

Royal Institute of Technology School of Biotechnology

Theoretical Chemistry and Biology

E-science development of quantum, quantum-relativistic and quantumclassical computer modeling

Inauguration of Beskow

2015-01-27

PER-OLOV LÖWDIN

Ab Initio Quantum Mechanics:

Keep system operators intact

Project them on a basis

Solve projected problem exactly

28 OCTOBER 1916 · 6 OCTOBER 2000

Hierarchical projection → Theory develops independently from Experiment

Find out about

Structure, Dynamics, Reactions, Properties,

DALTON program

"3rd dimension of Quantum Chemistry": Properties

 Hartree-Fock Self Consistent Field 		(HF)
 Multiconfigurational Self Consistent Field 		(MCSCF)
•Coupled Cluster		(CC)
 Density Functional Theory 		(DFT)
•Quantum Mechanics-Molecular Mechanics (QMMM)		(QMMM)
$\langle\langle A; B \rangle \rangle_{\omega_1}$	$\langle\langle A; B, C \rangle\rangle_{\omega_1,\omega_2} \langle\langle A; B, C, A \rangle$	$D angle angle_{\omega_1,\omega_2,\omega_3}$

Electromagnetic radiation emitted from microscopic processes

1 m

MULTISCALE MODELLING

QM/MM Philosophy

- Electrostatic (QM region electron density : MM region chargers, dipoles, quadrupoles, octupoles)
- Polarization (QM region molecular polarization : MM region distributed anisotropic polarizabity)
- Van der Waals (QM and MM regions empircal LJ or opther similar potential)

Quantum Mechanics Capacitance Molecular Mechanics

TheoChemBio

QMMM-Virtual Laboratory for Molecular Probes

Membrane-probe

Metal probe

Fibril-probe

.

Intrinsic Biomarkers and GFPs

pH-probe

DNA-probe

Protein probe

TheoChemBio

Single Molecular Electronics and Photonics To Join one of the world's leading research groups and to make the difference!

Invent new Concepts w and design new devices for future information technology and biotechnology

Software Crisis in Quantum Chemistry

Most quantum chemistry programs are based on legacy code developed in 1980-1990 and thus can not take full advantage of latest hardware featured in modern HPC systems

New software developments in quantum chemistry are needed...

Modern HPC Systems

Homogeneous & heterogeneous systems CPU ACCELERATORS GPGPU

Modern HPC Systems

- Main trends in computer architectures
 - Large number of cores:
 - Up to 18 cores in CPU
 - Up to 61 cores in Xeon Phi
 - 2600+ CUDA cores in GPGPUs
 - Support of vector instructions:
 - AVX (256) in current CPUs
 - Extended AVX (512) current Xeon Phi and future CPUs
 - Heterogeneous execution environment

New Quantum Chemistry Software

- Main requirements for new QM software
 - Modern programing languages/practices
 - Code portability and transferability
 - Multilevel parallelism (shared and distributed memory)
 - Ability to scale is more important than single core performance
 - Development of new or revision of old algorithms
 with emphasis on massive parallelism

Our Development Efforts

Two-electron integrals evaluation library

 written in C++ with extensive usage of code autogeneration

 implements our K4MIRROR algorithm for twoelectron integrals calculations

– supports OpenMP and hybrid MPI/OpenMP execution mode

GPUnCH program

new code targets heterogeneous HPC systems
 written in C++ and CUDA

EFS Library Performance

K4MIRROR Performance

DALTON 2013/ECHIDNA: openMP 24

8 min. 44 sec.

Speed Up: 19.6 X

DALTON 2013/ECHIDNA: MPI 2 openMP 12

8 min. 53 sec.

Speed Up: 19.3 X

DALTON 2013: MPI 24

•2 h 51 min. 29 sec.

General Contraction Basis Set - [14s9p4d/4s3p2d] for C, N, O

- [8s4p/3s2p] for H

GPUnCH Code Performance on CPU

- Rifamycin (Def2-SVP basis)*
 - DALTON-2013

1169 s

GPUnCH

203 s

x5.7 times

* Dual Intel Xeon E5-2620 (12 cores @2.0 GHz), hyper-threading disabled.

Where We Go?

Current scientific computations/modeling perhaps should be re-evaluated and

more resources invested in development and maintenance of software for modern HPC systems