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BOSS may be … 
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SDSS III - BOSS 
Sloan Digital Sky Survey III - 

Baryon Oscillations Spectroscopic Survey

What is it  ? 
What does it do ?



What is SDSS III - BOSS ?

• A 2.5m telescope in New Mexico 
• Collected 

• 1 million spectra of galaxies , 
• 400,000 spectra of supermassive blackholes 

(quasars), 
• 400,000 spectra of stars 
• images of 20 millions of stars, galaxies and 

quasars. 
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SDSS III - BOSS 
Sloan Digital Sky Survey III - 

Baryon Oscillations Spectroscopic Survey

BAO: Baryon Acoustic Oscillations
AND Many others! 



What can we do with BOSS? 

• Probing Modified gravity with Growth of Structures  
• Probing initial conditions, neutrino masses using full shape 

of the correlation function
• Probing velocities of clusters via kinetic Sunyaev Zeldovich
• Understanding the Intergalactic medium and dust in 

galaxies
• Galaxy/cluster evolution at lower redshift, quasars 

properties at high redshift
• New way to Test Gravity using CMB lensing and BOSS

Shirley Ho, Sapetime Odyssey, Stockholm 2015



Outline today

• What is really BOSS-BAO ? 
–What do we learn from it ?

• What other science we can do with BOSS ? 
–Many… 
–Introduce a new probe combining BOSS AND CMB-

lensing to learn about gravity at the largest scale ! 
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What are Baryon Acoustic Oscillations?
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To measure BAO, we usually calculate the correlation function



What are Baryon Acoustic Oscillations?

Shirley Ho, Sapetime Odyssey, Stockholm 2015

HOME/nearby	 school

20	 miles
20	 miles

Office

Office

What is the correlation function of population during the day? 



What are Baryon Acoustic Oscillations?
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A bump in 20 miles!

What is the correlation function of population during the day? 



What are Baryon Acoustic Oscillations?
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To measure BAO, we first calculate the correlation function

A bump at ~150Mpc



BAO and Galaxies

• Pairs of galaxies are slightly more likely to be 
separated by 150 Mpc than 120 Mpc or 170 Mpc.

Shirley Ho, Sapetime Odyssey, Stockholm 2015

500 Mlyr 

150 Mpc

Credit: Zosia Rostomian, LBNL

NOTE: BAO effects highly exaggerated here



BAO as a Standard Ruler

• This distance of 150 Mpc is very accurately computed 
from the anisotropies of the CMB. 
–0.4% calibration with current CMB.

Shirley Ho, Sapetime Odyssey, Stockholm 2015

Image Credit: E.M. Huff, the SDSS-III team, and the  
South Pole Telescope team.  Graphic by Zosia Rostomian

Planck 2015



SDSS III - BOSS

• In SDSS-III, we use maps of the large-scale structure of the 
Universe to detect the imprint of the sound waves.

• We use 3 different tracers of the cosmic density map:
– Galaxies at redshifts 0.2 to 0.7.
– Quasars at redshifts 2.1 to 3.5.
– The intergalactic medium as  

revealed by the Lyman α Forest,  
at redshifts 2.1 to 3.5.

• We look for an excess  
clustering of overdensity  
regions separated by 150 Mpc
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A Slice of BOSS

Shirley Ho, Sapetime Odyssey, Stockholm 2015

Credit: D. Eisenstein



BAO in BOSS Galaxies

• Clustering Analysis of the  
BOSS galaxy sample 
has produced the world’s 
best detection of the late-
time acoustic peak.

Shirley Ho, Sapetime Odyssey, Stockholm 2015

Anderson et al. 2014; 
Vargas, Ho et al. 2014; 
Tojeiro et al. 2014
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BAO in BOSS Galaxies

• The peak location  
is measured to  
1.0% in our  
z = 0.57 sample  
and 2.1% in our  
z = 0.32 sample

Shirley Ho, Sapetime Odyssey, Stockholm 2015

150 Mpc

Anderson et al. 2014; 
Vargas, Ho et al. 2014; 
Tojeiro et al. 2014
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Outline today

• What is really BOSS-BAO ? 
–What do we learn from it ?

• What other science we can do with BOSS ? 
–Many… 
–Introduce a new probe combining BOSS AND CMB-

lensing to learn about gravity at the largest scale ! 
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Planck 2015

Constraining cosmological models
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How about Dark Energy?

• Combined constraints on Dark Energy 

Shirley Ho, Sapetime Odyssey, Stockholm 2015

BOSS collaboration 2014



Is it a cosmological constant?

• Combined constraints: 
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cosmological constant?

BOSS collaboration 2014



Or is it Dark Energy?

• Combined constraints: 

Shirley Ho, Sapetime Odyssey, Stockholm 2015

Dark Energy instead of a 
steady cosmological constant?

