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The Epoch of Relonization

Absorption spectra of quasars have long shown that the intergalactic
medium at redshifts z < 6 is highly ionized, with a residual neutral

H atom concentration of less than 1 atom in 10%.

===> universe experienced an “epoch of reionization” before this.
Sloan Digital Sky Survey quasars have been observed at
Z > 6 whose absorption spectra show dramatic increase in the H |
fraction at this epoch as we look back in time.

===> epoch of reionization only just ended at z = 6.



SDSS quasars show Lyman o opacity of intergalactic medium rises
with increasing redshift at z = 6 =» IGM more neutral =» reionization just ending?
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SDSS quasars show Lyman o opacity of intergalactic medium rises
with increasing redshift at z = 6 =» IGM more neutral =» reionization just ending?
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Fraction of Lyman-Break Galaxies (LBGs) which are Lyman o emitters (LAES)
decreases fromz =6to 8 = Lyman a opacity of intergalactic medium rises
with increasing redshift at z = 6 =» IGM more neutral =» reionization just ending?

The changing
Lya optical
depth in the
range 6<z<9
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WMAP satellite mapped the pattern of polarization of the cosmic
microwave background radiation across the sky <-> light was scattered
as It travelled across the universe, by intergalactic electrons




Planck satellite mapped the pattern of polarization of the cosmic
microwave background radiation across the sky <-> light was scattered
as It travelled across the universe, by intergalactic electrons

2 PLANCK'S POLARISATION OF THE COSMIC MICROWAVE BACKGROUND

Full sky map

Filtered at 5 degrees

Filtered at 20 arcminutes




The Epoch of Relonization

Absorption spectra of quasars have long shown that the intergalactic
medium at redshifts z < 6 is highly ionized, with a residual neutral

H atom concentration of less than 1 atom in 10%.

===> universe experienced an “epoch of reionization” before this.
Sloan Digital Sky Survey quasars have been observed at
Z > 6 whose absorption spectra show dramatic increase in the H |
fraction at this epoch as we look back in time.

===> epoch of reionization only justended atz = 6 .

The cosmic microwave background (CMB ) exhibits polarization
which fluctuates on large angular scales; Planck finds that almost

7% of the CMB photons were scattered by free electrons in the
IGM, but only 4% could have been scattered by the IGM at z < 6.

===> |GM must have been ionized earlier than z = 6 to supply
enough electron scattering optical depth

===> reionization already substantial by z 2 9



EoR Probes the Primordial Power Spectrum Down to Very Small Scales
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Structure
formation in
NACDM
atz=10

simulation volume

(100 h-"Mpc)3,
comoving

16243 particles on
32483 cells

Projection of
cloud-in-cell
densities of 20
Mpc slice




A Dwarf Galaxy Turns on at z=9




N-body + Radiative Transfer =
Reionization simulation

- N-body simulafion yields the density field and sources of
lonizing radiation

- New: 2nd generation N-body code CUBEP?M,

a P3M code, massively paralleled (MPI+Open MP),
30723 = 29 billion particles, 6,144 cells,
particle mass =5 x 10°M 163 Mpc box),

+
54883 = 165 billion particles, 10,9763 cells,
particle mass =5 x 103 M 30 Mpc box),
+
particle mass =5 x 10" M,,,, (607 Mpc box),

- Halo finder “on-the-fly” yields location, mass, other
properties of all galaxies,

M >10° M,,,(30 Mpc box), 108 M., (163 Mpc box),
10° M 607 Mpc box)

solar (

solar (

solar (



Halo mass
function now
simulated for
LCDM

over full mass
range from
IGM Jeans
mass before
EOR to the
largest halos
that form
during the
EOR
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Largest Volume N-body Simulation for Reionization : (607 cMpc)?

