tn)⟩/Tn ! 1 for a gluino mass M3 = 700 GeV, mQ ≤ 50TeV

(left panel) and mQ ≤ 106 TeV (right panel).

1There is an apparent loss of perturbativity in the thermal corrections to the t̃ potential associated
with the longitudinal modes of the gluon. In our work we considered that, due to their large tempera-
ture dependent masses, the terms proportional to the third power of their thermal masses in the high
temperature expansion are efficiently screened and do not lead to any relevant contribution to the t̃
potential.
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Point A B C D E F G

|At/mQ| 0.5 0 0 0 0.3 0.4 0.7

tanβ 15 15 2.0 1.5 1.0 1.0 1.0

Table 1. Values of the fundamental parameters at the scale mQ = 106 TeV corresponding to the
benchmark points shown in the left panel of figure 1.

imply the presence of a light Higgs boson unless the heavy stop mass mQ is very large.

In order to obtain Higgs boson masses above the LEP limit the heaviest stop mass must

be much larger than 1TeV. This implies that a simple one-loop analysis will not lead to

reliable results since it will in general be affected by large logarithmic functions of ratios

of the heavy stop scale to the weak scale. Such large logarithmic corrections may be

efficiently resummed by means of a Renormalization Group (RG) improvement. In ref. [49]

the technical framework for the treatment of the light stop scenario, in the presence of a

very heavy stop, was defined by using an effective theory approach and it was subsequently

applied to the EWBG scenario in ref. [41]. For completeness, and in order to define a few

representative updated points, we present the results of such an analysis here.

In order to properly analyze the issue of EWBG we have complemented the zero tem-

perature results with the two-loop finite temperature effective potential [28]. Light stops

may be associated with the presence of additional minima in the stop-Higgs V (t̃, h) poten-

tial, and therefore the question of vacuum stability is relevant and should be considered

by a simultaneous analysis of the stop and Higgs scalar potentials. All points shown in

figure 1 fulfill the vacuum stability requirement.1

For values of the heavy stop mass mQ below a few tens of TeV, the maximal Higgs

mass that can be achieved consistent with a strong first order phase transition is about

1There is an apparent loss of perturbativity in the thermal corrections to the t̃ potential associated

with the longitudinal modes of the gluon. In our work we considered that, due to their large temperature

dependent masses, the terms proportional to the third power of their thermal masses in the high temperature

expansion are efficiently screened and do not lead to any relevant contribution to the t̃ potential.
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and (2.13), the force acting on the particles defined as in eq. (1.3) i.e. F = ṗ =

 v̇g, where the latter follows trivially since  ̇ = 0 along the particle trajectory. In
particular we wish to verify explicitly that we obtain a gauge independent result for

the force. Using the canonical equations of motion we have

v̇g = ẋ(�xvg)pc + ṗc(�pcvg)x

= vg(�xvg)pc ⇥ (�x )pc(�pcvg)x . (2.15)

Using the form (2.12) for vg, di�erentiating and substituting with the dispersion
relation (2.11), we find

(�xvg)pc =
m2

( + sCP
s⇧�

2 )
3

(�pcvg)x = ⇥⇥�CP
m2

( + sCP
s⇧�

2 )
3
⇥ vg

|m||m|�

( + sCP
s⇧�

2 )
2
, (2.16)

from which it is easy to see that the gauge terms (in ⇥CP) cancel out exactly in (2.15)
and that the force is given by the gauge independent expression

ṗ =  v̇g = ⇥
|m||m|� 
( + sCP

s⇧�

2 )
2
+ sCP

s���

2

|m|2 
( + sCP

s⇧�

2 )
3
, (2.17)

which to linear order in �� can be written as

ṗ = ⇥ |m||m|
�

 
+ sCP

s(|m|2��)�
2 2

. (2.18)

The force therefore contains two pieces. The first is a CP-conserving part, leading
to like deceleration of both particles and antiparticles because of the increase in the
magnitude of the mass. The second part, proportional to the gradient of the complex

phase of the mass term, is CP-violating, and causes opposite perturbations in particle
and antiparticle densities.

In connection with eq. (2.10) we mentioned the di�erence in definition of canon-
ical momentum for left- and right-handed particles. From the immediately preced-

ing discussion we can see that this di�erence gets absorbed into the definition of
the unphysical phase ⇥CP. Indeed, for the right-handed fermions one should define

⇥CP = ⇥�⇥ sCP��/2 instead of ⇥� + sCP��/2. Since we have just shown that ⇥CP can-
cels out of physical quantities, the di�erence between the dispersion relations derived
from the spinors Ls and Rs has no physical e�ect. On the other hand, it is true that

for relativistic particles Ls will represent a particle with mostly negative helicity and
Rs will correspond to a mostly positive helicity particle. The information about he-

licity (�) is contained in the spin factor, s = � sign(pz), and this does have a physical
e�ect: particles with opposite spin feel opposite CP-violating forces.
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an expression for the invariant energy2

⇧ =
⇥
(pc ⇧ �CP)2 + |m|2 ⇧ sCP

s⌦�

2
, (2.11)

where �CP � �� + sCP⌦�/2 in the left- and �CP � �� ⇧ sCP⌦�/2 right chiral sector.
(This di�erence in �CP has no consequence what follows, which is why we have

suppressed the indices referring to chirality). Identifying the velocity of the WKB
particle with the group velocity of the wave-packet (corresponding to the stationary
phase condition of the WKB-wave) it can be computed as

vg = ( pc⇧)x =
pc ⇧ �CP⇥

(pc ⇧ �CP)2 + |m|2

=
p0
⇧

�
1 + sCP

s|m|2⌦�
2p20⇧

⇤
, (2.12)

where the latter form follows on expanding to linear order in |m|2⌦�/⇧ after elim-
inating pc ⇧ �CP with (2.11). vg is clearly a physical quantity, independent of the
ambiguity in definition of pc. Given energy conservation along the trajectory we then
have the equation of motion for the canonical momentum viz.

