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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =

2
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A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j � 1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes
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where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +
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Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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Figure 6: Linear stability analyses of two-dimensional flow past a circular
cylinder at Re = 42. Illustrative plots of (a) streamwise (left) and transverse
(right) components of velocity for the dominant direct mode, (b) streamwise
(left) and transverse (right) velocity for the dominant adjoint mode and (c)
structural sensitivity to base flow modification (left) and local feedback (right).

both the streamwise and cross-stream components of velocity.
The modes are characterised by the asymmetry in the stream-
wise component and symmetry in the cross-stream component.
We also note the spatial distribution of the modes with the
leading direct modes extending far downstream of the cylin-
der, while the adjoint modes are predominantly localised up-
stream but close to the cylinder. This separation is a result of
the non-normality of the A operator. We also show the struc-
tural sensitivity of the flow to base flow modification and local
feedback. The latter highlights regions where localised forcing
would have greatest impact on the flow.

4.4. Shallow water modelling

The ShallowWaterSolver simulates depth-averaged wave
equations, often referred to as “long-wave” approximations.
These equations are often used for engineering applications
where the vertical dimension of the flow is small compared
to the horizontal. Examples of applications include tidal flow,
river flooding and nearshore phenomena such as wave-induced
circulation and wave disturbances in ports.

The governing equations are derived from potential flow:
the Laplace equation inside the flow domain and appropriate
boundary conditions at the free surface and bottom. The two
key steps are (i) the expansion of the velocity potential with re-
spect to the vertical coordinate and (ii) the integration of the
Laplace equation over the fluid depth. This results in sets of
equations expressed in horizontal dimensions only. Depending
on the order of truncation in nonlinearity and dispersion, nu-
merous long-wave equations with di↵erent kinematic behavior
have been derived over the years [28, 29, 30].

Many depth-averaged equations can be written in a generic
form as

@U
@t
+ r · F(U) + D(U) = S(U) , (11)

where U = [H ,Hu ,Hv]T is the vector of conserved variables.
The horizontal velocity is denoted by u = [u(x, t) , v(x, t)]T ,
H(x, t) = ⌘(x, t) + d(x) is the total water depth, ⌘ is the free
surface elevation and d the still water depth. The flux vector

F(U) is given as
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, (12)

in which g is the acceleration due to gravity. The source term
S(U) contains forcing due to, for example, Coriolis e↵ects, bed-
slopes and bottom friction. Importantly, D(U) contains all the
dispersive terms. The actual form of the dispersive terms di↵ers
between di↵erent wave equations and the term can be highly
complex with many high-order mixed and spatial derivatives.

At present, the ShallowWaterSolver supports the non-
dispersive shallow-wter equations (SWE) and the weakly dis-
persive Boussinesq equations of Peregrine [28]. The SWE are
recovered if D(U) ⌘ 0 while for the Peregrine equation the ex-
pression is:

D(U) = @t
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(13)

The Boussinesq equations are solved using the wave conti-
nuity approach [31]. The momentum equations are first recast
into a scalar Helmholtz type equation and solved for the aux-
iliary variable z = r · @t (Hu). The conservative variables are
recovered in a subsequent step.

A frequently used test-case for Boussinesq models is the
scattering of a solitary wave impinging a vertical cylinder. Here
a solitary wave with nonlinearity ✏ = 0.1 is propagating over a
still water depth of 1 m (✏ = A/d, where A is the wave ampli-
tude). The initial solitary wave condition is given by Laitone’s
first order solution. The cylinder has a diameter of 4 m, giving
a Keulegan-Carpenter number well below unity and di↵raction
number on the order of 2. Hence, the viscous e↵ects are small
while the di↵raction and scattering are significant.