BOSS collaboration 2014



Comparison with other probes
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BOSS collaboration 2014

Lensing, clusters Redshift Space 
Distortions

Lya 1D P(k)

Black: Planck +BAO + SN
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Testing Gravity by combining CMB lensing and 
Large Scale structure

ds

2 = (1 +  )dt2 � a

2(1 + 2�)dx2

Zhang, Liguori, Bean, Dodelson 2007
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Testing Gravity by combining CMB lensing and 
Large Scale structure: Introducing EG

ds

2 = (1 +  )dt2 � a

2(1 + 2�)dx2

Zhang, Liguori, Bean, Dodelson 2007
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GR

Testing Gravity by combining CMB lensing and 
Large Scale structure:  Consider GR

ds

2 = (1 +  )dt2 � a

2(1 + 2�)dx2

Zhang, Liguori, Bean, Dodelson 2007
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GR

modified
gravity

Testing Gravity by combining CMB lensing and 
Large Scale structure:  Modifying Gravity!

ds

2 = (1 +  )dt2 � a

2(1 + 2�)dx2

Zhang, Liguori, Bean, Dodelson 2007
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GR

modified
gravity

Testing Gravity by combining CMB lensing and 
Large Scale structure:  General equation of EG

ds

2 = (1 +  )dt2 � a

2(1 + 2�)dx2

Zhang, Liguori, Bean, Dodelson 2007
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if it is General Relativity

Testing Gravity by combining CMB lensing and LSS
Space (frequency) and time (redshift) dependence of EG

µ = 1

� = 1

Pullen,  Alam & Ho, 2015
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Testing Gravity by combining CMB lensing and LSS
Space (frequency) and time (redshift) dependence of EG

if it is f(R) gravity

Pullen,  Alam & Ho, 2015
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Testing Gravity by combining CMB lensing and LSS
Space (frequency) and time (redshift) dependence of EG

if it is chameleon model

Pullen,  Alam & Ho, 2015
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Starting with Eq. 1, EG can be estimated in terms of
power spectra as

ÊG(k, z) =
c2P̂r2( ��)g(k)

3H2
0 (1 + z)P̂✓g(k)

, (11)

where Pr2( ��)g is the galaxy-r2( � �) cross-power
spectrum and P✓g is the galaxy-peculiar velocity cross-
power spectrum. Projecting 3D power spectra into an-
gular quantities, we can estimate EG as

ÊG(`, z̄) =
c2Ĉg

`

3H2
0 (1 + z̄)Ĉ✓g

`

, (12)

where z̄ is the average redshift of the galaxy sample. Cg
`

is the galaxy-convergence angular cross-power spectrum,
given on small scales using the Limber approximation by

Cg
` =

1

2

Z �2

�1

d�W (�)fg(�)�
�2Pr2( ��)g

✓
`

�
, z

◆
,(13)

where fg is the galaxy redshift distribution and W (�) =
�(1 � �/�CMB) is the CMB lensing kernel. In order to
match the kernel in the galaxy-convergence power spec-
trum, we define C✓g

` , the velocity-galaxy angular cross-
power spectrum, to be

C✓g
` =

1

2

Z �2

�1

d�W (�)fg(�)�
�2P✓g

✓
`

�
, z

◆
. (14)

This cross-power spectrum is a construct used to measure
EG without multiplicative bias, and is not equivalent to
the RSD angular power spectrum derived in Padmanab-
han et al. (2007).
In our analysis, as in Reyes et al. (2010), we assume

that the RSD parameter � will be measured separately,
and we approximate the lensing kernel, the redshift dis-
tribution, and � as constants over redshift within the
integral. Also, we assume from linear theory ✓ = f�. In
that case, Eq. 14 can be written as

C✓g
` ' W (�̄)��

2

Z �2

�1

d� f2
g (�)�

�2�(z)Pgg

✓
`

�
, z

◆

' W (�̄)���(z̄)

2
Cgg
` , (15)

where Cgg
` is the galaxy angular auto-power spectrum.

Thus, EG in this case can be written as

ÊG(`, z̄) =
2c2Ĉg

`

3H2
0 (1 + z̄)W (�̄)���(z̄)Ĉgg

`

, (16)

and we can write the error of EG in terms of the errors
of � and Cgg

` as

�2[EG(`, z̄)]

E2
G

=

"✓
�(Cg

` )

Cg
`

◆2

+

✓
�(�)

�

◆2

+

✓
�(Cgg

` )

Cgg
`

◆2
#
.(17)

The uncertainty in Cg
` can be written as

�2(Cg
` ) =

(Cg
` )2 + (C

` +N
` )(Cgg

` +Ngg)

(2`+ 1)fsky
, (18)

where C
` , the convergence auto-power spectrum, is

computed from CAMB (Lewis et al. 2000), N
` is the

noise in the convergence power spectrum computed using
the formalism in Hu & Okamoto (2002), and Ngg is the
shot noise.
A precise measurement of EG will be slightly biased

from the true value due to several reasons similar to
those outlined in the Appendix of Reyes et al. (2010).
For one, the lensing kernel and galaxy redshift distribu-
tions are not constants, requiring us to account for the
weightings within each redshift sample. Also, in order
to extend our measurement of EG to small scales, we
must correct for the scale-dependence of the bias due
to clustering at nonlinear scales. We may also need to
consider scale-dependent � due to nonlinear velocity per-
turbations, although velocity perturbations tend to stay
linear at smaller scales than for density perturbations.
We expect these e↵ects to be small and will neglect them
in our forecasts.