ṗc = ⇧( x⇧)pc = vg��CP ⇧
|m||m|�⇧
(⇧ + sCP

s⌅�

2 )
+ sCP

s⌦��

2
(2.13)

which, like the canonical momentum itself, is manifestly a gauge dependent quan-
tity, through the first term. Equations (2.12) and (2.13) together are the canonical

equations of motion defining the trajectories of our WKB particles in phase space.
The physical kinetic momentum can now be defined as corresponding to the

movement of a WKB-state along its world line

p � ⇧vg . (2.14)

This relation also defines the physical dispersion relation between the energy and
kinetic momentum. We now calculate, using the canonical equations of motion (2.12)
2This discussion is closely analogous to the motion of a particle in an electromagnetic field, which

can be described by a hamiltonian

H =
⇥
(pc ⇧ eA)2 +m2 + eA0 .

Here the canonical momentum pc is related to the physical, kinetic momentum p � mv/
⇥
1⇧ v2 =

⌅vg by the relation pc = p + eA. Canonical momentum is clearly a gauge dependent, unphysical
quantity, because the vector potential is gauge variant. Similarly canonical force acting on pc is
gauge dependent, but the gauge dependent parts cancel when one computes the physical force
acting on kinetic momentum:

ṗk = ⇧ xH ⇧ e tA = e(E+ v ⇤B) .
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the wall, vw is the wall velocity, "i is the rate of an interaction that converts species

i into other kinds of particles, and Si is the source term associated with the current
generated at the bubble wall. There is little controversy about the form of these

equations, but little agreement exists as to how to properly derive the source terms
Si. There are many di⌘erent formalisms for obtaining the sources [24, 6, 25], but so
far little e⌘ort has been made to see how far they agree or disagree with each other.

We shall comment on this issue briefly in our conclusions.

Here we shall use the ‘classical force’ mechanism (CFM) for baryogenesis [6, 18,
20, 21]. The CFM makes use of the intuitively simple picture of particles being

transported in the plasma under the influence of the classical force exerted on them
by the spatially varying Higgs field condensate. We assume that the plasma in this

bubble wall region can be described by a collection of semiclassical quasiparticle
states which we shall refer to as WKB states, because their equation of motion is

derived using the WKB approximation expanding in derivatives of the background
field. The force acting on the particles can be deduced from the WKB dispersion
relations and their corresponding canonical equations of motion. This is a reasonable

assumption when the de Broglie wavelength of the states is much shorter than the
scale of variation of the bubble wall, i.e. ⇧ ⇤ �w, which is satisfied in electroweak
baryogenesis; in the MSSM, the wall widths are typically �w ⇥ 6 ⇧ 14/T [12, 26],
whereas for a typical excitation ⇧ ⇥ 1/T . Given these conditions one can write a
semiclassical Boltzmann equation for the distribution functions of the local WKB-
states

(�t + vg · �x + F · �p)fi = C[fi, fj, . . .] . (1.2)

where the group velocity and classical force are given respectively by

vg � �pc⌃ ; F = ṗ = ⌃v̇g . (1.3)

Here pc is the canonical, and p � ⌃vg the physical, kinetic momentum along the
WKB worldline. Note that we treat the transport problem here in the kinetic vari-
ables — in which the Boltzmann equation has the non-canonical form of (1.2) —

rather than in the canonical variables used in previous treatments. As will be dis-
cussed in more detail below, this choice has the simple advantage of circumventing

all the diculties associated with the variance of the canonical variables under lo-
cal phase (‘gauge’) transformations of the fields in the lagrangian. In these kinetic

variables it is also more manifestly (and gauge independently) clear how, because
of CP-violating e⌘ects, particles and antipartices experience di⌘erent forces in the
wall region, which leads to the separation of chiral currents. The explicit form of vg
and F in a given model can be found from the WKB dispersion relations, as we will
illustrate in sections 2 and 3. The Boltzmann equation (1.2) can then be converted

to di⌘usion equations in a standard way by doing a truncated moment expansion [18]
(see section 4).

3

M.Joyce, T.Prokopec, N.Turok, PRD53 2958 (1996); PRL75 1695 (1995); 	
PRD53 2930 (1996). 	
J.M.Cline, M.Joyce and KK PLB417 (1998) 79; JHEP 0007 (2000) 018	
J.M.Cline and K.Kainulainen, PRL85 (2000) 5519.

KK, T.Prokopec, M.G.Schmidt and S.Weinstock, JHEP 0106, 031 (2001); 	
PRD66 (2002) 043502. T.Prokopec, M.G.Schmidt and S.Weinstock, 	
Ann.Phys.314 208 (2004), Ann.Phys.314, 267 (2004).	
T.Konstandin, T.Prokopec and M.G.Schmidt, NPB716 (2005) 373; NPB738 (2006) 1	
V.Cirigliano, C.Lee, M.J.Ramsey-Musolf and S.Tulin, PRD81 (2010) 103503. 