We compute the solution in the domain x 2 [�25 , 50] me-
ters and y 2 [�19.2 , 19.2] meters, discretized into 552 triangles
using P = 5. Snapshots of the free surface elevation at four
di↵erent times are shown in Fig. 7. In Fig. 7a the solitary wave
reaches its maximum run-up on the cylinder, while in Fig. 7b
the peak of solitary wave has reached the center of the cylin-
der and a depression in the free surface around the cylinder is
clearly visible. The propagation of the scattered, and later re-
flected from the side walls, waves are seen in Figs. 7c and 7d.

4.5. Cardiac electrophysiology
The cardiac electrical system in the heart is the signalling

mechanism used to ensure coordinated contraction and e�cient
pumping of blood. Conduction occurs due to a complex se-
quence of active ion exchanges between intracellular and extra-
cellular spaces, initiated due to a potential di↵erence between
the inside and outside of the cell exceeding a threshold, pro-
ducing an action potential. This causes a potential di↵erence
across boundaries with adjacent cells, resulting in a flow of ions
between cells and triggering an action potential in the adjacent
cell. Disease, age and infarction lead to interruption of this
signalling process and may produce abnormal conduction pat-
terns known as arrhythmias. Clinically this can be treated using
catheter ablation, however acurately selecting the most e↵ective
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 

Cm
@u
@t
+ Iion

!

= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
@t
+H@U
@x
= S (14)

U =
"

U
A

#

, H =
"

U A
⇢ @p
@A U

#

, S =
"

0
1
⇢

⇣

f
A � s

⌘

#

in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A � p

A0
⌘

, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which
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(a)

(b)

(c)

(d)

Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 

Cm
@u
@t
+ Iion

!

= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
@t
+H@U
@x
= S (14)

U =
"

U
A

#

, H =
"

U A
⇢ @p
@A U

#

, S =
"

0
1
⇢

⇣

f
A � s

⌘

#

in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A � p

A0
⌘

, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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To P or not to P? 

Bolis, Cantwell, Kirby, Sherwin Int J Num Method, 2014



Motorsport	
  in	
  the	
  UK

4500	
  companies	
  involved	
  in	
  UK	
  Motorsport	
  and	
  Performance	
  Engineering	
  sector	
  
40,000	
  employees	
  of	
  which	
  25,000	
  are	
  qualified	
  engineers	
  
Annual	
  £6	
  billion	
  per	
  annum	
  turnover	
  -­‐	
  £3.6	
  billion	
  of	
  which	
  exported	
  
On	
  average	
  spend	
  30%	
  of	
  turnover	
  on	
  R&D

(compared	
  to	
  15%	
  for	
  pharmaceutical	
  industry)



Pinnacle	
  of	
  Motor	
  sport	
  
20	
  races	
  in	
  a	
  year	
  in	
  5	
  continents	
  
Complex	
  set	
  of	
  Technical	
  and	
  Sporting	
  Regulations	
  
6	
  of	
  9	
  (8	
  of	
  11)	
  teams	
  are	
  UK	
  based	
  winning	
  39	
  world	
  
championships	
  since	
  1950	
  
UK	
  F1	
  teams	
  and	
  their	
  supply	
  chains	
  employ	
  more	
  than	
  
5,000	
  people	
  generating	
  over	
  £2bn	
  in	
  annual	
  revenue

Formula	
  One



F1	
  Performance	
  Figures

▪	
  Top	
  Speed:	
  	
   >350	
  km/h	
  

▪	
  Acceleration:	
  	
  	
  	
  	
  0	
  -­‐	
  100	
  km/h:	
  	
  2.3s 
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0	
  -­‐	
  200	
  km/h:	
  	
  5.0s	
  

▪	
  Braking:	
   	
  330	
  -­‐100	
  km/h:	
  	
  3.2s  
	
   	
   	
  	
  	
  	
  	
  ‘g’	
  force	
  	
   4.8g  
	
   	
   	
  	
  	
  	
  	
  	
  distance	
   169m	
  

▪	
  Corner	
  forces:	
  	
  	
  ±	
  4.5g	
  in	
  0.75s	
  
▪	
  Car	
  weight:	
   691	
  kg	
  (including	
  driver	
  &	
  no	
  fuel)	
  
