Antiproton cosmic rays: Has dark matter been detected?

Pierre Salati – LAPTh & Université Savoie Mont Blanc

Outline

Cosmic rays as an indirect probe for dark matter
 A new estimate of the antiproton background
 Limits on DM properties – a status report

1) Cosmic rays as an indirect probe for dark matter

- Dark matter is also detected at cosmological scales.
- This component contributes substantially to the mass of the universe.
- Last but not least, its nature is unknown.

$$\Omega_{\rm DM} h^2 = 0.1196 \pm 0.0031$$

Anisotropies in the cosmic micro-wave background (CMB)

- Dark matter is also detected at cosmological scales.
- This component contributes substantially to the mass of the universe.
- Last but not least, its nature is unknown.

$$\Omega_{\rm DM} h^2 = 0.1196 \pm 0.0031$$

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

A plethora of DM candidates have been proposed $$\downarrow\!\!\downarrow$$

Weakly interacting massive particles – WIMPs

- predicted by most BSM extensions
- stable by conservation of a quantum number
- 10 to 10^4 times more massive than the proton
- no electric charge neutral species
- weak interactions like neutrinos
- produced during the Big-Bang
- relic abundance compatible with Planck

A plethora of DM candidates have been proposed

proposed

1) Cosmic rays as an indirect probe for dark matter

• Indirect Detection – WIMPs continuously annihilate and produce SM particles such as gamma-rays, neutrinos, but also rare antimatter species like positrons, antiprotons and even antideuterons.

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

AMS Collaboration CERN, Geneva, 15 April 2015

"AMS Days at CERN" and Latest Results from the AMS Experiment on the International Space Station

Figure 1. Antiproton to proton ratio measured by AMS. As seen, the measured ratio cannot be explained by existing models of secondary production.

Has an antiproton excess been discovered ?

AMS Collaboration CERN, Geneva, 15 April 2015

"AMS Days at CERN" and Latest Results from the AMS Experiment on the International Space Station

Backgrounds to a putative DM signal need to understood Production cross sections – solar modulation – cosmic ray propagation 10 3 PAMELA 2012 Ŧ AMS-02 2015 10^{-1} $\Phi_{ar{p}}/\Phi_p$ 10^{-5} Fiducial Uncertainty from: Cross-sections Propagation Primary slopes Solar modulation 10^{-6} 1 5 10 50 100 Kinetic energy T [GeV]

Antiprotons Production in the Galaxy

• **Secondary** antiprotons are produced through the spallations of cosmic–ray protons and He nuclei on the interstellar material.

• **Primary** antiprotons originate from the annihilations of the dark matter species – WIMPs in our case – concealed in the Galactic halo.

Reduced CR uncertainties for the antiproton background

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

Antiprotons Production in the Galaxy

• **Secondary** antiprotons are produced through the spallations of cosmic–ray protons and He nuclei on the interstellar material.

New developments since 2008

- CR p and He fluxes measured with improved accuracy.

 \bar{p}/p depends on the CR proton spectral index α

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

Ş

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

Antiprotons Production in the Galaxy

• **Secondary** antiprotons are produced through the spallations of cosmic–ray protons and He nuclei on the interstellar material.

New developments since 2008

– New parameterization of $d\sigma_{\rm pH\rightarrow\bar{p}}/dE_{\bar{p}}$ from BRAHMS and NA49.

– New parameterization of $d\sigma_{\rm pH\rightarrow\bar{p}}/dE_{\bar{p}}$ from BRAHMS and NA49.