WKB
CTP

`w = 10� 30 T�1

where the collision term is given by

Ccoll ⇤
1
2
e�i� �

{�>}{G<}� {�<}{G>}
⇥
, (2.27)

the �-operator is the following generalization of the Poisson brackets:

�{f}{g} =
1
2

[⌃Xf · ⌃kg � ⌃kf · ⌃Xg] (2.28)

and the mass operators m̂0 and m̂5 are related to the Hermitean and antihermitean parts
of the mass matrix:

m̂0,5F (k, x) ⇤ mH,AH(x)e�
i
2⌅m

x ·⌅F
k F (k, x) . (2.29)

In what follows we will suppress the superscripts in derivatives, remembering that ⌃x always
acts on mass function and ⌃k on the whatever function the operator m̂X is acting on.

Transforming the equation (2.17) similarly, it is easily shown to yield the well known
momentum space representation of the spectral sum-rule:

⇧
dk0

⇥
A(k, x)�0 = 1. (2.30)

Equations (2.24-2.25) and (2.26), together with the sum-rule (2.30) and the condition
G> = �G< � 2iA form a complete set of equations for solving G< and A when the
interactions and the mass profiles are explicitly specified.

3. Noninteracting fields

We start our analysis from the simplest possible case of noninteracting and nonmixing fields.
That is, we shall put �⌅ 0 and eventually assume that the mass m is a (possibly complex)
scalar. We could then directly read the equation of motion for G< from Eqn. (2.26). It is
worth noting however, that in the collisionless case the formal machinery of the previous
section is not necessary and the equations of motion can be obtained simply from the free
particle Dirac equation. From the action (2.21) with a scalar m one obtains:

⇤
i ⌃/u�m†PL �mPR

⌅
⇤(u) = 0 . (3.1)

Multiplying (3.1) from the left by the spinor i⇤̄(v) and taking the expectation value one
immediately finds: ⇤

i ⌃/u�m†PL �mPR

⌅
G<(u, v) = 0 . (3.2)

After Wigner transform Eqn. (2.23) this becomes just the collisionless limit of the equation
(2.26):

(k/ +
i

2
⌃/x �m̂0 � im̂5�

5)G<(x, k) = 0, (3.3)

where m̂5 and m̂5 are mass operators given by (2.29). Note that also G>, and therefore
also the spectral function A obeys exactly the same equation in the collisionless limit. This
can of course be also seen directly from equation (2.24). However, the spectral function A

– 6 –

Collisionless case:
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QKE’s, more advanced methods
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Application to EWBG (toy model) ongoing:

now involves the covariant derivative Dt in the exponent instead of the standard ⌥t. We

now insert the spectral solution (2.30) into Eq. (3.2) and integrate over k0, which gives

⌥tS̄<
ij = �i[He� , S̄<]ij + ⇥0⌥Cij + C†

ij�⇥
0 , (3.4)

where we denote ⌥ · · · � ⌅
⇧

dk0
2� ( · · · ), and we defined ⌥S� ⌅ S and

(He�)ij ⌅ (k · ⌘�+ ⇥0mi)⇤ij � ⇥⌅
ij = Hi⇤ij � ⇥⌅

ij . (3.5)

Note that the k0-derivatives in Ĥi have now vanished as total derivatives, reducing Ĥi

to the familiar diagonal form given by Eq. (2.14). The explicit form of the integrated

Wightman function is:

S̄<
ij =

⌃

h±
PhPi±⇥

0
⇤
Pj±f

m
ijh± + Pj⇤f

c
ijh±

⌅
⌅

⌃

±

�
S̄m<
ij± + S̄c<

ij±
⇥
, (3.6)

where we have defined positive- and negative-energy projectors onto mass eigenstates:

Pi± ⌅ 1

2

⇤
1± Hi

⌅i

⌅
. (3.7)

Using the identity H2
i = ⌅2

i it is easy to verify that Pi±’s are projectors obeying:

P 2
i± = Pi±, Pi+Pi� = Pi�Pi+ = 0 and HiPi± = ±⌅iPi±. (3.8)

3.1 Flavoured quantum Boltzmann equations

Equations (3.4-3.5) are in many ways the simplest and most compact form of the kinetic

equations in the cQPA scheme. However, it is also useful to derive explicit equations for

the on-shell functions. The easiest way to do this is to first solve fm,c
ijh± from Eq. (3.6) by

taking projections and tracing over Dirac indices:

fm
ijh± = Nm

ij Tr
⌥
Pj±⇥

0Pi±PhS̄<
ij

�
,

f c
ijh± = N c

ijTr
⌥
Pj⇤⇥

0Pi±PhS̄<
ij

�
, (3.9)

where the normalization constants are

Nm
ij =

⌅i⌅j

⇤2
mij

and N c
ij =

⌅i⌅j

⇤2
cij

, (3.10)

and we defined

⇤2
mij ⌅ 1

2
(⌅i⌅j � k2 +mimj) = m̄2

ij ��⌅2
ij , (3.11)

⇤2
cij ⌅ 1

2
(⌅i⌅j + k2 �mimj) = ⌅̄2

ij � m̄2
ij . (3.12)

The equations of motion for fm,c
ijh± can now be obtained by taking time-derivatives of

Eqs. (3.9), and then using the kinetic equation (3.4) for ⌥tS̄<
ij in the trace, the projec-

tion identities (3.8), as well as the result ⌥tHi = ⇥0m⌅
i, and finally computing the traces
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Chargino transport 

EWBG in MSSM has been tested
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Figure 9: The window of strong enough phase transition, φc/Tc > 1.0, in the
Higgs mass versus light stop mass plane for the MSSM. A strong phase transition
and a Higgs mass mh ≃ 125 GeV can only be achieved at the cost of a very heavy
left-handed stop, mQ ∼ 106 TeV. Plot adapted from [87].