▪	
  Downforce:	
   	
  >1500	
  kg	
  at	
  250	
  km/h	
  

▪	
  Gear	
  Changes:	
  	
  	
  Number:	
  3300	
  per	
  race 
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Duration:	
  under	
  20ms	
  

▪	
  Full	
  Throttle:	
  70%	
  of	
  the	
  time 
	
   	
   	
  	
  78%	
  of	
  the	
  distance

15,000	
  unique	
  parts

Competitive	
  differentiation	
  is	
  measured	
  in	
  milliseconds	
  
Only	
  2.0%	
  performance	
  gap	
  between	
  top	
  10	
  cars	
  

Only	
  0.3%	
  in	
  top	
  3	
  cars



A Competitive Environment

• 6-­‐12	
  month	
  lead	
  time	
  to	
  design	
  a	
  new	
  car	
  

• 12	
  days	
  of	
  testing	
  before	
  race	
  1	
  

• Continuous	
  product	
  development	
  

• Car	
  changes	
  every	
  race	
  

• Car	
  aerodynamics	
  optimised	
  for	
  each	
  circuit
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Testing
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Monte Carlo Monza
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  modelling



Transient	
  flow	
  modelling

Multimedia	
  fluid	
  mechanics,	
  Cambridge	
  University	
  Press,	
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• High order meshing 
• Nodal/collocation space dealiasing 
• SVV Smoothing



Dave Moxey & Joaquim Peiro

High order Mesh 
Generation 

or  
Mesh Modifications for High 

Order Methods 



B-Rep
Linear mesh

High-order mesh generation (1)



Linear mesh High-order mesh

“Mesh generation in curvilinear domains using high-order elements”!
S.J. Sherwin  and J. Peiro, Int. J. Numer. Meth. Engng 2002; 53:207–223

High-order mesh generation (2)



Effect of curvature



Producing meshes for high-Re simulations

• From the surface triangulation, we generate a 
prismatic boundary layer (better mesh quality). 

• Rest of the volume is constructed using 
tetrahedra.

Viscous flows ➙ boundary layer around walls.

“An isoparametric approach to high-order curvilinear boundary-layer meshing” 
Moxey, Hassan, Sherwin, Peiro, CMAME, 283, (2015)



Producing meshes for high-Re simulations

• From the surface triangulation, we generate a 
prismatic boundary layer (better mesh quality). 

• Rest of the volume is constructed using 
tetrahedra.

Viscous flows ➙ boundary layer around walls.

• Require an extremely thin boundary layer (y+~1) 
• Must not contain invalid elements.

For high Reynolds number simulations:

Refine a valid coarse prismatic mesh to produce 
a valid mesh of triangular prisms or tetrahedra.

“An isoparametric approach to high-order curvilinear boundary-layer meshing” 
Moxey, Hassan, Sherwin, Peiro, CMAME, 283, (2015)



Boundary-layer mesh generation

Subdivide the master element to generate 
a boundary-layer mesh

“An isoparametric approach to high-order curvilinear boundary-layer meshing” 
Moxey, Hassan, Sherwin, Peiro, CMAME, 283, (2015)



y+=5 

Proof of Concept

7 layers of refinement IDIHOM



Meshing
Application	
  to	
  F1	
  Geometry

Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D

 φpq(ξ1,ξ2) = ψp(ξ1) ψq(ξ2)

ψp(ξ1)

ξ1

ξ2

ψq(ξ2)

p

q

p

qa

a

a a

 φpq(ξ1,ξ2) = hp(ξ1) hq(ξ2)

hp(ξ1)

ξ1

ξ2

hq(ξ2)

p

q

p

q

Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.

