Reionization of the Universe

Paul Shapiro The University of Texas at Austin

Collaborators in the new work described today include:

Pierre Ocvirk³, Dominique Aubert³, Nicolas Gillet³, Ilian Iliev², Romain Teyssier⁴, Gustavo Yepes⁵, Stefan Gottloeber⁶, Junhwan Choi¹, Hyunbae Park¹, Anson D'Aloisio¹, David Sullivan², Yehuda Hoffman⁷, Alexander Knebe⁵, Timothy Stranex⁴ (1)U Texas at Austin (2)U Sussex (3)U Strasbourg (4) U Zurich (5) U Madrid (6) AIP Potsdam (7) Hebrew U

Simulating Cound ic Reionization and Its Background ic Reionization and Its Background ic Reionization and Its Part I: Some

Paul Shapiro The University of Texas at Austin

Collaborators in this work include:

Ilian Iliev², Garrelt Mellema³, Kyungjin Ahn⁴, Yi Mao^{1,12}, Jun Koda^{1,5}, Ue-Li Pen⁶, Martina Friedrich³, Kanan Datta³, Hyunbae Park¹, Eiichiro Komatsu^{1,13} Elizabeth Fernandez^{7,14}, Anson D'Aloisio¹, Hannes Jensen³, Pierre Ocvirk⁸, Dominique Aubert⁸, Romain Teyssier⁹, Gustavo Yepes¹⁰, Stefan Gottloeber¹², Junhwan Choi¹

(1)U Texas at Austin (2)U Sussex (3)U Stockholm (4)Chosun U
 (5)U Swineburne (6)CITA/U Toronto (7)U Paris-Sud (8)U Strasbourg (9) U Zurich
 (10) U Madrid (11) AIP Potsdam (12) IAP Paris (13)MPIFA Garching (14)U Groningen

Simulating Cosmic Reionization and Its Observable Consequences

Paul Shapiro The University of Texas at Austin

Collaborators in this work also include:

Ilian Iliev², Garrelt Mellema³, Kyungjin Ahn⁴, Yi Mao^{1,12}, Jun Koda^{1,5}, Ue-Li Pen⁶, Martina Friedrich³, Kanan Datta³, Hyunbae Park¹, Eiichiro Komatsu^{1,13} Elizabeth Fernandez^{7,14}, Anson D'Aloisio¹, Hannes Jensen³, Pierre Ocvirk⁸, Dominique Aubert⁸, Romain Teyssier⁹, Gustavo Yepes¹⁰, Stefan Gottloeber¹², Junhwan Choi¹

(1)U Texas at Austin (2)U Sussex (3)U Stockholm (4)Chosun U (5)U Swineburne (6)CITA/U Toronto (7)U Paris-Sud (8)U Strasbourg (9) U Zurich (10) U Madrid (11) AIP Potsdam (12) IAP Paris (13)MPIfA Garching (14)U Groningen

Reionization of the Universe

Paul Shapiro The University of Texas at Austin

Collaborators in the new work described today include:

Pierre Ocvirk³, Dominique Aubert³, Nicolas Gillet³, Ilian Iliev², Romain Teyssier⁴, Gustavo Yepes⁵, Stefan Gottloeber⁶, Junhwan Choi¹, Hyunbae Park¹, Anson D'Aloisio¹, David Sullivan², Yehuda Hoffman⁷, Alexander Knebe⁵, Timothy Stranex⁴ (1)U Texas at Austin (2)U Sussex (3)U Strasbourg (4) U Zurich (5) U Madrid (6) AIP Potsdam (7) Hebrew U

Reionization of the/Universe

Paul Shapiro The University of Texas at Austin

Part II

Collaborators in the new work described today include:

 Pierre Ocvirk³, Dominique Aubert³, Nicolas Gillet³, Ilian Iliev², Romain Teyssier⁴, Gustavo Yepes⁵, Stefan Gottloeber⁶,
 Junhwan Choi¹, Hyunbae Park¹, Anson D'Aloisio¹, David Sullivan², Yehuda Hoffman⁷, Alexander Knebe⁵, Timothy Stranex⁴
 (1)U Texas at Austin (2)U Sussex (3)U Strasbourg (4) U Zurich (5) U Madrid (6) AIP Potsdam (7) Hebrew U

The Epoch of Reionization

Absorption spectra of quasars have long shown that the intergalactic medium at redshifts z < 6 is highly ionized, with a residual neutral H atom concentration of less than 1 atom in 10⁴.