Additional constraints arise from the requirement that tan β is not too large
and that the stop do not develop a vev at low temperature what would lead
to a spontaneous breaking of color. The results of this analysis from [87]
is shown in Fig. 9. These results also have been qualitatively confirmed in
lattice calculations [88].

4.4.2 Electroweak baryogenesis

As alluded in section 2.5, the determination of the baryon asymmetry in the
MSSM is a controversial topic. One difference to the other models discussed
so far is that CP violation does not arise in the top sector. The dominant
source of CP violation turns out to be the charginos and neutralinos. For
example the chargino mass can be written

Mχ±
=

(

M2 gh2

gh1 µ

)

, (117)

Similar results were found by

which also used SC/CTP approach 

and included flavour mixing effects

T.Konstandin, T.Prokopec, M.G.Schmidt, 	
and M.Seco, NPB738 (2006) 1.

Stop transport (weak source [CJK]) 
J.Kozaczuk, S.Profumo, M.Ramsey-Musolf and CL. 
Wainwrigh, PRD86 (2012) 096001	

Neutralino transport (bino-driven) !! 
Y.Li, S.Profumo, and M.Ramsey-Musolf, 	
PLB673 (2009) 95–100.

J.M.Cline, M.Joyce and KK, 	
JHEP 0007 (2000) 018. 

However, there are differences in the literature:
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Figure 10: Contours of the regions with viable baryogenesis as a function of
the two chargino mass parameters M2 and µ. In the black region the baryon
asymmetry is larger than observed. Plot adapted from [24].

paper method η/ηobs
[41] (2000) mass insertion formalism; no Higgs re-

summation
∼ 35

[42] (2002) mass insertion formalism; including
Higgs resummation

∼ 10

[43] (2004) mass insertion formalism; no Higgs
resummation; more realistic diffusion
network

∼ 140

[24] (2005) Kadanoff-Baym formalism; flavor oscil-
lations; assumes the adiabatic regime

∼ 3.5

Table 1: The largest possible baryon asymmetry for almost mass degenerate
charginos and a maximal CP-violating phase.

4.4.3 Collider and low energy probes of the model

In the context of electroweak baryogenesis, the MSSM provides some special
signatures. The first class of signals comes from the new source of CP viola-
tion in the chargino sector. Since the charginos cannot be much heavier than

T.Konstandin, arXiv:1302.6713 [hep-ph]

Adiabatic, flavour diagonal limit

Enhancement when m2 ~μ 
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MSSM /  
eEDM 2013 ACME-bound on eEDM:   de < 8.9 x 10-29   

ACME collaboration, Science 343 (2014) 6168, 269-272 

chargino transport mechanism excluded  
light bino (< 60 GeV) appears not ok  

Y. Li et al. / Physics Letters B 673 (2009) 95–100 99

Fig. 3. The green band shows the region, in the (M1, sin φ1) plane compatible with electroweak baryogenesis. We assume that sin φ2 = 0. On the same plane, we indicate
iso-level curves at constant values for the electron (left) and for the neutron (right) EDMs. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this Letter.)

Fig. 4. The green band shows the region, in the (M2, sin φ2) plane compatible with electroweak baryogenesis. We assume that sin φ1 = 0. On the same plane, we indicate
iso-level curves at constant values for the electron (left) and for the neutron (right) EDMs. Parameter space points above the red lines are excluded by current experimental
constraints on electron and neutron EDMs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

We note that the BAU-allowed bands have been obtained from
the work of Ref. [7], which included the effects of both resonantly-
enhanced chiral relaxation and CP-violating sources in the bino-
driven and wino-driven regimes for a simple, step-function wall
profile. Had we employed a more realistic profile, leading to a
somewhat smaller BAU (see, e.g., Ref. [37]), the BAU-compatible
regions in Figs. 3 and 4 would have moved to even larger values
of the CP-violating phases corresponding to larger predicted mag-
nitudes for the EDMs. In this respect, Figs. 3 and 4 give the most
optimistic expectations for the wino-driven scenario, whose viabil-
ity is clearly marginal. In contrast, the bino-driven scenario would
be still be easily compatible with the observed BAU and present
EDM limits when a more realistic profile is employed and the full
set of transport equations are solved numerically, as in Ref. [37].

Consequently, we rely here on the simpler, schematic solution as it
adequately addresses our primary point.