4. FORECASTS

In this section we will predict the ability of current
and future surveys to measure EG and di↵erentiate be-
tween GR and MG models. In all our forecasts we will
assume GR when calculating uncertainties. We describe
the sensitivity of the measured EG with the signal-to-
noise ratio (SNR) of EG marginalized over angular scale
and redshift, given by

SNR2(EG) =
X

`,zi

[EGR
G (zi)]2

�2[EG(`, zi)]
, (19)

where zi denotes redshift bins. We also calculate the
�2 value between GR and MG models to determine if
a particular EG measurement could distinguish between
GR and a given MG model. We write �2 as

�2(EG) =
X

`,zi

[EMG
G (`, zi)� EGR

G (zi)]2

�2[EG(`, zi)]
, (20)

where EMG
G (`, zi) is the EG estimate for a given MG

model, which is generally `-dependent. Throughout the
section we quote �rms =

p
�2. Note that for the follow-

ing limits, f(R) gravity is set to its upper limit value
B0 = 5.6 ⇥ 10�5, and that chameleon gravity’s base set
of parameters is B0 = 0.4, �1 = 1.2, and s = 4, unless
otherwise stated.

4.1. Current Surveys

We begin with forecasts of EG measurements from the
publicly available Planck CMB lensing map (Planck Col-
laboration et al. 2014) and the CMASS and LOWZ spec-
troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS
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�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
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tracer-CMB lensing

tracer-tracer clusteringRedshift space distortions

Why does it matter that we use CMB lensing instead of galaxy 
lensing (aka. Reyes et al. 2010)? 
- Dramatically increase the z-range of the tracers you can use
- we know the z of CMB lensing exactly (no photo-z needed)
- no intrinsic alignment of CMB 
- But we are working on teasing out any systematics now. 

We now translate these into 
observables that we can measure:
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to extend our measurement of EG to small scales, we
must correct for the scale-dependence of the bias due
to clustering at nonlinear scales. We may also need to
consider scale-dependent � due to nonlinear velocity per-
turbations, although velocity perturbations tend to stay
linear at smaller scales than for density perturbations.
We expect these e↵ects to be small and will neglect them
in our forecasts.

4. FORECASTS

In this section we will predict the ability of current
and future surveys to measure EG and di↵erentiate be-
tween GR and MG models. In all our forecasts we will
assume GR when calculating uncertainties. We describe
the sensitivity of the measured EG with the signal-to-
noise ratio (SNR) of EG marginalized over angular scale
and redshift, given by
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where zi denotes redshift bins. We also calculate the
�2 value between GR and MG models to determine if
a particular EG measurement could distinguish between
GR and a given MG model. We write �2 as
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where EMG
G (`, zi) is the EG estimate for a given MG

model, which is generally `-dependent. Throughout the
section we quote �rms =

p
�2. Note that for the follow-

ing limits, f(R) gravity is set to its upper limit value
B0 = 5.6 ⇥ 10�5, and that chameleon gravity’s base set
of parameters is B0 = 0.4, �1 = 1.2, and s = 4, unless
otherwise stated.

4.1. Current Surveys

We begin with forecasts of EG measurements from the
publicly available Planck CMB lensing map (Planck Col-
laboration et al. 2014) and the CMASS and LOWZ spec-
troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS
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This cross-power spectrum is a construct used to measure
EG without multiplicative bias, and is not equivalent to
the RSD angular power spectrum derived in Padmanab-
han et al. (2007).
In our analysis, as in Reyes et al. (2010), we assume

that the RSD parameter � will be measured separately,
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consider scale-dependent � due to nonlinear velocity per-
turbations, although velocity perturbations tend to stay
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B0 = 5.6 ⇥ 10�5, and that chameleon gravity’s base set
of parameters is B0 = 0.4, �1 = 1.2, and s = 4, unless
otherwise stated.

4.1. Current Surveys

We begin with forecasts of EG measurements from the
publicly available Planck CMB lensing map (Planck Col-
laboration et al. 2014) and the CMASS and LOWZ spec-
troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS

tracer-CMB lensing (b)

tracer-tracer clustering (b*b)Redshift space distortions (1/b) 

Why does it matter that we use CMB lensing instead of galaxy 
lensing (aka. Reyes et al. 2010)? 
- Dramatically increase the z-range of the tracers you can use
- we know the z of CMB lensing exactly (no photo-z needed)
- no intrinsic alignment of CMB 
- But we are working on teasing out any systematics now. 

We now translate these into 
observables that we can measure:
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c2Ĉg

`

3H2
0 (1 + z̄)Ĉ✓g
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For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
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`

, (16)

and we can write the error of EG in terms of the errors
of � and Cgg

` as

�2[EG(`, z̄)]

E2
G

=

"✓
�(Cg

` )

Cg
`

◆2

+

✓
�(�)

�

◆2

+

✓
�(Cgg

` )

Cgg
`

◆2
#
.(17)

The uncertainty in Cg
` can be written as

�2(Cg
` ) =

(Cg
` )2 + (C

` +N
` )(Cgg

` +Ngg)

(2`+ 1)fsky
, (18)

where C
` , the convergence auto-power spectrum, is
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from the true value due to several reasons similar to
those outlined in the Appendix of Reyes et al. (2010).
For one, the lensing kernel and galaxy redshift distribu-
tions are not constants, requiring us to account for the
weightings within each redshift sample. Also, in order
to extend our measurement of EG to small scales, we
must correct for the scale-dependence of the bias due
to clustering at nonlinear scales. We may also need to
consider scale-dependent � due to nonlinear velocity per-
turbations, although velocity perturbations tend to stay
linear at smaller scales than for density perturbations.
We expect these e↵ects to be small and will neglect them
in our forecasts.