===> universe experienced an "epoch of reionization" before this.

Sloan Digital Sky Survey quasars have been observed at z > 6 whose absorption spectra show dramatic increase in the H I fraction at this epoch as we look back in time.
 ===> epoch of reionization only just ended at z ≥ 6.

SDSS quasars show Lyman α opacity of intergalactic medium rises with increasing redshift at $z = 6 \rightarrow$ IGM more neutral \rightarrow reionization just ending?

<u>ک</u>

Fan et al (2005) SDSS quasars show Lyman α opacity of intergalactic medium rises with increasing redshift at $z = 6 \rightarrow$ IGM more neutral \rightarrow reionization just ending?

Z_{abs}

Fraction of Lyman-Break Galaxies (LBGs) which are Lyman α emitters (LAEs) decreases from z = 6 to $8 \rightarrow$ Lyman α opacity of intergalactic medium rises with increasing redshift at $z = 6 \rightarrow$ IGM more neutral \rightarrow reionization just ending?

WMAP satellite mapped the pattern of polarization of the cosmic microwave background radiation across the sky $\leftarrow \rightarrow$ light was scattered as it travelled across the universe, by intergalactic electrons

Planck satellite mapped the pattern of polarization of the cosmic microwave background radiation across the sky $\leftarrow \rightarrow$ light was scattered as it travelled across the universe, by intergalactic electrons

→ PLANCK'S POLARISATION OF THE COSMIC MICROWAVE BACKGROUND

Filtered at 5 degrees

Full sky map Filtered at 5 degrees

Filtered at 20 arcminutes

The Epoch of Reionization

Absorption spectra of quasars have long shown that the intergalactic medium at redshifts z < 6 is highly ionized, with a residual neutral H atom concentration of less than 1 atom in 10⁴.

===> universe experienced an "epoch of reionization" before this.

- Sloan Digital Sky Survey quasars have been observed at z > 6 whose absorption spectra show dramatic increase in the H I fraction at this epoch as we look back in time.
 ===> epoch of reionization only just ended at z ≥ 6.
- The cosmic microwave background (CMB) exhibits polarization which fluctuates on large angular scales; *Planck* finds that almost 7% of the CMB photons were scattered by free electrons in the IGM, but only 4% could have been scattered by the IGM at z < 6.

===> IGM must have been ionized earlier than z = 6 to supply enough electron scattering optical depth

===> reionization already substantial by z ≥ 9

EoR Probes the Primordial Power Spectrum Down to Very Small Scales

Structure formation in ΛCDM at z = 10

simulation volume = (100 h⁻¹Mpc)³, comoving

1624³ particles on 3248³ cells

Projection of cloud-in-cell densities of 20 Mpc slice

A Dwarf Galaxy Turns on at z=9

N-body + Radiative Transfer → Reionization simulation

- N-body simulation yields the density field and sources of ionizing radiation
 - New: 2nd generation N-body code *CUBEP³M*,
 - a P³M code, massively paralleled (MPI+Open MP), $3072^3 = 29$ billion particles, 6,144³ cells, particle mass = 5 x 10⁶ M_{solar} (163 Mpc box),

╋

 $5488^3 = 165$ billion particles, $10,976^3$ cells, particle mass = 5 x 10^3 M_{solar} (30 Mpc box),

particle mass = $5 \times 10^7 M_{solar}$ (607 Mpc box), - Halo finder "on-the-fly" yields location, mass, other

properties of all galaxies,

M ≥10⁵ M_{solar}(30 Mpc box), 10⁸ M_{solar} (163 Mpc box), 10⁹ M_{solar} (607 Mpc box)

Halo mass function now simulated for LCDM over full mass range from **IGM** Jeans mass before EOR to the largest halos that form during the EOR

Largest Volume N-body Simulation for Reionization : (607 cMpc)³

• CUBEP³M 5488³ = 165 billion particles 10, 976³ cells

•Resolves all halos with $M \ge 10^9 M_{sun}$

- •First halos form at z = 26
- 4 x 10⁷ halos by z = 8
- ~ $2 \ge 10^8$ halos by z = 2.5

• IGM density = violet halos = blue

Box size ~ volume of the LOFAR EOR 21cm background survey

N-body + Radiative Transfer → Reionization simulation

 Radiative transfer simulations evolve the radiation field and nonequilibrium ionization state of the gas