3. Summary and conclusions

We have presented a novel possibility for reconciling present
and prospective experimental limits on the EDMs of elementary
particles with successful EWB in the MSSM. We pointed out that
the most relevant CP violating phases for EWB are the bino phase
φ1 and the wino phase φ2. We showed that, with its impact on
EDMs suppressed by about two orders of magnitude compared to
that of the wino phase φ2, the bino phase φ1 is only weakly con-
strained by the EDM bounds, and can be of order one. Since the
bino phase by itself can generate the observed BAU in the bino-

eEDM, charginos
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Comparing bino- and wino-driven EWB

• Electron EDM:

Ref. point: GeV300 10, tan200GeV,|| GeV,190 GeV,95 021      AmMM EP
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iso-level curves at constant values for the electron (left) and for the neutron (right) EDMs. Parameter space points above the red lines are excluded by current experimental
constraints on electron and neutron EDMs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

We note that the BAU-allowed bands have been obtained from
the work of Ref. [7], which included the effects of both resonantly-
enhanced chiral relaxation and CP-violating sources in the bino-
driven and wino-driven regimes for a simple, step-function wall
profile. Had we employed a more realistic profile, leading to a
somewhat smaller BAU (see, e.g., Ref. [37]), the BAU-compatible
regions in Figs. 3 and 4 would have moved to even larger values
of the CP-violating phases corresponding to larger predicted mag-
nitudes for the EDMs. In this respect, Figs. 3 and 4 give the most
optimistic expectations for the wino-driven scenario, whose viabil-
ity is clearly marginal. In contrast, the bino-driven scenario would
be still be easily compatible with the observed BAU and present
EDM limits when a more realistic profile is employed and the full
set of transport equations are solved numerically, as in Ref. [37].

Consequently, we rely here on the simpler, schematic solution as it
adequately addresses our primary point.

3. Summary and conclusions

We have presented a novel possibility for reconciling present
and prospective experimental limits on the EDMs of elementary
particles with successful EWB in the MSSM. We pointed out that
the most relevant CP violating phases for EWB are the bino phase
φ1 and the wino phase φ2. We showed that, with its impact on
EDMs suppressed by about two orders of magnitude compared to
that of the wino phase φ2, the bino phase φ1 is only weakly con-
strained by the EDM bounds, and can be of order one. Since the
bino phase by itself can generate the observed BAU in the bino-
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EWBG-fridendly
Bino driven EWBG (optimistic calculation) Li,Profumo,Ramsey-Musolf,PLB673 (2009)

Loopholes on loopholes? Finetuned cancellations

Bian,Liu,Shu,2014 between, CP-even and CP-odd higgses
 between, one and two-loop contributions Li, Wagner, 2015

γ γ γ

(a) (b) (c)

χ+
a χ+

a
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a χ+

a
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i

χ+
a χ+

a

χ0
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γ,Z H+ W+ W+ W+

1

FIG. 1: The complete list of all chargino-neutralino two-loop diagrams contributing to EDMs of

leptons and quarks. The external photon line is attached to the charged particles in each diagram
in all possible ways. Mirror graphs are not displayed.

quarks, du,d and d̃u,d, and from the 3-gluon interaction dG; lastly, the Mercury EDM is
generated primarily by the chromo-EDM operators d̃u,d.

These CP-violating operators are induced by various (physical) CP-violating phases in
the MSSM, including φ1,2 in the chargino-neutralino sector; φ3 ≡ Arg(µM3b∗) in the gluino
sector; and, lastly, in the sfermion-Higgs sector, Arg(µ∗tanβ + Af ) and Arg(µ∗cotβ + Af)
for down- and up-type sfermions, respectively, which we generally refer to as φf̃ , (where
yfAf is the coefficient of the supersymmetry-breaking triscalar interactions with yf being
the fermion f Yukawa coupling). We summarize in Table I the phases entering each CP-odd
operator. We also list the conditions under which the corresponding CP-odd operator is
suppressed without affecting EWB.

The Higgs-mediated CP-odd 4-fermion operators C4f are only enhanced at large tanβ due
to their tan3β dependence [29]. By restricting to the tanβ < 30 region (as also implied in the
context of successful MSSM EWB by the recent study of Ref. [9]), we keep this contribution
small, and the experimental bound on the Thallium EDM can be taken directly, in this
regime, as a bound on de. (Incidentally, keeping tanβ not too large also helps to suppress
other EDM contributions.) The CP-odd 3-gluon operator dG depends on the CP-violating
phases in the sfermion sector, φf̃ , and in the gluino sector, φ3, and it can be suppressed
by restricting these phases to be less than 10−2 [15]. As discussed above, these phases are
not crucial to successful EWB. With these operators suppressed, the remaining CP-odd
operators are the EDMs of leptons and quarks, as well as the chromo-EDMs of quarks.

The lowest order contributions to EDM and chromo-EDM operators are induced at one-

TABLE II: Summary of mass scales and phases in the scenario of successful bino-driven EWB with
highly suppressed EDMs. The light stop t̃1 is predominantly right-handed, while the heavy stop

t̃2 is mainly left-handed. The other mass scales and phases are the same as in Table I. The final
entry gives the range for tanβ.

sinφ1 sinφ2,3, sinφf̃ |µ| ≈ |M1|, |M2|, mA |M3| mf̃1,2
, mt̃2

mt̃1
tanβ

∼ O(1) < O(0.01) ∼ few 100 GeV > 500 GeV > 10 TeV < 125 GeV (3,30)

5

Same phases that give BAU generate EDM’s 
(more generally supersymmetric CP problem)

Barr-Zee,

2-loop
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EWBG in the MSSM ?

Is this not just fighting to keep a sinking ship afloat?