4. FORECASTS

In this section we will predict the ability of current
and future surveys to measure EG and di↵erentiate be-
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noise ratio (SNR) of EG marginalized over angular scale
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�2. Note that for the follow-
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B0 = 5.6 ⇥ 10�5, and that chameleon gravity’s base set
of parameters is B0 = 0.4, �1 = 1.2, and s = 4, unless
otherwise stated.

4.1. Current Surveys

We begin with forecasts of EG measurements from the
publicly available Planck CMB lensing map (Planck Col-
laboration et al. 2014) and the CMASS and LOWZ spec-
troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS

tracer-CMB lensing (b)

tracer-tracer clustering (b*b)Redshift space distortions (1/b) 

Why does it matter that we use CMB lensing instead of galaxy 
lensing (aka. Reyes et al. 2010)? 
- Dramatically increase the z-range of the tracers you can use
- we know the z of CMB lensing exactly (no photo-z needed)
- no intrinsic alignment of CMB 
- But we are working on teasing out any systematics now. 

We now translate these into 
observables that we can measure:

Due to canceling of galaxy bias parameter, 
this probe is bias free. 

It has very little dependence 
on the astrophysical relationship 

between galaxy and the underlying matter density
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B0 = 5.6 ⇥ 10�5, and that chameleon gravity’s base set
of parameters is B0 = 0.4, �1 = 1.2, and s = 4, unless
otherwise stated.

4.1. Current Surveys

We begin with forecasts of EG measurements from the
publicly available Planck CMB lensing map (Planck Col-
laboration et al. 2014) and the CMASS and LOWZ spec-
troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS
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EG without multiplicative bias, and is not equivalent to
the RSD angular power spectrum derived in Padmanab-
han et al. (2007).
In our analysis, as in Reyes et al. (2010), we assume

that the RSD parameter � will be measured separately,
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must correct for the scale-dependence of the bias due
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consider scale-dependent � due to nonlinear velocity per-
turbations, although velocity perturbations tend to stay
linear at smaller scales than for density perturbations.
We expect these e↵ects to be small and will neglect them
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In this section we will predict the ability of current
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tween GR and MG models. In all our forecasts we will
assume GR when calculating uncertainties. We describe
the sensitivity of the measured EG with the signal-to-
noise ratio (SNR) of EG marginalized over angular scale
and redshift, given by

SNR2(EG) =
X

`,zi

[EGR
G (zi)]2

�2[EG(`, zi)]
, (19)

where zi denotes redshift bins. We also calculate the
�2 value between GR and MG models to determine if
a particular EG measurement could distinguish between
GR and a given MG model. We write �2 as

�2(EG) =
X

`,zi

[EMG
G (`, zi)� EGR

G (zi)]2

�2[EG(`, zi)]
, (20)

where EMG
G (`, zi) is the EG estimate for a given MG

model, which is generally `-dependent. Throughout the
section we quote �rms =

p
�2. Note that for the follow-

ing limits, f(R) gravity is set to its upper limit value
B0 = 5.6 ⇥ 10�5, and that chameleon gravity’s base set
of parameters is B0 = 0.4, �1 = 1.2, and s = 4, unless
otherwise stated.

4.1. Current Surveys
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troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS

tracer-CMB lensing

tracer-tracer clusteringRedshift space distortions

Why does it matter that we use CMB lensing instead of galaxy 
lensing (aka. Reyes et al. 2010)? 
- Dramatically increase the z-range of the tracers you can use
- we know the z of CMB lensing exactly (no photo-z needed)
- no intrinsic alignment of CMB 
- But we are working on teasing out any systematics now. 

We now translate these into 
observables that we can measure:
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�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
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For one, the lensing kernel and galaxy redshift distribu-
tions are not constants, requiring us to account for the
weightings within each redshift sample. Also, in order
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must correct for the scale-dependence of the bias due
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consider scale-dependent � due to nonlinear velocity per-
turbations, although velocity perturbations tend to stay
linear at smaller scales than for density perturbations.
We expect these e↵ects to be small and will neglect them
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otherwise stated.
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We begin with forecasts of EG measurements from the
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laboration et al. 2014) and the CMASS and LOWZ spec-
troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS
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Why does it matter that we use CMB lensing instead of galaxy 
lensing (aka. Reyes et al. 2010)? 
- Dramatically increase the z-range of the tracers you can use
- we know the z of CMB lensing exactly (no photo-z needed)
- no intrinsic alignment of CMB 
- But we are working on teasing out any systematics now. 