CUBEP3M
54882 = 165 billion particles
10, 9763 cells

*Resolves all halos with
M2> 10° Mg,

*First halos form at
Z=26

* 4 x 107 halos by
z=8

o ~2x 108 halos by
Z2=2.5

» IGM density = violet
halos = blue

Box size ~ volume of the LOFAR EOR 21cm background survey



N-body + Radiative Transfer =
Reionization simulation

» Radiative transfer simulations evolve the radiation
field and nonequilibrium ionization state of the gas

- New, fast, efficient C°-Ray code (Conservative,
Causal Ray-Tracing) (Mellema, lliev, Alvarez, &
Shapiro 2006, New Astronomy, 11, 374) uses short-
characteristics to propagate radiation throughout the
evolving gas density field provided by the N-body
results, on coarser grid of ~ (256)3 to (512)3 cells, for
different resolution runs, from each and every galaxy
halo source in the box.

e.g. Noo~4x10° by z~ 8 (WMAP1) (> 2x 10° M)
~3x10° by z~ 6 (WMAP3) (>2x10°M
~107 by z~ 8 (WMAPS5) (> 108 M)

for simulation volumes ~ (100 h - Mpc)3

sun)



Every galaxy in the simulation volume
emits ionizing radiation

 We assume a constant mass-to-light ratio for simplicity:
f,= # lonizing photons released by each galaxy per halo baryon
2> f =1 fose N,
where
f, = star-forming fraction of halo baryons,

f..c = I0Nnizing photon escape fraction,
N, = # Ionizing photons emitted per stellar baryon over stellar lifetime
e.g.
N; = 50,000 (top-heavy IMF), f, = 0.2, f,;. = 0.2 > f =2000
or
N; = 4,000 (Salpeter IMF), f,= 0.1,f,. = 0.1 f =40

* Thisyields source luminosity: dN/dt =f My, /(umy At,),
At, = source lifetime  (e.g. 2x 107 yrs),
Mpary = halo baryonic mass = My, * (Qpan/ Q)
=>halo star formation rate: SFR = (f, / At,)(My,,, /fese N;)

€esc



Every galaxy in the simulation volume
emits ionizing radiation

 We assume a constant mass-to-light ratio for simplicity:
f,= # lonizing photons released by each galaxy per halo baryon
2> f =1 fose N,
where
f, = star-forming fraction of halo baryons,

f..c = I0Nnizing photon escape fraction,
N, = # Ionizing photons emitted per stellar baryon over stellar lifetime
e.g.
N; = 50,000 (top-heavy IMF), f, = 0.2, f,;. = 0.2 > f =2000
or
N; = 4,000 (Salpeter IMF), f,= 0.1,f,. = 0.1 f =40

->halo star formation rate: ~ SFR = (f, / At,)(My5y /fese N;)

SFR=1.7 (f,/40) (0.1/f
e.g. f, =40, f

esc) (4000/Ni) (10 I\/Iyr/ At*) (Mhalo/lo9 I\/Isolar) I\/Isolar/ yr
= 0.1,f,= 0.1, At, =2 x 107 yrs =
SFR = (0.8 My, /Yr) * (M} ,4,/10° M

esc

solar)



Self-Regulated Reionization
lliev, Mellema, Shapiro, & Pen (2007), MNRAS, 376, 534; (astro-ph/0607517)

Jeans-mass filtering =»
low-mass source halos
(M <10° M,,,) cannot form

inside H 11 regions ;

«35/h Mpc box, 4062 radiative
transfer simulation, WMAPS3,
fY = 250;

sresolved all halos with
M >108M,, (i.e.all
atomically-cooling halos),

(blue dots = source cells);

* Evolution: z=21to z,, = 7.5.



Large-scale, self-regulated reionization by atomic-cooling halos

Three generations of simulation







Q: Are there observable consequences
of reionization we can predict which will
allow us to determine which of these
sources contribute most significantly to
reionization?