Leszek Roszkowski: 
“SUSY cannot be disproved, 

    only abandoned”

LSS SUSY 
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2HDM’s
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1
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GF. MFV can be formulated up to linear order in top Yukawa insertions, or extended to a

nonlinear representation of the symmetry [27, 28]. For enhanced CP violation in Bq mixing

we are interested in (at least) the second order terms in the expansion of the top Yukawa

in MFV. It is sufficient in our initial discussion to only expand to next order in insertions

of gU so that

Y j
U i = ηU g j

U i + η′U g j
U k[(g

†
U )kl (gU )l i] + · · · ,

Y j
D i = ηD g j

D i + η′D g j
D k[(g

†
U )kl (gU )l i] + · · · . (2.5)

We decompose the second scalar doublet as ST = (S+, S0), where S0 = (sR + isI)/
√

2.

The scalar potential is

V =
λ

4

(

H† i Hi −
v2

2

)2

+ m2
1 (S†i Si) + (m2

2 H† iSi + h.c.),

+λ1 (H† iHi) (S† jSj),+λ2 (H†i Hj) (S†j Si) +
[

λ3H
†i H†j Si Sj + h.c.

]

,

+
[

λ4H
†i S†j Si Sj + λ5S

†i H†j Hi Hj + h.c.
]

+ λ6(S
†iSi)

2, (2.6)

where i, j are SU(2) indices. Here v ≃ 246GeV is the vacuum expectation value (VEV) of

the Higgs field. Since we adopt the convention that the doublet S does not get a VEV the

parameters m2
2 and λ5 are related by,

m2
2 + λ⋆5

v2

2
= 0. (2.7)

The spectrum of neutral real scalar fields consists of the Higgs scalar h =
√

2ℜ(H0) another

scalar field sR ≡
√

2ℜ(S0) and a pseudoscalar sI ≡
√

2ℑ(S0). However, these are not mass

eigenstates; in the (h, sR, sI) basis the neutral mass squared matrix M2 is

M2 =

⎛

⎜

⎝

m2
h λR

5 v2 λI
5 v2

λR
5 v2 m2

H 0

λI
5 v2 0 m2

A

⎞

⎟

⎠
, (2.8)

where5

m2
h ≡ λv2/2 , m2

H ≡ m2
S + λ3v

2 and m2
A ≡ m2

S − λ3v
2 (2.9)

with m2
S ≡ m2

1 + (λ1 + λ2)v2/2. Note that mH ,mA is associated with sR, sI . The mass

eigenstate field basis is denoted as h′, s′R, s′I and can be expanded in terms of the original

field basis as

h′ = h − ϵSR sR − ϵSI sI , s′R = sR + ϵSR h, and s′I = sI + ϵSI h , (2.10)

where we defined the expansion parameters

ϵSR ≡
v2λR

5

m2
H − m2

h

and ϵSI ≡
v2λI

5

m2
A − m2

h

.

5We make λ3 real by a phase rotation of S with respect H . We also define λ4 = λR
4 + iλI

4 and λ5 =

λR
5 + iλI

5.
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+ ytt̄L(H
0⇤�ti + (⌘U�ti+ ⌘0UV

⇤
tbVbi))S

0⇤)qiR EWBG in MFV 2HDMs
Distribution of ηB/ηB,obs from Monte Carlo:

-4 -3 -2 -1 0 1
log η

B
 / η

obs

full constraints:
constraints
only

mass

EWPO, b→sγ,

Landau pole
neutron EDM,

R
b
 =

Γ(Z→bb)

Γ(Z→hadrons)

_

JC, K. Kainulainen, M. Trott, arXiv:1107.3559

Only a few out of 104 models have large enough value!
J.Cline, McGill U. – p. 11

MCMC of the PM-space finds both strong EWPT and BAU, 
but points are rare:  <1/104.  
J.Cline, KK, M.Trott, JHEP 1111 (2011) 089

MFV for new Yukawa’s to avoid FCNC
G.C.Branco, W.Grimus & L.Lavoura, PLB380 (1996) 119 

A more detailed scan of different types of 2HDM 

with similar results was carried out in: 


   G.C.Dorsch, S.J.Huber & J.M.No, JHEP 1310 (2013) 029. 

Many new CP-violating phases:

Post-ACME analysis  2HDM + vector like fermions OK:  Chao and Ramsey-Musolf: JHEP 1410 (2014) 180 

Loophole with cancellations between, CP-even and CP-odd higgses works here as well. Bian,Liu,Shu,2014
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Potential barrier with singlet DM

EWPT

H

S

V

vC

SC

If λhs coupling is large
enough, there is barrier
between H = 0 and S = 0
vacua at T = 0.

Large λhs leads again to
subdominant DM.

Small finite-T effects need only lift degeneracy of
vacua. Strength of phase transition determined by
tree-level potential.

Analytic treatment of finite-T Veff is possible.

J.Cline, McGill U. – p. 22

Finite-T effects only lift the degeneracy of vacua.  
Strength of transition determined by tree-level V.

SSM a strong PT at “tree level” !

Take simply

If λhs is large enough, there is a barrier between H = 0 and S = 0 vacua at T = 0.

V = VMSM +
1

2
µ2
SS

2 +
1

2
�shS

2|H|2 + 1

4
�sS

4 (µ2
S < 0)

Transition may proceed in two steps, and model can give a 
potential barrier at tree-level at Tc → strong phase transition.
J.R.Espinosa, T.Konstandin, F.Riva, NPB854 (2012) 592 

1.
2.

|S|

|H|

eEDM and nEDM are not a problem.