- New, fast, efficient *C*²-*Ray* code (*Conservative, Causal Ray-Tracing*) (Mellema, Iliev, Alvarez, & Shapiro 2006, *New Astronomy*, 11, 374) uses short-characteristics to propagate radiation throughout the evolving gas density field provided by the N-body results, on coarser grid of ~ (256)³ to (512)³ cells, for different resolution runs, from each and every galaxy halo source in the box.

e.g. $N_{halo} \sim 4 \ge 10^5$ by $z \sim 8$ (WMAP1) (> 2 \times 10^9 M_{sun}) ~ 3 \times 10^5 by $z \sim 6$ (WMAP3) (> 2 \times 10^9 M_{sun}) ~ 10^7 by $z \sim 8$ (WMAP5) (> 10^8 M_{sun}) for simulation volumes ~ (100 h ⁻¹ Mpc)³

Every galaxy in the simulation volume emits ionizing radiation

• We assume a constant mass-to-light ratio for simplicity:

 f_{γ} = # ionizing photons released by each galaxy per halo baryon $\Rightarrow f_{\gamma} = f_* f_{esc} N_i$,

where

 $f_* =$ star-forming fraction of halo baryons,

 f_{esc} = ionizing photon escape fraction,

 $N_i = \#$ ionizing photons emitted per stellar baryon over stellar lifetime e.g.

N_i = 50,000 (top-heavy IMF), f_{*} = 0.2, f_{esc} = 0.2
$$\rightarrow$$
 f_y = 2000 or

N_i = 4,000 (Salpeter IMF), f_{*} = 0.1, f_{esc} = 0.1 \rightarrow f_y = 40

 This yields source luminosity: dN_γ/dt = f_γ M_{bary} /(μm_H Δt_{*}), Δt_{*} = source lifetime (e.g. 2 x 10⁷ yrs), M_{bary} = halo baryonic mass = M_{halo} * (Ω_{bary}/Ω_m) →halo star formation rate: SFR = (f_γ / Δt_{*})(M_{bary} / f_{esc} N_i)

Every galaxy in the simulation volume emits ionizing radiation

• We assume a constant mass-to-light ratio for simplicity:

 f_{γ} = # ionizing photons released by each galaxy per halo baryon $\Rightarrow f_{\gamma} = f_* f_{esc} N_i$,

where

 $f_* =$ star-forming fraction of halo baryons,

 f_{esc} = ionizing photon escape fraction,

 $N_i = \#$ ionizing photons emitted per stellar baryon over stellar lifetime e.g.

$$N_i$$
 = 50,000 (top-heavy IMF), f_{*} = 0.2, f_{esc} = 0.2 → f_γ = 2000 or

N_i = 4,000 (Salpeter IMF), f_{*} = 0.1, f_{esc} = 0.1 \rightarrow f_y = 40

→halo star formation rate: SFR = $(f_{\gamma} / \Delta t_{*})(M_{bary} / f_{esc} N_{i})$

$$\begin{split} \text{SFR} &\cong \textbf{1.7 (f_{\gamma}/40) (0.1/f_{esc}) (4000/N_i) (10 \text{ Myr} / \Delta t_*) (M_{halo}/10^9 \text{ M}_{solar}) } \quad M_{solar}/\text{ yr} \\ \text{e.g. } f_{\gamma} &= 40, \, f_{esc} \,= \, 0.1, \, f_* \,= \, 0.1, \, \Delta t_* \,= 2 \times 10^7 \text{ yrs} \Rightarrow \\ & \text{SFR} \cong (0.8 \text{ M}_{solar}/\text{yr}) * (M_{halo}/10^9 \text{ M}_{solar}) \end{split}$$

Self-Regulated Reionization

Iliev, Mellema, Shapiro, & Pen (2007), MNRAS, 376, 534; (astro-ph/0607517)

Jeans-mass filtering →
 low-mass source halos
 (M < 10⁹ M_{solar}) cannot form
 inside H II regions ;

•35/h Mpc box, 406³ radiative transfer simulation, WMAP3, $f_{\gamma} = 250;$

•resolved all halos with $M > 10^8 M_{solar}$ (i.e. all atomically-cooling halos), (blue dots = source cells);

Large-scale, self-regulated reionization by atomic-cooling halos

• <u>white4.wmv</u>

Q: Are there observable consequences of reionization we can predict which will allow us to determine which of these sources contribute most significantly to reionization?