: Radiation backgrounds from the EoR, including:

. 21cm
. Near-IR
. CMB (polarization & kinetic Sunyaev-Zel’dovich)




Can 21-cm Observations Discriminate Between High-Mass and
Low-Mass Galaxies as Reionization Sources?

lliev, Mellema, Shapiro, Pen, Mao, Koda, & Ahn 2012, MNRAS, 423, 2222 (arXiv: 1107.4772)

163 Mpc boxes at the 50% ionized epoch

High efficiency = early reionization Low efficiency = late reionization High efficiency = early reionization

HMACHs + LMACHSs HMACHSs only
Low-Mass Atomic Cé)oling Halgs, or LMACHSs

> 10 <M<10 Msolar
(suppressed inside H 11 regions by photoheating)

High-Mass Atomic Coolsi)ng Halos, or HMACHSs
- M > 10 Msolar



Effects of the First Stars and Minihalos on Reionization
Ahn, lliev, Shapiro, Mellema, Koda, and Mao (2012) ApJL, 756, L16

Sgo N
Minihalos + LMACHSs — g'l' Ll\m/IA_OCHs + HMACHS  bmmiere -
+ HMACHS L | g [,, £
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Four reionization simulation cases for comparison
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The Redshifted 21cm Signal From the EoR

The measured radio signal is the
differential brightness temperature

1/2 —1

— . N 2 14+ 2\ dv

6T —T 'T -3, =928.74 r 1 5 I+ 2 1 — TCMB(Z”) 1 I K
b~ 'b”'cmB b 8.74 xp1(1+0) 10 T, + () ) ary m

(for WMAP7 cosmological parameters).
Depends on:

— Xy, neutral fraction

— 0. overdensity

— T4 spin temperature
For T» Ty, the dependence on T,
drops out

The signal is a spectral line: carries
spatial, temporal, and velocity

information.

Vo ’UH

V= —— and obs = (1 l+—)—1
T+ 2o Zob (T4 2)(1+ C)

The image cube: images stacked
in frequency space



The GMRT - EoR Experiment: A new upper limit on the
neutral hydrogen power spectrum at z ™~ 8.6
(Paciga et al. 2011, MNRAS, 413, 1174;arXiv:1006.1351)

50 hours

of data =

upper limit

0Ty, rms < 70 mK
for 21cm signal
atz=8.6

=» Consistent with
predictions for
epoch of
reionization, i.e.
neutral patches of
IGM atz=8.6
heated so

Tspin >>T CMB

107 ¢

3D Power Spectrum of 21cm 6T,

"
v T T
LT / [}
B cold IGM |
y

— — —— ]
—

theoretical predictions of illustrative reionization simulation
(lliev, Mellema, Pen, Bond, & Shapiro 2008, MNRAS, 384, 863)



New limit on 21cm power spectrum atz=8.4

from the Paper-64 EoR Experiment
Ali et al. (2015) arXiv:1502.06016
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Sky Maps of 21cm Background Brightness Temperature
Fluctuations During Epoch of Reionization : Travel through Time

lliev, Mellema, Ahn, Shapiro, Mao & Pen 2014, MNRAS, 439, 725 (arXiv:1310.7463)

8T (mK) at z=11.26 ( 115.827 MHz)

Reionization has a complex
geometry of growing and
overlapping HIl regions.

Here illustrated evolving
redshifted 21cm signal:

— High density neutral
regions are

— lonized regions are
blue/black.
LOFAR-like beam: 3’

resolution & average signal
IS zero.

20.0

110.0

-10.0

607 cMpc box



Reionization of the Universe

Paul Shapiro
The University of Texas at Austin

Collaborators in the new work described today include:

2015: The Space-Time Odyssey Continues, Stockholm, June 5, 2015



ocO
Reionization of the/\Universe
ot P

Paul Shapiro
The University of Texas at Austin

Collaborators in the new work described today include:

2015: The Space-Time Odyssey Continues, Stockholm, June 5, 2015



Reionization of the Local Universe: Witnessing our Own Cosmic Dawn

Shapiro, Ocvirk, Aubert, lliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D’Aloisio, Sullivan +

Q: Did reionization leave an imprint CLUES N-body Simulation g
on the Local Group galaxies we can - ' b
observe today?