Get easily models satisfying  v/T > 1-limit  
with large enough a lambda. 
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SM+S with Z2, BAU and DMResonant annihilation region

. . . except for small sliver near mS = mh/2:

XENON100 (2
012)

XENON100
× 5

Relic Allowed

× 20

XENON100

Relic
density

density
excluded

excluded

excluded by

Strong EWPT

allowed

JC, K. Kainulainen, P. Scott, C. Weniger, arXiv:1306.4710

J.Cline, McGill U. – p. 27

=> small ΩDM . Subleading DM

Figure 4. Distributions of parameters satisfying the constraints (2.8), (2.9), (3.1) and the nominal
DM direct detection bound (4.6). Top row shows input parameters, bottom two rows are derived.
Dimensionful quantities are in GeV units.

varied over the ranges �m = 0.1 � 1, v0/vc = 1.1 � 10, log10 vc/wc ⌅ (�1, 1) produces
22500 models consistent with the constraint (4.6) as well as with the sphaleron washout
bound (2.9), the consistency requirement (2.8) and the invisible Higgs decay width (3.1) of
previous sections. Distributions of various parameters in this set of models can be seen in
figure 4. One observes that the DM mass is typically in the range 80 � 160GeV, for our
choice �m < 1. (Figure 2 illustrates that higher masses are correlated with larger values of
�m). The vc values fall in the range 140 � 220GeV and as Tc tends to be around 100GeV
strong phase transitions are found with vc/Tc as high as 3.5. The wc distribution peaks at
wc ⇤ 160GeV with wc < 500GeV and the relic density fraction frel tends to be . 0.01.

We show the scatter plot of accepted models in frel versus mS in figure 2 and the same
data in figure 5 as mS versus ⇥e� ⇥ frel ⇥SI . The cross section ⇥e� indicates the reach of
the future XENON experiments to rule out a given model, or to verify the existence of its
associated DM particle. All direct DM bounds inevitably su�er from uncertainties in the
local Galactic abundance and velocity distribution of the DM. We estimate the e�ect of
these uncertainties on the latest XENON100 constraint following ref. [83], which shows that
the constraint derived from standard assumptions about the local DM distribution could

– 8 –

J.M. Cline, KK, JCAP 1301 (2013) 

BAU acceptable v/T >1 models

Cline,KK,Scott, Weniger, PRD 2013

Strong PT:  need a large λsh,  yet

ΩDM ~ 1/vσ  ~ 1/λsh
2

Direct detection with singlet DM

Part of EWBG-favored parameter space is already
excluded by XENON100:

local DM

density 
uncertainty

XENON100

Models with
vc / T c > 1

(λ   < 1)hs

hs

JC, K. Kainulainen, arXiv:1210.4196

But much of the rest will be probed in the next 2 years!
J.Cline, McGill U. – p. 24

LUX

Even subleading  
DM, BAU-capable  
models detectable

Xenon1t
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ETC: (IDM, NMSSM,…) TCDM
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Figure 2. Scatter plot of the models passing all existing constraints as a function of the DM-mass
and the predicted WIMP-nucleon SI-cross section. Colors represent the value of f

rel

for each model
as indicated by the bar on the right. Also shown are the current XENON100 [42], and LUX [43]
limits as well as the predicted reach of the XENON1T experiment [50]. Large red dots show our five
benchmark models.

charged particle i coupling to Z-boson: mi � 104.5 GeV. LHC mass limits, while not as
straightforward to implement, are typically much stronger. In our analysis we have used
conservative bounds

mE , m!D > 500GeV. (4.5)

The Z-boson invisible decay width imposes a constraint on any particle withm < MZ/2.
The current bound from LEPII is �(Z ! inv.) = (2.984±0.008)�(Z ! ⌫̄⌫) [51]. As the best
fit value is already 2� below the SM prediction, we allow at most one standard deviation
from new physics, which implies a bound

�Z ⌘ |U1i|4
⇣
1� 4m2

i

m2
Z

⌘3/2
< 0.008 . (4.6)

This rules out any WIMP with mDM < mZ/2 and a significant NL component. Furthermore,
if the WIMP is lighter than mH/2, then also Higgs could decay to a pair of WIMPs. The
invisible Higgs branching fraction RI is constrained to be [52–54]:

RI ⌘ �H,DM

�H,DM + �SM,tot

<⇠ 0.17 , (4.7)

where �SM,tot is the total Higgs decay width in the SM and �H,DM = (GFmH/2
p
2⇡)( |Sii|2�3

i +
|Pii|2�i), where �i ⌘ (1 � 4m2

i /m
2
H)1/2 and the index i refers to the WIMP as the lightest

of the mass eigenstates. The bound (4.7) assumes SM-like Higgs-gauge and Higgs-fermion
couplings. It would be relaxed to RI < 0.26, if one allows Higgs and SM gauge fields to have
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LUX

Xenon100

Xenon1t

A model for Dark Matter, plausible Naturalness and a hint  
for a complete Gauge Unification KK, Kimmo Tuominen  

and Jussi Virkajärvi
SU(3)c SU(2)L U(1)Y SU(NTC) Z2

LL 1 2 -1/2 1 -1
Ec

R 1 1 1 1 -1
! 1 adj. 0 1 -1
� 1 1 0 1 -1
g̃ adj. 1 0 1 -1

QL 1 2 1/6 3 1
U c
R 1 1 -2/3 3 1

Dc
R 1 1 1/3 3 1

⌘1 1 1 0 3 -1
⌘2 1 1 0 3 -1
G̃ 1 1 0 adj. -1

Table 1. The table shows the new states added to SM, and their charge assignments under the SM
gauge group and the technicolor gauge group which we will consider to be SU(3). Also shown is the
discrete matter parity which is even for the SM matter fields.