We now translate these into 
observables that we can measure:
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from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
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the RSD angular power spectrum derived in Padmanab-
han et al. (2007).
In our analysis, as in Reyes et al. (2010), we assume

that the RSD parameter � will be measured separately,
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consider scale-dependent � due to nonlinear velocity per-
turbations, although velocity perturbations tend to stay
linear at smaller scales than for density perturbations.
We expect these e↵ects to be small and will neglect them
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4. FORECASTS
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ing limits, f(R) gravity is set to its upper limit value
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otherwise stated.
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We begin with forecasts of EG measurements from the
publicly available Planck CMB lensing map (Planck Col-
laboration et al. 2014) and the CMASS and LOWZ spec-
troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS
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et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
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where C
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computed from CAMB (Lewis et al. 2000), N
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noise in the convergence power spectrum computed using
the formalism in Hu & Okamoto (2002), and Ngg is the
shot noise.
A precise measurement of EG will be slightly biased

from the true value due to several reasons similar to
those outlined in the Appendix of Reyes et al. (2010).
For one, the lensing kernel and galaxy redshift distribu-
tions are not constants, requiring us to account for the
weightings within each redshift sample. Also, in order
to extend our measurement of EG to small scales, we
must correct for the scale-dependence of the bias due
to clustering at nonlinear scales. We may also need to
consider scale-dependent � due to nonlinear velocity per-
turbations, although velocity perturbations tend to stay
linear at smaller scales than for density perturbations.
We expect these e↵ects to be small and will neglect them
in our forecasts.

4. FORECASTS

In this section we will predict the ability of current
and future surveys to measure EG and di↵erentiate be-
tween GR and MG models. In all our forecasts we will
assume GR when calculating uncertainties. We describe
the sensitivity of the measured EG with the signal-to-
noise ratio (SNR) of EG marginalized over angular scale
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p
�2. Note that for the follow-

ing limits, f(R) gravity is set to its upper limit value
B0 = 5.6 ⇥ 10�5, and that chameleon gravity’s base set
of parameters is B0 = 0.4, �1 = 1.2, and s = 4, unless
otherwise stated.

4.1. Current Surveys

We begin with forecasts of EG measurements from the
publicly available Planck CMB lensing map (Planck Col-
laboration et al. 2014) and the CMASS and LOWZ spec-
troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS
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where fg is the galaxy redshift distribution and W (�) =
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This cross-power spectrum is a construct used to measure
EG without multiplicative bias, and is not equivalent to
the RSD angular power spectrum derived in Padmanab-
han et al. (2007).
In our analysis, as in Reyes et al. (2010), we assume

that the RSD parameter � will be measured separately,
and we approximate the lensing kernel, the redshift dis-
tribution, and � as constants over redshift within the
integral. Also, we assume from linear theory ✓ = f�. In
that case, Eq. 14 can be written as
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The uncertainty in Cg
` can be written as
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where C
` , the convergence auto-power spectrum, is

computed from CAMB (Lewis et al. 2000), N
` is the

noise in the convergence power spectrum computed using
the formalism in Hu & Okamoto (2002), and Ngg is the
shot noise.
A precise measurement of EG will be slightly biased

from the true value due to several reasons similar to
those outlined in the Appendix of Reyes et al. (2010).
For one, the lensing kernel and galaxy redshift distribu-
tions are not constants, requiring us to account for the
weightings within each redshift sample. Also, in order
to extend our measurement of EG to small scales, we
must correct for the scale-dependence of the bias due
to clustering at nonlinear scales. We may also need to
consider scale-dependent � due to nonlinear velocity per-
turbations, although velocity perturbations tend to stay
linear at smaller scales than for density perturbations.
We expect these e↵ects to be small and will neglect them
in our forecasts.

4. FORECASTS

In this section we will predict the ability of current
and future surveys to measure EG and di↵erentiate be-
tween GR and MG models. In all our forecasts we will
assume GR when calculating uncertainties. We describe
the sensitivity of the measured EG with the signal-to-
noise ratio (SNR) of EG marginalized over angular scale
and redshift, given by

SNR2(EG) =
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where zi denotes redshift bins. We also calculate the
�2 value between GR and MG models to determine if
a particular EG measurement could distinguish between
GR and a given MG model. We write �2 as
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where EMG
G (`, zi) is the EG estimate for a given MG

model, which is generally `-dependent. Throughout the
section we quote �rms =

p
�2. Note that for the follow-

ing limits, f(R) gravity is set to its upper limit value
B0 = 5.6 ⇥ 10�5, and that chameleon gravity’s base set
of parameters is B0 = 0.4, �1 = 1.2, and s = 4, unless
otherwise stated.

4.1. Current Surveys

We begin with forecasts of EG measurements from the
publicly available Planck CMB lensing map (Planck Col-
laboration et al. 2014) and the CMASS and LOWZ spec-
troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS

tracer-CMB lensing

tracer-tracer clusteringRedshift space distortions

Why does it matter that we use CMB lensing instead of galaxy 
lensing (aka. Reyes et al. 2010)? 
- Dramatically increase the z-range of the tracers you can use
- we know the z of source plane exactly (no photo-z needed)
- no intrinsic alignment of CMB 
- But we are working on teasing out any systematics now. 