Q: Does reionization help explain
why the observed number of dwarf

galaxies in the Local Group is far . _ Coma cluster
smaller than the number of small '

halos predicted by ACDM N-body . Virge

simulations? Great Attractor °

Q: Was the Local Group ionized
from within or without?

L Grou
.4 {Local Group .
. P.P
_ Perseus-Pisces

A: Simulate the coupled radiation- Milky Wayh
hydro-N-body problem of B
re_lon_lzat_lon_-) galaxy formation An;d::dr:ie be

with ionization fronts that swept ;

across the IGM in the first billion . Mas g’
years of cosmic time, in a volume 91 -~ M33

Mpc on a side centered on the Local
Group.

229 cMpc
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Introducing the CoDa (COsmic DAwn) Simulation: Reionization of the
Local Universe with Fully-Coupled Radiation + Hydro + N-body Dynamics
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Reionization of the Local Universe: Witnessing our Own Cosmic Dawn

Shapiro, Ocvirk, Aubert, lliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D’Aloisio, Sullivan +

What makes this possible now?

1) Initial Conditions:

o Start from “constrained
realization” of Gaussian-
random-noise initial
conditions, provided by our
collaborators in the

CLUES (Constrained Local

UniversE Simulations)

consortium

» This reproduces observed
features of our local
Universe, including the Local
Group and nearby galaxy
clusters.

» Add higher frequency modes
for small-scale structure

Coma Cluster

CLUES N-body Simulation

Virge
Great Attractor

L XLodal Group .

131

_ Perseus-Pisces

Andromeda ‘ .

Andromeda

M33 .:
~ M33

229 cMpc



H.Courtois and D.Pomaréde, 2012 Univ Lyon - CEA/Irfu




Reionization of the Local Universe: Witnessing our Own Cosmic Dawn

Shapiro, Ocvirk, Aubert, lliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D’Aloisio, Sullivan +

What makes this possible now?

2) New Hybrid (CPU + GPU) numerical method + New Hybrid (CPU + GPU) supercomputer

N-body + Hydro = RAMSES (Teyssier 2002)
o Gravity solver is Particle - Mesh code with Multi-Grid Poisson solver
» Hydro solver is shock-capturing, second-order Godunov scheme on Eulerian grid

Radiative Transfer + lonization Rate Solver = ATON (Aubert & Teyssier 2008)
e RT is by a moment method with M1 closure
» Explicit time integration, time-step size limited by CFL condition =»
At<Ax/c,
where ¢ = speed of light

ATON =» (ATON) x (GPUs) = CUDATON (Aubert & Teyssier 2010)
*GPU acceleration by factor ~ 100

RAMSES + CUDATON = RAMSES-CUDATON

*RT on the GPUs @ CFL condition set by speed of light

(hydro + gravity) on the CPUs @ CFL condition set by sound speed

o (# RT steps)/(# hydro-gravity steps) > 1000 will not slow hydro-gravity calculation



Reionization of the Local Universe: Witnessing our Own Cosmic Dawn

Shapiro, Ocvirk, Aubert, lliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D’Aloisio, Sullivan +

TITAN SPECS
PEAK FEHFDRMAHEE 299 [lna

[l OPTERON CORES
PETAFLOPS

TITAN by the numbers: NVIDIA TESLA TOTAL SYSTEM MEMORY

K20 GPU ACCELERATORS

. 20 Petaflops peak 13 EBB 7] 0

. 18,688 compute nodes

TERABYTES
. 299,008 cores
. Each node consists of an AMD 16-Core COMPUTE NODES 3268 + 6GB
Opteron 6200 Series processor and an p
NVIDIA Tesla K20 GPU Accelerator 13,533
. Gemini interconnect Memory Per Node
GEMINI 4,392
H
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Introducing the CoDa (COsmic DAwn) Simulation: Reionization of the
Local Universe with Fully-Coupled Radiation + Hydro + N-body Dynamics