We set NTC=3. These elementary fermions form composite fields similar to the mesons and
hadrons in QCD. We assume that only one doublet of the technifermions is gauged under the
electroweak symmetry, while the remaining two Weyl fermions (⌘1 and ⌘2) are singlet under
all SM charges. We assume that similarly to other SM-singlet fermions also ⌘1 and ⌘2 are odd
under the ”matter parity” Z2. Finally, there are two Weyl fermions, g̃ and G̃, transforming
in the adjoint representation of SU(3) of QCD and TC, respectively1. Both of these fields
are assumed to be heavy and decoupled from low energy particle spectrum. These field are
relevant neither for the dynamical symmetry breaking nor for the dark matter. However, as
we will discuss in the next section, when g̃ and G̃ are included, along with the SU(2)-adjoint
field !, the model also gives rise to excellent gauge coupling unification.

At high energies the technicolor sector is described by the Lagrangian

LTC = �1

4
F a
µ⌫F

aµ⌫ �QLiD
�
L
QL � URiD

�
R
UR �DRiD

�
R
DR � ⌘̄ iD̃

�
⌘, (2.19)

where Fµ⌫ is the field strength of the technicolor gauge field and Q = (U,D)T . The covariant
derivative D̃ contains only the technicolor gauge field while the covariant derivatives DL,R

contain also the electroweak gauge fields. At low energies the strong dynamics is described
by an e↵ective Lagrangian for composite mesons. Due to the di↵erent Z2 parities of the
techniquarks, the low energy composites are ⌃ ⇠ Q̄Q and � ⇠ ⌘̄⌘. The former is the e↵ective
Higgs doublet which in our case is a composite field, and hence the model does not su↵er
from hierarchy problem. The field � ⇠ S + i⇡s is another composite complex scalar, singlet
under all SM charges.

The low energy e↵ective Lagrangian is

LTC, e↵ = TrDµ⌃
†Dµ⌃+ @µ�

†@µ� � V (⌃,�), (2.20)

where ⌃ = (⇣ + i~⇡ · ~⌧)/p2 is charged under the electroweak interactions (⌧i are the SU(2)
generators) and

V (⌃,�) = m2trM †M + �tr(M †M)2 + µ2
s⇡

2
s , (2.21)

1For concreteness we have assigned the value Z2 = �1 for these fields.

– 6 –

DM-sector
3 neutral Majorana fields

+ 2 charged Dirac fields

TC-sector

All pieces for EWBG are 
qualitatively in place.  
(CP in DM-sector)

Calculation not done yet.
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Figure 1. Left: the running of the gauge couplings in the SM. Note the logarithmic scale. Left: the
running of all four couplings in the MWTC-DM model under consideration, including the TC-coupling
↵
4

. The ellipses show the 1- and 2-� contours on unification scale and the unified coupling derived
from the �2-distribution (3.5). For the TC-coupling ↵

4

we took 331 GeV < ⇤1�loop

TC

< 351 GeV. Note
the linear scale on the latter plot.

We plot the running couplings in figure 1 for the SM (left panel) and for the current
model (right). The latter plot was created with linear MU scale and zoomed to the unifi-
cation coupling to reveal the almost perfect one-loop unification in our model. The tight
error bars on the unification mass and the unified coupling can be used to make a formally
accurate prediction for the value of the QCD-coupling at electroweak scale. Running the
QCD-coupling backwards from the unification scale gives:

↵3(MZ) = 0.1120± 0.0003 , (3.9)

which is consistent with but much tighter than the current observational limits2.

3.2 Unification of all couplings including ↵4 ⌘ ↵TC

Above we considered only the unification of the SM coupling constants. In our model we
have an additional gauge coupling related to the strong Technicolor interactions and it would
be more satisfying to have a unification of all four coupling constants. We now show that
this indeed quite naturally takes place in our model.3

With the current particle content, shown in Table 1 we have:

b4 = (4 + 2)⇥ 1

3
+ 2� 11 = �7 . (3.10)

Let us now require that ↵2 and ↵4 unify at MU. This implies that:

C ⌘ sin2 ✓W � ↵/↵4

c2 � (1 + c2) sin2 ✓W
=

b4 � b2
b2 � b1

. (3.11)

2Note that the running of the SM couplings will be a↵ected by the strongly coupled TC sector at the scales
below O(TeV): the composite spectrum of technihadrons charged under the electroweak interactions will feed
into the evolution and may a↵ect the precision of the above result.

3The results are dependent on the normalization of the hypercharge, i.e. the factor c. In principle its value
is determined by the particle content and the structure of the unifying algebra; we assume the value c =

p
3/5

throughout here.
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“Conclusions”

EWBG continues to be interesting albeit ever  
more constrained by LHC and other lab data

History of baryogenesis papers
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LHC
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Electroweak baryogenesis (EWBG) is interesting
because of its testability

J.Cline, McGill U. – p. 5

QKE’s not fully understood (work in progress) Interesting but not pressing issue.

MSSM EWBG appears to be all but dead  /  NMSSM should be OK, btw

2HDM + exensions possible, though restricted

SSM:  
     strong (2-stage) transition at tree level

Singlet effect is likely a part of a more complete working EWBG model.

Current action is in phenomenological model building
Activity in BG
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