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Outline

® Spectral/hp element methodology
® otorsport in the UK

® Scale resolving simulations

® High order meshing
® Nodal/collocation space dealiasing
e SVV Smoothing
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Spectral/hp element method

h-type
geometric

flexibility

P-type exponential
accuracy

Computational cost ~ P# Computational error ~ h”
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So what are the benefits?
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So what are the benefits?

= Local Sum-factorisation
—— Local Matrix

Global Matrix
« .\ = Optimal

Mesh spacing

|0 % error

Polynomial order
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To P or not to P?

‘Exact’ solution Nel=128, P=1

Nel=32, P=3 ‘Nel=8, P=8

Bolis, Cantwell, Kirby, Sherwin Int | Num Method, 2014
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Motorsport in the UK

MclLaren’

4500 companies involved in UK Motorsport and Performance Engineering sector
40,000 employees of which 25,000 are qualified engineers
Annual £6 billion per annum turnover - £3.6 billion of which exported
On average spend 30% of turnover on R&D
(compared to 15% for pharmaceutical industry)
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Pinnacle of Motor sport
20 races in a year in 5 continents
Complex set of Technical and Sporting Regulations

6 of 9 (8 of 11) teams are UK based winning 39 world
championships since 1950

UK F1 teams and their supply chains employ more than
5,000 people generating over £2bn in annual revenue



F1 Performance Figures o

= Top Speed: >350 km/h
| i

= Acceleration: 0-100km/h: 2.3s Afvgdgionﬁ JEEL
0-200 km/h: 5.0s R | e

= Braking: 330-100 km/h: 3.2s
‘e’ force 4.8g
distance 169m

= Corner forces: +4.5gin 0.75s
= Car weight: 691 kg (including driver & no fuel)
= Downforce: >1500 kg at 250 km/h

= Gear Changes: Number: 3300 per race
Duration: under 20ms

= Full Throttle: 70% of the time
78% of the distance

15,000 unique parts

Competitive differentiation is measured in milliseconds

Only 2.0% performance gap between top 10 cars
Only 0.3% in top 3 cars




A Competitive Environment _sacrLaren”

Product
Design ‘
6-12 month lead time to design a new car  product Product
. Launch Testin
12 days of testing before race 1 g
Continuous product development ' ‘
Car changes every race Product Product
_ o ~ Testing Launch
Car aerodynamics optimised for each circuit
‘ Product ‘
Design
- Mcl.al;ﬁl:n? —+- M':La';ﬁf'?
I [ o g e oo A o g T ot
Monte Carlo Monza



The Overall Challenge McLaren’

Through corner simulation requires: — ° Roll, yaw, steer changes

* Ride height variation




Imperial College MMcLaren”
London

Transient flow modelling
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Transient flow modelling

Laminar Transition Turbulent
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Transient flow modelling
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Flops required for
Reynolds No:

flops < Re’

Moore’s Law
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Spectral/hp for high Reynolds
number applications

® High order meshing
® Nodal/collocation space dealiasing
o SVV Smoothing
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High order Mesh
Generation

or

Mesh Modifications for High
Order Methods

Dave Moxey & Joaquim Peiro

Imperial College



High-order mesh generation (1
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High-order mesh generation (2)

Linear mesh High-order mesh

“Mesh generation in curvilinear domains using high-order elements”

Impe”al College S.J. Sherwin and J. Peiro, Int. J. Numer. Meth. Engng 2002; 53:207-223

London
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Producing meshes for high-Re simulations

Viscous flows = boundary layer around walls.

* From the surface triangulation, we generate a
prismatic boundary layer (better mesh quality).

* Rest of the volume is constructed using

tetrahedra.
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Imperial College “An isoparametric approach to high-order curvilinear boundary-layer meshing”
London Moxey, Hassan, Sherwin, Peiro, CMAME, 283, (2015)



Producing meshes for high-Re simulations

Viscous flows = boundary layer around walls.

* From the surface triangulation, we generate a
prismatic boundary layer (better mesh quality).

* Rest of the volume is constructed using
tetrahedra.

For high Reynolds number simulations:

* Require an extremely thin boundary layer (y*~17)
* Must not contain invalid elements.

Refine a valid coarse prismatic mesh to produce
a valid mesh of triangular prisms or tetrahedra.

Imperial College “An isoparametric approach to high-order curvilinear boundary-layer meshing”
Moxey, Hassan, Sherwin, Peiro, CMAME, 283, (2015)



Boundary-layer mesh generation

Subdivide the master element to generate
a boundary-layer mesh

Imperial College “An isoparametric approach to high-order curvilinear boundary-layer meshing”
London Moxey, Hassan, Sherwin, Peiro, CMAME, 283, (2015)



Proof of Concept

Imperial College / layers of refinement IDIHOM

London
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Application to F1 Geometry

Meshing
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Spectral/hp for high Reynolds
number applications

® Nodal/collocation space dealiasing
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Galerkin projection of »? using:
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degree polynomials

Imperial College 20" order polynomial 12 order quadrature



Overview of nodal projection of u?
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Aliasing error In boundary layer

Helicity, Re=1.2M, P=5

Impenar Conege



Re=500K, P=7 Instability
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Spectral/hp for high Reynolds
number applications

o SVV Smoothing
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Stabilisation through smoothing

® [iltering often used in Finite Difference Methods
® | egendre Filtering used by Fischer in Nek5000

® Spectral Vanishing Viscosity is a temporal
smoothing/filtering

® Used by Pasquetti, Stiller for High Re Simulation
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Spectral vanishing viscosity
Tadmor, (89) Maday, Kaber & Tadmor (93) :

au(x, t)+

9 9 [uz(x,t)] o [ au] ?

o Qe Op = ¢ TFoa®, k> Py,
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Comparison with Commercial Tools

LES - Re_c=1.2e6
O Chow et al. - Exp. - Re_c=4.6e

LES - Re_c = 1.2e6

O Chow et al. - Exp. - Re_c = 4.6e6

Re=1.2M, P=5
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Comparison with Commercial Tools
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Summary

» High order compact discretisations such as
spectral/hp element methods provide a suitable
discretisation for current/emerging HPC hardware

* High accuracy transient flow modelling is an
enabling technology for high-end engineering such
as automotive and aeronautical sectors.
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