Shapiro, Ocvirk, Aubert, lliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D’Aloisio, Sullivan +

RAMSES-CUDATON simulation

« Box size =91 cMpc
e Grid size = (4096)3 cells, Ax ~ 20 cKpc " ﬁ
 N-body particles = (4096)3 ~ 64 billion 10™ —— | —
e Min halo mass ~ 108 M_solar ~300 particles  Bemts smge ®
|| 95 Murali= 2002 0 Springs + 2003
_ 10° - | oo 00 20 S 2010
TITAN Supercomputer requirements | oun oz i uvas 2003
- | 15 Puchwein+ 2013 1§ wan Doaler+ 213
* # steps/run = 2000 CPU (+800,000 GPU) f’g‘ 10¢ | |19 Vaaasoarers 2014, Senets 2054
o #CPU cores (+ # GPUs) = 131,072 (+ 8192) & ’
=Ano @
o # CPU hrs = 2.1 million node hrs ~ 11 days T 'ﬁg‘ﬁf‘ os
c R
o e
» Largest fully-coupled radiation-hydro 5 o
simulation to-date of the reionization of the ﬁ 10°
Local Universe. .
].U: - nL;‘:F:ICE scheme: :::;Li::::c+p:l:;?i::;."aﬁa.l _E
« Large enough volume to simulate global e @ ovina mesh _ ]
reionization and its impact on the Local 10" sz 650 e 5810 015
Group simultaneously, while resolving the year

masses of dwarf satellites of the MW and (taken from illustris website)

M31.



Reionization of the Local Universe: Witnessing our Own Cosmic Dawn

Shapiro, Ocvirk, Aubert, lliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D’Aloisio, Sullivan +

RAMSES-CUDATON simulation TITAN Supercomputer requirements

* Boxsize =91 cMpc o # steps/run = 2000 CPU (+800,000 GPU)

e Grid size = (4096)3 cells, Ax ~ 20 cKpc o # CPU cores (+ # GPUs) = 131,072 (+ 8192)
e N-body particles = (4096)3 ~64 billion o # CPU hrs = 2.1 million node hrs ~ 11 days
e Min halo mass ~ 108 M_solar ~300parts

TEST RUN: 11 chc box a spatlal sllce _

y (h™" Mpc)

x (h™! Mpc) % (h™! Mpc) x (h™" Mpc)

log10(density) IoglO(temperature) ionized hydrogen fraction

(left) the local cosmic web in the atomic gas ;

(middle) red regions denote very hot, supernova-powered superbubbles, while yellow-orange
regions show the long-range impact of photo-heating by starlight;

(right) ionized hydrogen fraction [dark red (dark blue) = ionized (neutral)].



Reionization of the Local Universe: Witnessing our Own Cosmic Dawn

Shapiro, Ocvirk, Aubert, lliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D’Aloisio, Sullivan +

lonization Field
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Reionization of the Local Universe: Witnessing our Own Cosmic Dawn

lonizing Radiation Mean Intensity J

-27.34

-27.40

-27.47

Il box width
-, _ e:'

=27.53

-27.60



Reionization of the Local Universe: Witnessing our Own Cosmic Dawn

Gas Temperature

2
143.076 |

23 cMpc =

Y4 of the full box width




RAMSES-

CUDATON

simulation

e Boxsize =91
cMpc

o Gridsize =
(4096)3 cells

* N-body particles
= (4096)3

 Min halo mass ~
108 solar masses

FULL-SIZED
RUN:

91 cMpc box: a
spatial slice;

@ z~6, withx ~
50%

log10(temperature)
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* red regions denote very hot, supernova-powered superbubbles, while yellow-orange regions
show the long-range impact of photo-heating by starlight;



RAMSES-
CUDATON
simulation Zoom-in X 4
e Boxsize =91
cMpc
o Gridsize = 2
(4096)3 cells :
* N-body particles .
= (4096)3
 Min halo mass ~
108 solar masses