We now translate these into 
observables that we can measure:
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ÊG(`, z̄) =
c2Ĉg
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et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
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For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
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This cross-power spectrum is a construct used to measure
EG without multiplicative bias, and is not equivalent to
the RSD angular power spectrum derived in Padmanab-
han et al. (2007).
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where C
` , the convergence auto-power spectrum, is

computed from CAMB (Lewis et al. 2000), N
` is the

noise in the convergence power spectrum computed using
the formalism in Hu & Okamoto (2002), and Ngg is the
shot noise.
A precise measurement of EG will be slightly biased

from the true value due to several reasons similar to
those outlined in the Appendix of Reyes et al. (2010).
For one, the lensing kernel and galaxy redshift distribu-
tions are not constants, requiring us to account for the
weightings within each redshift sample. Also, in order
to extend our measurement of EG to small scales, we
must correct for the scale-dependence of the bias due
to clustering at nonlinear scales. We may also need to
consider scale-dependent � due to nonlinear velocity per-
turbations, although velocity perturbations tend to stay
linear at smaller scales than for density perturbations.
We expect these e↵ects to be small and will neglect them
in our forecasts.

4. FORECASTS

In this section we will predict the ability of current
and future surveys to measure EG and di↵erentiate be-
tween GR and MG models. In all our forecasts we will
assume GR when calculating uncertainties. We describe
the sensitivity of the measured EG with the signal-to-
noise ratio (SNR) of EG marginalized over angular scale
and redshift, given by
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where zi denotes redshift bins. We also calculate the
�2 value between GR and MG models to determine if
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where EMG
G (`, zi) is the EG estimate for a given MG

model, which is generally `-dependent. Throughout the
section we quote �rms =

p
�2. Note that for the follow-

ing limits, f(R) gravity is set to its upper limit value
B0 = 5.6 ⇥ 10�5, and that chameleon gravity’s base set
of parameters is B0 = 0.4, �1 = 1.2, and s = 4, unless
otherwise stated.

4.1. Current Surveys

We begin with forecasts of EG measurements from the
publicly available Planck CMB lensing map (Planck Col-
laboration et al. 2014) and the CMASS and LOWZ spec-
troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS

tracer-CMB lensing

tracer-tracer clusteringRedshift space distortions

Why does it matter that we use CMB lensing instead of galaxy 
lensing (aka. Reyes et al. 2010)? 
- Dramatically increase the z-range of the tracers you can use
- we know the z of CMB lensing exactly (no photo-z needed)
- not much astrophysical systematics in CMB lensing (vs galaxy lensing)
- But we are working on teasing out any systematics now. 

We now translate these into 
observables that we can measure:
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match the kernel in the galaxy-convergence power spec-
trum, we define C✓g

` , the velocity-galaxy angular cross-
power spectrum, to be

C✓g
` =

1

2

Z �2

�1

d�W (�)fg(�)�
�2P✓g

✓
`

�
, z

◆
. (14)

This cross-power spectrum is a construct used to measure
EG without multiplicative bias, and is not equivalent to
the RSD angular power spectrum derived in Padmanab-
han et al. (2007).
In our analysis, as in Reyes et al. (2010), we assume

that the RSD parameter � will be measured separately,
and we approximate the lensing kernel, the redshift dis-
tribution, and � as constants over redshift within the
integral. Also, we assume from linear theory ✓ = f�. In
that case, Eq. 14 can be written as

C✓g
` ' W (�̄)��

2

Z �2

�1

d� f2
g (�)�

�2�(z)Pgg

✓
`

�
, z

◆

' W (�̄)���(z̄)

2
Cgg
` , (15)

where Cgg
` is the galaxy angular auto-power spectrum.

Thus, EG in this case can be written as

ÊG(`, z̄) =
2c2Ĉg

`

3H2
0 (1 + z̄)W (�̄)���(z̄)Ĉgg

`

, (16)

and we can write the error of EG in terms of the errors
of � and Cgg

` as

�2[EG(`, z̄)]

E2
G

=

"✓
�(Cg

` )

Cg
`

◆2

+

✓
�(�)

�

◆2

+

✓
�(Cgg

` )

Cgg
`

◆2
#
.(17)

The uncertainty in Cg
` can be written as

�2(Cg
` ) =

(Cg
` )2 + (C

` +N
` )(Cgg

` +Ngg)

(2`+ 1)fsky
, (18)

where C
` , the convergence auto-power spectrum, is

computed from CAMB (Lewis et al. 2000), N
` is the

noise in the convergence power spectrum computed using
the formalism in Hu & Okamoto (2002), and Ngg is the
shot noise.
A precise measurement of EG will be slightly biased

from the true value due to several reasons similar to
those outlined in the Appendix of Reyes et al. (2010).
For one, the lensing kernel and galaxy redshift distribu-
tions are not constants, requiring us to account for the
weightings within each redshift sample. Also, in order
to extend our measurement of EG to small scales, we
must correct for the scale-dependence of the bias due
to clustering at nonlinear scales. We may also need to
consider scale-dependent � due to nonlinear velocity per-
turbations, although velocity perturbations tend to stay
linear at smaller scales than for density perturbations.
We expect these e↵ects to be small and will neglect them
in our forecasts.