4-2
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20th order polynomial 12th order quadrature

Example:

Galerkin projection of u2 using:	


• Q = 17 – exact Quadrature  
• Q = 12 – sufficient for integrating 20th 

degree polynomials
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Example from Kirby & Karniadakis, J. Comp. Phys (2003)
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Overview	
  of	
  nodal	
  projechon	
  of	
  u2
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Helicity, Re=1.2M, P=5

Aliasing error at 30% of  
non-linear terms magnitude

Aliasing error ~200 % of  
non-linear terms magnitude

Aliasing error in boundary layer 



Re=500K,  P=7 Instability
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Stabilisation	
  through	
  smoothing	
  

• Filtering often used in Finite Difference Methods 

• Legendre Filtering used by Fischer in Nek5000 

• Spectral Vanishing Viscosity is a temporal 
smoothing/filtering  

• Used by Pasquetti, Stiller for High Re Simulation



2 Mathematical and Algorithmic Description

2.1 Motivation

Tadmor [9] first introduced the concept of spectral vanishing viscosity (SVV) using the
inviscid Burgers equation

∂

∂t
u(x, t) +

∂

∂x

[

u2(x, t)

2

]

= 0, (1)

subject to given initial and boundary conditions. The distinct feature of solutions to this
problem is that spontaneous jump discontinuities (shock waves) may develop, and hence a
class of weak solutions can be admitted. Within this class, there are many possible solutions,
and in order to single out the physically relevant solution an additional entropy condition is
applied, of the form

∂

∂t

[

u2(x, t)

2

]

+
∂

∂x

[

u3(x, t)

3

]

≤ 0. (2)

In numerical implementations, spectral methods are often augmented with smoothing proce-
dures in order to reduce the Gibbs oscillations [10] associated with discontinuities arising at
the domain boundaries or due to under-resolution. However, with nonlinear problems, con-
vergence of the Fourier method, for example, may fail despite additional smoothing of the
solution. Tadmor [9] introduced the spectral vanishing viscosity method, which adds a small
amount of controlled dissipation that satisfies the entropy condition, yet retains spectral
accuracy. It is based on viscosity solutions of nonlinear Hamilton-Jacobi equations, which
have been studied systematically in [11]. Specifically, the viscosity solution for the Burgers
equation has the form

∂

∂t
u(x, t) +

∂

∂x

[

u2(x, t)

2

]

= ϵ
∂

∂x

[

Qϵ

∂u

∂x

]

, (3)

where ϵ(→ 0) is a viscosity amplitude and Qϵ is a viscosity kernel, which may be nonlinear
and, in general, a function of x. Convergence may then be established by compensated
compactness estimates combined with entropy dissipation arguments [9]. To respect spectral
accuracy, the SVV method makes use of viscous regularisation and equation (3) may be
rewritten in discrete form (retaining N modes) as

∂

∂t
uN(x, t) +

∂

∂x

[

PN

(

u2(x, t)

2

)]

= ϵ
∂

∂x

[

QN ∗
∂uN

∂x

]

, (4)

where the star (∗) denotes convolution and PN is a projection operator. QN is a (possibly
nonlinear) viscosity kernel, which is only activated for high wave numbers. In Fourier space,
this kind of spectral viscosity can be efficiently implemented as multiplication of the Fourier
coefficients of ûN with the Fourier coefficients of the kernel Q̂N , i.e.,

ϵ
∂

∂x

[

QN ∗
∂uN

∂x

]

= −ϵ
∑

Pcut≤|k|≤N

k2Q̂k(t)ûk(t)e
ikx,

3

where k is the wave number, N the number of Fourier modes, and Pcut the wavenumber
above which the spectral vanishing viscosity is activated.