- 4.71

FULL-SIZED

RUN:

91 cMpc box: a

spatial slice;

@ z~6, withx ~

50% i A

- 3.00

log10(temperature)

* red regions denote very hot, supernova-powered superbubbles, while yellow-orange regions
show the long-range impact of photo-heating by starlight;



RAMSES-

CUDATON

simulation Zoom-in X 16

e Boxsize =91
cMpc

o Gridsize =
(4096)3 cells

* N-body particles
= (4096)3

 Min halo mass ~
108 solar masses

FULL-SIZED
RUN:

91 cMpc box: a
spatial slice;

@ z~6, withx ~
50%

log10(temperature)

* red regions denote very hot, supernova-powered superbubbles, while yellow-orange regions
show the long-range impact of photo-heating by starlight;



RAMSES-

CUDATON

simulation Zoom-in X 32

e Boxsize =91
cMpc

o Gridsize =
(4096)3 cells

* N-body particles
= (4096)3

 Min halo mass ~
108 solar masses

FULL-SIZED
RUN:

91 cMpc box: a
spatial slice;

@ z~6, withx ~
50%

log10(temperature)

* red regions denote very hot, supernova-powered superbubbles, while yellow-orange regions
show the long-range impact of photo-heating by starlight;



RAMSES-

CUDATON

simulation Zoom-in X 64

e Boxsize =91
cMpc

o Gridsize =
(4096)3 cells

* N-body particles
= (4096)3

 Min halo mass ~
108 solar masses

FULL-SIZED
RUN:

91 cMpc box: a
spatial slice;

@ z~6, withx ~
50%

log10(temperature)

* red regions denote very hot, supernova-powered superbubbles, while yellow-orange regions
show the long-range impact of photo-heating by starlight;



Selected Cut-out

RAMSES-

CUDATON

simulation

e Boxsize =91
cMpc

o Gridsize =
(4096)3 cells

* N-body particles
= (4096)3

 Min halo mass ~
108 solar masses

Zoom-In (4 h-t cMpc)3 Subvolume = (full simulation volume/4096)

ZOOM-IN ON THE
LOCAL GROUPAT Z=0



Zoom-In (4 h-t cMpc)3 Subvolume = (full simulation volume/4096)

Selected Cut-out

RAMSES-
CUDATON
simulation
e Boxsize =91
cMpc
Grid size =
(4096)3 cells
N-body particles
= (4096)3
Min halo mass ~
108 solar masses

Colour map: Dark Matter

ZOOM-IN ON
LOCAL
GROUP AT

/=0 INEESONREE b TR Image center: ( 21.94, 32.60, 33.23)
Redshift:  0.0000
Number of data: 2477007
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Circles indicate

progenitors of Virgo,

Fornax, M31, and the
MW

Orange is photoheated, |
photoionized gas;

Red is SN-shock-
heated;

Blue is cold and neutral
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RAMSES-

CUDATON

simulation

e Boxsize =91
cMpc

e Gridsize =
(4096)2 cells

* N-body particles
= (4096)3

 Min halo mass ~
108 solar masses

Zoom-In (4 ht cMpc)3 Subvolume = (full simulation volume/4096)

Look at the Dark Matter
at the end of relonization
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RAMSES-
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simulation
e Boxsize =91
cMpc
Grid size =
(4096)3 cells
N-body particles
= (4096)3
Min halo mass ~
108 solar masses

Zoom-In (4 h-t cMpc)3 Subvolume = (full simulation volume/4096)




Selected Cut-out

RAMSES-

CUDATON

simulation

e Boxsize =91
cMpc

o Gridsize =
(4096)2 cells

* N-body particles
= (4096)3

* Min halo mass ~
108 solar masses

Zoom-In (4 ht cMpc)3 Subvolume = (full simulation volume/4096)