4. FORECASTS

In this section we will predict the ability of current
and future surveys to measure EG and di↵erentiate be-
tween GR and MG models. In all our forecasts we will
assume GR when calculating uncertainties. We describe
the sensitivity of the measured EG with the signal-to-
noise ratio (SNR) of EG marginalized over angular scale
and redshift, given by

SNR2(EG) =
X

`,zi

[EGR
G (zi)]2

�2[EG(`, zi)]
, (19)

where zi denotes redshift bins. We also calculate the
�2 value between GR and MG models to determine if
a particular EG measurement could distinguish between
GR and a given MG model. We write �2 as

�2(EG) =
X

`,zi

[EMG
G (`, zi)� EGR

G (zi)]2

�2[EG(`, zi)]
, (20)

where EMG
G (`, zi) is the EG estimate for a given MG

model, which is generally `-dependent. Throughout the
section we quote �rms =

p
�2. Note that for the follow-

ing limits, f(R) gravity is set to its upper limit value
B0 = 5.6 ⇥ 10�5, and that chameleon gravity’s base set
of parameters is B0 = 0.4, �1 = 1.2, and s = 4, unless
otherwise stated.

4.1. Current Surveys

We begin with forecasts of EG measurements from the
publicly available Planck CMB lensing map (Planck Col-
laboration et al. 2014) and the CMASS and LOWZ spec-
troscopic galaxy samples from BOSS DR11 (Anderson
et al. 2014), as well as the spectroscopic quasar (QSO)
sample (Pâris et al. 2014) from DR11. We use the noise
estimate given in the public Planck CMB lensing map.
The total number of galaxies (or quasars) within each
sample along with the survey area are listed in Table 1.
For CMASS, we use the measurements of b�8 and f�8
from Samushia et al. (2014) to set b[CMASS]=2.16 and
�(�)/� ⇠ 10%. The corresponding values for the LOWZ
sample have not been measured model-independently for
DR11, so we assume a 10% measurement of � and, as in
Tojeiro et al. (2014), we assume b[LOWZ]=1.85. We use
Eq. 17 to calculate the EG uncertainty for these sam-
ples. For the BOSS quasar sample, we use the BOSS

tracer-CMB lensing

tracer-tracer clusteringRedshift space distortions

Why does it matter that we use CMB lensing instead of galaxy 
lensing (Reyes et al. 2010)? 
- Dramatically increase the z-range of the tracers you can use
- we know the z of CMB lensing exactly (no photo-z needed)
- not much astrophysical systematics in CMB lensing (vs galaxy lensing)
- But we are working on teasing out any systematics now. 

We now translate these into 
observables that we can measure:

It is no man’s land out there ...
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Figure 3. EG forecasts for BOSS galaxy surveys cross-correlated
with the current Planck CMB lensing map, in comparison with the
latest measurement of EG using galaxy-galaxy lensing (Reyes et al.
2010). Note that we do not translate their EG measurement from
the WMAP3 cosmology (Spergel et al. 2007) to the cosmology we
assume. The band around the GR prediction corresponds to the
likelihood function of EG based on Planck and BOSS constraints
on cosmological parameters. The EG predictions for f(R) gravity
and chameleon gravity are averaged over the wavenumber range
at every redshift corresponding to 100 < ` < 500, the range used
for CMASS. The dashed lines show chameleon gravity predictions
for higher and lower values of �

1

. These surveys are not sensi-
tive enough to tighten constraints on f(R) gravity set by current
measurements.

ity to chameleon gravity is only slightly better, in that
CMASS, LOWZ, and BOSS QSOs together could di↵er-
entiate models with very high (or low) values of �1 from
GR due to the rapid evolution of EG with �1.

4.2. Upcoming Spectroscopic Surveys

We now consider upcoming spectroscopic surveys. We
consider two cases for the CMB lensing map, including
(1) the full Planck CMB lensing map and (2) the Ad-
vanced ACTPol2 CMB lensing map. In both cases, we
assume the CMB lensing maps will be estimated using
the temperature map and both E and B polarization
maps, and we assume the B map only contains noise. We
predict the noise in the Planck lensing map assuming the
detector sensitivity and beam sizes listed in the Planck

Bluebook (The Planck Collaboration 2006). Advanced
ACTPol will survey 20,000 deg2, and its increased tem-
perature and polarization sensitivity will create a CMB
lensing map that is an order of magnitude more sensitive
than Planck. The specifications we use for Adv. ACT-
Pol are listed in Table 2. For spectroscopic surveys, we
consider the DESI emission line galaxy (ELG), luminous
red galaxy (LRG), and quasar surveys, as well as the
Euclid H↵ survey and the WFIRST H↵ and OIII com-
bined survey. The properties of the surveys are listed
in Table 1. For DESI, we assume the same values as in
the DESI Conceptual Design Report3: bLRGD(z) = 1.7,
bELGD(z) = 0.84, bQSOD(z) = 1.2, where D(z) is the
growth factor. We also assume a 4% error in � within
�z = 0.1 bins. Note that Adv. ACTPol’s survey area

2 private communication with Advanced ACTPol team
3 http://desi.lbl.gov/cdr/

Table 2
Properties of the Advanced ACTPol CMB survey. Note that the
area of the survey is 20,000 deg2 and we assume �P = �T

p
2.