Originally, Tadmor [9] used

Q̂k =

⎧

⎪

⎨

⎪

⎩

0, | k |≤ Pcut

1, | k |> Pcut,
(5)

with ϵPcut ∼ 0.25 based on the consideration of minimising the total-variation of the nu-
merical solution. In subsequent work, however, a smooth kernel was used, since it was found
that the C∞ smoothness of Q̂k improves the resolution of the SVV method. For Legendre
pseudo-spectral methods, Maday, Kaber & Tadmor [12] used ϵ ≈ N−1, activated for modes
k > Pcut ≈ 5

√
N , with

Q̂k = e
− (k−N)2

(k−Pcut)
2 , k > Pcut. (6)

Karamanos & Karniadakis [8] made the first extension of the spectral vanishing viscosity
concept to spectral/hp element methods. In [8], the general form of the SVV operation as
presented by Tadmor is maintained; however, polynomial filtering is used to mimic the con-
volution operator in Tadmor’s formulation. In this work, SVV filtering was applied directly
to the C0 hierarchical (linearly independent but non-orthogonal) basis. Kirby & Karni-
adakis [13] proposed SVV filtering with respect to orthogonal expansions, and demonstrated
the concept in the context of LES modelling on incompressible turbulent channel flows. Xu
& Pasquetti [14] formulated SVV for nodal spectral elements and demonstrated the stabil-
isation effect within the context of cylinder flows. Finally Sirisup & Karniadakis [15] have
demonstrated the use of SVV stabilisation in the context of principle component analysis.

We present in the next section a formulation of SVV for spectral/hp elements [3] using a
continuous Galerkin formulation which filters on an orthogonal basis. This work extends the
concepts mentioned in [13] by formulating SVV using orthogonal expansions for one-, two-
and three-dimensional spectral element discretisations, and we further demonstrate that the
operator obtained is symmetric and semi-positive definite.

2.2 SVV for Spectral/hp Element Methods

We define the multi-dimensional SVV operator over the solution domain as

SV V (u) = ϵ
Dim
∑

i=1

∂

∂xi

[

QDim ⋆
∂u

∂xi

]

. (7)

To develop the spectrally vanishing viscosity approach in a multi-dimensional polynomial
expansion, as typically applied in a spectral/hp element expansion, we need to construct
the Galerkin projection of equation (7). Following standard finite element construction we
take the inner product of (7) with respect to a C0 continuous test function v and apply the

4

Tadmor, (89) Maday, Kaber & Tadmor (93) :
Figure 2 (left) shows the solution with no SVV; figure 2 (centre) shows the solution with SVV
(Pcut = 7, ϵSV V = 0.1); and figure 2 (right) shows the solution with SVV (Pcut = 3, ϵSV V =
0.1).

Fig. 2. Standard diffusion to time T = 0.1 (left); standard diffusion with SVV Pcut = 7, ϵSV V = 0.1
(centre); and standard diffusion with SVV Pcut = 3, ϵSV V = 0.1 (right)

From this example we see that the SVV dissipation added to the high mode numbers with
respect to the spectral element discretisation does indeed yield dissipation at the global high
wavenumber scales of the solution (as exhibited in Figure 2 (centre and right)). Decreasing
the SVV wavenumber cutoff (Pcut) from eight to four produces further dissipation of the
high wavenumber features within the solution.

3 Incorporation of SVV into the Navier-Stokes Equations

In this section we discuss how SVV can be incorporated into a velocity-correction splitting
scheme to discretise the incompressible Navier-Stokes equations [17]. The incompressible
Navier-Stokes equations can be written as:

∂u

∂t
+ N(u) =−

1

ρ
∇p + νL(u) (20)

N(u) = (u ·∇)u (21)

L(u) =∇2u (22)

The temporal discretisation adopted in this work is a projection scheme, based on backwards
differencing in time. As originally described [17], this was characterised as an operator-
splitting scheme, but more recently [18] it has been shown that the method is one of a class
of velocity-correction projection schemes.

The projection scheme requires the solution of a pressure Poisson equation to (approximately)
maintain solenoidality of the velocity. Backwards time differencing is used to approximate a
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No SVV Pcut = 3,

✏SV V = 0.1
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✏SV V = 0.1
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Summary
!

• High order compact discretisations such as 
spectral/hp element methods provide a suitable 
discretisation for current/emerging HPC hardware 
!

• High accuracy transient flow modelling is an 
enabling technology for high-end engineering such 
as automotive and aeronautical sectors.  