See a map of the ionized gas density evolve

thru the EOR In this region

utout100_xion_rho.mpg




Selected Cut-out

RAMSES-

CUDATON

simulation

e Boxsize =91
cMpc

o Gridsize =
(4096)2 cells

* N-body particles
= (4096)3

* Min halo mass ~
108 solar masses

Zoom-In (4 ht cMpc)3 Subvolume = (full simulation volume/4096)

See a map of the ionized gas density evolve

thru the EOR 1n one of the selected cut-outs

cutout100

This cut-out reionizes itself



Selected Cut-out

RAMSES-

CUDATON

simulation

e Boxsize =91
cMpc

o Gridsize =
(4096)2 cells

* N-body particles
= (4096)3

* Min halo mass ~
108 solar masses

Zoom-In (4 ht cMpc)3 Subvolume = (full simulation volume/4096)

See a map of the ionized gas density evolve

thru the EOR in another cut-out region

cutout101




Selected Cut-out

RAMSES-

CUDATON

simulation

e Boxsize =91
cMpc

e Gridsize =
(4096)2 cells

* N-body particles
= (4096)3

 Min halo mass ~
108 solar masses

Zoom-In (4 ht cMpc)3 Subvolume = (full simulation volume/4096)

See a map of the ionized gas density evolve

thru the EOR in another cut-out region

cutout101

This cut-out is reionized by external sources,
as the matter in this cut-out falls toward the
source of its relonization.



Zoom-In (4 h-t cMpc)3 Subvolumes = (full simulation volume/4096)

Selected Cut-outs

I
1.0} — 29 300 |
— &2 — a3

— 299 448

RAMSES-
CUDATON 0.8}
simulation
 Boxsize =91
cMpc
« Gridsize = .
(4096)3 cells
* N-body particles
= (4096)3
* Min halo mass ~ 02l
108 solar masses

0.6+

0.4}

0.0

Sub-regions with reionization histories that ended gradually
were reionized by internal sources, while those whose
histories finished abruptly were reionized by external sources.



Efficiencies set from
smaller-box simulations
prove slightly low, so
reionization ends a

bit late: z,;<5

But if we let
z =22z%*1.3,

there is good agreement
with observable
constraints
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Reionization suppresses star

formation rate in dwarf __SFRvshalomass
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10'14 L i el i " PR | i " MR | i " s aal i " PR R R
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UV Luminosity Function UVLF
VS. NERRRRRRRRRRRRRRRRR RN
Observations from -2
Bouwens et al. (2014)

« Full circles are
from Bouwens
et al. (2014)

» Shaded areas and thick
lines show the envelope
and median of the LFs
of 5 equal, independent
subvolumes 50/h cMpc

*  Magi600 Magnitudes computed
using lowest metallicity SSP
models of Bruzual & Charlot
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Stellar Mass Per Halo versus Virgocentric Distance

Relonization suppresses star
formation rate in dwarf galaxies, for
M < 109 solar masses
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« Suppression varies with location 6000

e Suppression decreases with
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RAMSES-CUDAZE
 Boxsize =9%¥

imulation TITAN Supercomputer requirements

o # steps/run = 2000 CPU (+800,000 GPU)

o Gridsize = M mix ~ 20 cKpc e # CPU cores (+ # GPUs) = 131,072 (+ 8192)
* N-body pa *~64 billion e # CPU hrs = 2.1 million node hrs ~ 11 days
Min halo ’ ) ‘@arts

*EST RUN: 11 chc box: a spatlal slice

7 \é{’ s I

-~

H

[ 4

o

0?

y (™" Mpc)
£ -9 =]
] 3 "]
o 2 A
7 ' R\

: \
% 2 4 ;"““‘ 8 % 2
x (h™" Mpc) x (h™" Mpc)
IoglO(denS|ty) log10(temperature) ionizet N fraction

» (left) the local cosmic web in the atomic gas ;

« (middle) red regions denote very hot, supernova-powered superbubbles, while yellow-orange
regions show the long-range impact of photo-heating by starlight;

» (right) ionized hydrogen fraction [dark red (dark blue) = ionized (neutral)].
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