A : Radiation backgrounds from the EoR, including:

- 1. 21cm
- 2. Near-IR
- 3. CMB (polarization & kinetic Sunyaev-Zel'dovich)

Can 21-cm Observations Discriminate Between High-Mass and Low-Mass Galaxies as Reionization Sources?

Iliev, Mellema, Shapiro, Pen, Mao, Koda, & Ahn 2012, MNRAS, 423, 2222 (arXiv: 1107.4772)

163 Mpc boxes at the 50% ionized epoch

(suppressed inside H II regions by photoheating)

Effects of the First Stars and Minihalos on Reionization Ahn, Iliev, Shapiro, Mellema, Koda, and Mao (2012) ApJL, 756, L16

Four reionization simulation cases for comparison

The Redshifted 21cm Signal From the EoR

• The measured radio signal is the differential brightness temperature

•
$$\delta \mathsf{T}_{\mathsf{b}} = \mathsf{T}_{\mathsf{b}} - \mathsf{T}_{\mathsf{CMB}}: \ \delta T_{b} = 28.74 \ x_{\mathrm{HI}} (1+\delta) \left(\frac{1+z}{10}\right)^{1/2} \left[1 - \frac{T_{\mathrm{CMB}}(z)}{T_{s}}\right] \left[1 + \left(\frac{1+z}{H(z)}\right) \frac{dv_{\parallel}}{dr_{\parallel}}\right]^{-1} \ \mathrm{mK}$$

(for WMAP7 cosmological parameters).

- Depends on:
 - x_{HI} : neutral fraction
 - $-\delta$: overdensity
 - T_s: spin temperature
- For $T_s \gg T_{CMB}$, the dependence on T_s drops out
- The signal is a spectral *line*: carries spatial, temporal, and velocity information.

$$\nu = \frac{\nu_0}{1 + z_{\text{obs}}}$$
 and $z_{\text{obs}} = (1 + z)(1 + \frac{v_{\parallel}}{c}) - 1$

The image cube: images stacked in frequency space

The GMRT – EoR Experiment: A new upper limit on the neutral hydrogen power spectrum at z ~ 8.6 (Paciga et al. 2011, MNRAS, 413, 1174;arXiv:1006.1351)

theoretical predictions of illustrative reionization simulation (Iliev, Mellema, Pen, Bond, & Shapiro 2008, MNRAS, 384, 863) New limit on 21cm power spectrum at z = 8.4 from the Paper-64 EoR Experiment Ali et al. (2015) arXiv:1502.06016

 $k \left[h \, \mathrm{Mpc}^{-1} \right]$

Sky Maps of 21cm Background Brightness Temperature Fluctuations During Epoch of Reionization : Travel through Time

Iliev, Mellema, Ahn, Shapiro, Mao & Pen 2014, MNRAS, 439, 725 (arXiv:1310.7463)

- Reionization has a complex geometry of growing and overlapping HII regions.
- Here illustrated evolving redshifted 21cm signal:
 - High density neutral regions are yellow
 - lonized regions are blue/black.
- LOFAR-like beam: 3' resolution & average signal is zero.

607 cMpc box

Reionization of the Universe

Paul Shapiro The University of Texas at Austin

Collaborators in the new work described today include:

Pierre Ocvirk³, Dominique Aubert³, Nicolas Gillet³, Ilian Iliev², Romain Teyssier⁴, Gustavo Yepes⁵, Stefan Gottloeber⁶, Junhwan Choi¹, Hyunbae Park¹, Anson D'Aloisio¹, David Sullivan², Yehuda Hoffman⁷, Alexander Knebe⁵, Timothy Stranex⁴ (1)U Texas at Austin (2)U Sussex (3)U Strasbourg (4) U Zurich (5) U Madrid (6) AIP Potsdam (7) Hebrew U

Reionization of the/Universe

Paul Shapiro The University of Texas at Austin

Part II

Collaborators in the new work described today include:

 Pierre Ocvirk³, Dominique Aubert³, Nicolas Gillet³, Ilian Iliev², Romain Teyssier⁴, Gustavo Yepes⁵, Stefan Gottloeber⁶,
 Junhwan Choi¹, Hyunbae Park¹, Anson D'Aloisio¹, David Sullivan², Yehuda Hoffman⁷, Alexander Knebe⁵, Timothy Stranex⁴
 (1)U Texas at Austin (2)U Sussex (3)U Strasbourg (4) U Zurich (5) U Madrid (6) AIP Potsdam (7) Hebrew U

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

Q: Did reionization leave an imprint on the Local Group galaxies we can observe today?