Center Freq. �T (µK-arcmin)a ✓
res

(arcmin)
90 GHz 7.8 2.2
150 GHz 6.9 1.3
230 GHz 25 0.9

aper resolved pixel

overlaps with only⇠75% of DESI’s area; we take this into
account in our DESI forecasts. For Euclid and WFIRST
ELGs, we assume b(z) = 0.9 + 0.4z, a fit (Takada et al.
2014) to semi-analytic models (Orsi et al. 2010) that com-
pares well with data. We determine the redshift distri-
bution of Euclid H↵ galaxies using the H↵ luminosity
function from Colbert et al. (2013) and assume a flux
limit of 4⇥10�16. This flux limit is in the middle of the
range being considered, so the following Euclid forecasts
can change accordingly. We also assume a 3% error in �
within �z = 0.1 bins for Euclid and WFIRST (Amen-
dola et al. 2013). For all subsequent forecasts, we assume
EG measurements over angular scales 100  `  500.
The forecasts are listed in Table 3, but here we list

some highlights. Figs. 4 and 5 show that DESI and
Euclid combined with Planck can each measure EG al-
most at the 2% level, unlike WFIRST which is limited
by its small survey area. This should allow DESI and
Euclid combined with Planck to produce constraints of
some models, and �1 constraints should get tighter than
those from BOSS. For Adv. ACTPol, DESI should reach
a 1% measurement of EG, allowing it to di↵erentiate GR
and chameleon gravity with �1 > 1.1 at the 5� level.
DESI produces tighter constraints than Euclid due to its
higher number density at low redshifts. Note that we
use a moderate number of redshift slices for each sur-
vey, as seen in Figs. 4 and 5. The redshift accuracy of
these spectroscopic surveys would allow us to use much
smaller redshift bins in order to decrease errors in EG.
But each of these surveys are shot-noise dominated on
the scales where the EG signal dominates, increasing the
errors in the galaxy-CMB lensing cross-correlation. We
also considered more pessimistic errors in �, finding that
increasing the error in � by a factor of 3 did not notice-
ably increase EG errors from Planck, while it increased
EG errors from Adv. ACTPol by less than 2%.

4.3. Upcoming Photometric Surveys

In this section we consider measuring EG from upcom-
ing photometric galaxy surveys. These surveys, which
measure less precise redshifts than spectroscopic surveys,
are tailored for measuring weak lensing and not RSD.
However, the errors in EG are dominated by the CMB
lensing at lower redshifts where the EG signal is highest,
meaning that reducing shot noise in the lensing-galaxy
cross-correlation through attaining higher number densi-
ties is be more important than having precise redshifts.
Also, upcoming photometric surveys plan to approach
redshift precisions of �z/(1+z) ⇠ 0.05. Recent work has
shown that upcoming photometric surveys could mea-
sure RSD (Ross et al. 2011; Crocce et al. 2011; Asorey
et al. 2014). This may cause photometric surveys to pro-
duce competitive EG measurements. It should be noted
that Adv. ACTPol gets close to the lensing noise limit

Can we use this new probe with BOSS ?

EG

redshift (z) Pullen,  Alam & Ho, 2015
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We probe a complimentary range of scales when compared to 
using galaxy-lensing instead of CMB-lensing

Reyes et al. 2010

EG

R (Mpc/h) 
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Reyes et al. 2010

We start from 30 Mpc/h and 
have significant signals to larger scales.

BOSS  X  Planck Lensing 
can probe up to ~100 Mpc//h

EG

R (Mpc/h) 
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Preliminary look into 
BOSS X Planck-lensing
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Figure 2: Test of GR using EG measurements. Observed E
G

measurements using galaxy-CMB

lensing and galaxy clustering with 1� errors using the CMASS galaxy sample and the Planck CMB

lensing map. The horizontal axes are described in the caption for figure (1). We show estimates

using jackknife resampling of the full sample [green crosses; see figure (1)] and estimates using

the full sample with errors computed from 100 CMASS mock galaxy catalogues and Gaussian

simulations of the lensing convergence field (red crosses). The blue line shows the GR prediction

E
G

= 0.402 ± 0.012 with the error denoted by the shaded blue region and determined from the

likelihood from Planck and BOSS measurements. The turquoise line shows the f(R) gravity upper

limit prediction from the parameter B
0

20 proportional to the f(R) curvature today. The shaded

purple region shows the E
G

-space of chameleon gravity with parameters24 B
0

= 0.4, s = 4, and

the range �
1

= 0.8� 1.6. The shaded orange region shows the same but for �
1

= 0.7� 0.8, which

is disfavored by our measurement at over 99% confidence.
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Conclusion
» 1) BAO has come of age, we can make 1% 

distance measurement using BAO at multiple 
redshifts

• 2) This allows us to make quantitative statement of 
our cosmology AND

• 3) There are many interesting fronts in LSS that we 
can work on, and one of them is to think very hard 
about what we can do with the cross-correlations 
with current and upcoming CMB experiments and 
what they provide. 
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