A new evaluation of the antiproton production cross section for cosmic ray studies

Mattia di Mauro^{1,2}, Fiorenza Donato¹, Andeas Goudelis², Pasquale Dario Serpico²

$$E\frac{d^{3}\sigma}{dp^{3}} = \sigma_{\rm in}(s)(1-x_{R})^{C_{1}}e^{-C_{2}x_{R}}$$

$$\left[C_{3}(\sqrt{s})^{C_{4}}e^{-C_{5}p_{T}} + C_{6}(\sqrt{s})^{C_{7}}e^{-C_{8}p_{T}^{2}}\right].$$
(12)

C_1 (error)	C_2 (error)	C_3 (error)	C_4 (error)	C_5 (error)	C_6 (error)	C_7 (error)	C_8 (error)
4.499(0.040)	3.41(0.11)	0.00942(0.00083)	0.445(0.027)	3.502(0.018)	0.0622(0.0086)	-0.247(0.049)	2.576(0.027)

– New parameterization of $d\sigma_{\rm pH\rightarrow\bar{p}}/dE_{\bar{p}}$ from BRAHMS and NA49.

A new evaluation of the antiproton production cross section for cosmic ray studies

Mattia di Mauro^{1,2}, Fiorenza Donato¹, Andeas Goudelis², Pasquale Dario Serpico²

$$E\frac{d^{3}\sigma}{dp^{3}} = \sigma_{\rm in}(s)(1-x_{R})^{C_{1}}e^{-C_{2}x_{R}}$$

$$\left[C_{3}(\sqrt{s})^{C_{4}}e^{-C_{5}p_{T}} + C_{6}(\sqrt{s})^{C_{7}}e^{-C_{8}p_{T}^{2}}\right].$$

$$(12)$$

C_1 (error)	C_2 (error)	C_3 (error)	C_4 (error)	C_5 (error)	C_6 (error)	C_7 (error)	C_8 (error)
4.499(0.040)	3.41(0.11)	0.00942(0.00083)	0.445(0.027)	3.502(0.018)	0.0622(0.0086)	-0.247(0.049)	2.576(0.027)

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

Antiprotons Production in the Galaxy

• **Secondary** antiprotons are produced through the spallations of cosmic–ray protons and He nuclei on the interstellar material.

New developments since 2008

- Proton collisions yield more antineutrons than antiprotons.

The Cosmic Ray Antiproton Background for AMS-02

Rolf Kappl^a, Martin Wolfgang Winkler^b

NA49 Collaboration, H. Fischer, Heavy Ion Phys. 17 (2003), 369–386

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

Antiproton data are compatible with the background

But measurements are on the upper side

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

3) Limits on DM properties – a status report

• **Secondary** antiprotons are produced through the spallations of cosmic–ray protons and He nuclei on the interstellar material.

• **Primary** antiprotons originate from the annihilations of the dark matter species – WIMPs in our case – concealed in the Galactic halo.

New limits can be set on DM properties

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

28 Apr 2015 arXiv:1504.04276v2 [astro-ph.HE]

New limits can be set on DM properties

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

Treat $\phi_{\rm F}^{\bar{\rm p}}$ and $N_{\rm IS} = \bar{\rm n}/\bar{\rm p}$ as nuisance parameters $\chi^2(m_{\rm DM}, \langle \sigma v \rangle, \phi_{\rm F}^{\bar{\rm p}}, N_{\rm IS}) - \chi^2_{\rm bkg}(\phi_{\rm F}^{\bar{\rm p},0}, N_{\rm IS}^0) \leq 4$

New limits can be set on DM properties

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

28 Apr 2015 arXiv:1504.04276v2 [astro-ph.HE]

Astrophysical uncertainties on the constraints

New limits can be set on DM properties

June 3, 2015: The Spacetime Odyssey Continues – Nordita @ Piperska Muren, Stockholm

Closing thoughts

• Dark Matter indirect detection is a powerful probe provided that **astrophysical backgrounds** are well determined.

Cosmic ray propagation & X-sections

- The antiproton background has been increasing somewhat since 2008...
 - (i) harder CR proton and He spectra,
 - (ii) increased \bar{n}/\bar{p} ratio at production,
 - (iii) better determination of the cross-section uncertainties.
- The AMS-02 antiproton measurements are of exquisite quality. They are at that stage compatible with the background although at the upper limit of what is expected.
- To decide whether a signal is hidden inside the AMS-02 \bar{p}/p data, CR propagation needs to be better constrained and the antiproton production cross-sections should be more accurately measured.

Future CR measurements are a gold mine to be exploited