Q: Does reionization help explain why the observed number of dwarf galaxies in the Local Group is far smaller than the number of small halos predicted by Λ CDM N-body simulations?

Q: Was the Local Group ionized from within or without?

A: Simulate the coupled radiationhydro-N-body problem of reionization → galaxy formation with ionization fronts that swept across the IGM in the first billion years of cosmic time, in a volume 91 Mpc on a side centered on the Local Group.

Introducing the CoDa (COsmic DAwn) Simulation: Reionization of the Local Universe with Fully-Coupled Radiation + Hydro + N-body Dynamics

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

What makes this possible now?

- 1) Initial Conditions:
- Start from "constrained realization" of Gaussianrandom-noise initial conditions, provided by our collaborators in the *CLUES* (Constrained Local UniversE Simulations) consortium
- This reproduces observed features of our local Universe, including the Local Group and nearby galaxy clusters.
- Add higher frequency modes for small-scale structure

H.Courtois and D.Pomarède, 2012 Univ Lyon - CEA/Irfu

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

What makes this possible now?

2) <u>New Hybrid (CPU + GPU) numerical method + New Hybrid (CPU + GPU) supercomputer</u>

N-body + Hydro = **RAMSES** (Teyssier 2002)

- Gravity solver is Particle Mesh code with Multi-Grid Poisson solver
- Hydro solver is shock-capturing, second-order Godunov scheme on Eulerian grid

Radiative Transfer + Ionization Rate Solver = **ATON** (Aubert & Teyssier 2008)

- RT is by a moment method with M1 closure
- Explicit time integration, time-step size limited by CFL condition \rightarrow

 $\Delta t < \Delta x / c ,$ where c = speed of light

ATON \rightarrow (**ATON**) **x** (**GPU**s) = **CUDATON** (Aubert & Teyssier 2010) •GPU acceleration by factor ~ 100

RAMSES + **CUDATON** = **RAMSES-CUDATON**

•RT on the GPUs @ CFL condition set by speed of light

- •(hydro + gravity) on the CPUs @ CFL condition set by sound speed
- (# RT steps)/(# hydro-gravity steps) > 1000 will not slow hydro-gravity calculation

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

TITAN by the numbers:

- 20 Petaflops peak
- 18,688 compute nodes
- 299,008 cores
- Each node consists of an AMD 16-Core Opteron 6200 Series processor and an NVIDIA Tesla K20 GPU Accelerator
- Gemini interconnect

Introducing the CoDa (COsmic DAwn) Simulation: Reionization of the Local Universe with Fully-Coupled Radiation + Hydro + N-body Dynamics

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

RAMSES-CUDATON simulation

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells, $\Delta x \sim 20$ cKpc
- N-body particles = $(4096)^3 \sim 64$ billion
- Min halo mass ~ 10⁸ M_solar ~300 particles

TITAN Supercomputer requirements

- # steps/run = 2000 CPU (+800,000 GPU)
- # CPU cores (+ # GPUs) = 131,072 (+ 8192)
- # CPU hrs = 2.1 million node hrs ~ 11 days
- Largest fully-coupled radiation-hydro simulation to-date of the reionization of the Local Universe.
- Large enough volume to simulate global reionization and its impact on the Local Group simultaneously, while resolving the masses of dwarf satellites of the MW and M31.

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

RAMSES-CUDATON simulation

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells, $\Delta x \sim 20$ cKpc
- N-body particles = $(4096)^3 \sim 64$ billion
- Min halo mass ~ 10^8 M_solar ~ 300 parts

TITAN Supercomputer requirements

- # steps/run = 2000 CPU (+800,000 GPU)
- # CPU cores (+ # GPUs) = 131,072 (+ 8192)
- # CPU hrs = 2.1 million node hrs ~ 11 days

- (left) the local cosmic web in the atomic gas ;
- (middle) red regions denote very hot, supernova-powered superbubbles, while yellow-orange regions show the long-range impact of photo-heating by starlight;
- (right) ionized hydrogen fraction [dark red (dark blue) = ionized (neutral)].

TEST RUN: 11 cMpc box: a spatial slice

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

Ionization Field

Ionizing Radiation Mean Intensity J

- Box size = 91cMpc
- Grid size =• $(4096)^3$ cells
- N-body particles • $=(4096)^3$
- Min halo mass ~ • 10⁸ solar masses

FULL-SIZED RUN: 91 cMpc box: a spatial slice; @ $z \sim 6$, with $x \sim$ 50%

log10(temperature)

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

FULL-SIZED RUN: 91 cMpc box: a spatial slice; @ z ~ 6, with x ~ 50%

Zoom-in x 4

log10(temperature)

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

FULL-SIZED RUN: 91 cMpc box: a spatial slice; @ z ~ 6, with x ~ 50%

Zoom-in x 16

log10(temperature)

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

FULL-SIZED RUN: 91 cMpc box: a spatial slice; @ z ~ 6, with x ~ 50%

Zoom-in x 32

log10(temperature)

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

FULL-SIZED RUN: 91 cMpc box: a spatial slice; @ z ~ 6, with x ~ 50%

Zoom-in x 64

log10(temperature)

Selected Cut-out

RAMSES-

CUDATON

simulation

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

ZOOM-IN ON THE LOCAL GROUP AT Z = 0

Selected Cut-out

RAMSES-CUDATON

- simulation
- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

ZOOM-IN ON LOCAL GROUP AT Z = 0

Gas Temperature at z = 6.15 in the supergalactic YZ plane of the Local Group

Circles indicate progenitors of Virgo, Fornax, M31, and the MW

Orange is photoheated, photoionized gas;

Red is SN-shockheated;

Blue is cold and neutral

Selected Cut-out

RAMSES-CUDATON

simulation

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

Look at the Dark Matter at the end of reionization

Selected Cut-out

RAMSES-CUDATON simulation

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

Selected Cut-out

RAMSES-CUDATON

simulation

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

See a map of the ionized gas density evolve thru the EOR in this region

Selected Cut-out

RAMSES-

CUDATON

- simulation
- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

See a map of the ionized gas density evolve thru the EOR in one of the selected cut-outs

This cut-out reionizes itself

Selected Cut-out

RAMSES-

CUDATON

- simulation
- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

See a map of the ionized gas density evolve thru the EOR in another cut-out region

Selected Cut-out

RAMSES-

CUDATON

- simulation
- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

See a map of the ionized gas density evolve thru the EOR in another cut-out region

This cut-out is reionized by external sources, as the matter in this cut-out falls toward the source of its reionization.

12

Sub-regions with reionization histories that ended gradually were reionized by *internal sources*, while those whose histories finished abruptly were reionized by *external sources*.

- Efficiencies set from smaller-box simulations prove slightly low, so reionization ends a bit late: $z_{rei} < 5$
- But if we let
 z → z * 1.3,
 there is good agreement
 with observable
 constraints

Thompson optical depth

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

Reionization suppresses star formation rate in dwarf galaxies, for $M < 10^9$ solar masses

- photoionization-heating & SN remnant shock-heating raises gas pressure
- Gas pressure of heated gas resists gravitational binding into the low-mass galaxies

→ lowers the cold, dense baryon gas fraction

→ lowers the SFR per unit halo mass

 Low-mass atomic cooling halos (LMACHs) are most suppressed

• SFR \propto M^{α} , α ~ 5/3 for M > 10¹⁰ solar masses, but drops sharply below M ~ 3 X 10⁹ below z ~ 6

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

• Star Formation Rate attributed to halo mass bins in which stars are found at a fixed late time, after reionization ends

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

UV Luminosity Function vs. Observations from Bouwens et al. (2014)

- Full circles are from Bouwens et al. (2014)
- Shaded areas and thick lines show the envelope and median of the LFs of 5 equal, independent subvolumes 50/h cMpc
- M_{AB1600} magnitudes computed using lowest metallicity SSP models of Bruzual & Charlot (2003), scaled to same ionizing photons released per 10 Myr

• Shift simulation $z \rightarrow z * 1.3$

UV LF

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

Reionization suppresses star formation rate in dwarf galaxies, for $M < 10^9$ solar masses

- Suppression varies with location
- Suppression decreases with increasing distance from a density peak like that which made the Virgo cluster, whose influence can extend over 10's of cMpc

→ Large-scale structure leaves an imprint on the SFR in dwarf galaxies correlated over 10's of Mpc

vdist (h-1 Mpc)

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

- (left) the local cosmic web in the atomic gas ;
- (middle) red regions denote very hot, supernova-powered superbubbles, while yellow-orange regions show the long-range impact of photo-heating by starlight;
- (right) ionized hydrogen fraction [dark red (dark blue) = ionized (neutral)].