Exascale computing to explore the nanoscale

Bert de Groot, MPI for biophysical Chemistry, Göttingen

Proteins are nature's nanomachines

Aquaporin Water Channels

Aquaporins are highly selective, efficient water channels (10⁹/s)

vital for water/solute balance in e.g. kidney, brain, eye

Malfunction associated with diabetes (AQP2), brain oedema (AQP4), glaucoma (AQP1), cell migration/cancer (AQP1/3).

Plasmodium falciparum expresses one AQP

- water permeation
- permeation of other solutes?
- inhibition

MD simulations of water permeation

Gromacs:

- ca. 100 000 atoms
- full electrostatics, periodic boundary
- -10-100 ns simulation

MD simulations of water permeation

Molecular dynamics simulation, $1s \stackrel{\Delta}{=} 2 \cdot 10^{-11}s$

,Real time' water permeation

one out of several spontaneous permeation events

pf = $7.5 \cdot 10^{-14} \text{ cm}^3/\text{s}$ (exp: $3.2 - 11.7 \cdot 10^{-14} \text{ cm}^3/\text{s}$)

(outside the channel, only few water molecules are shown)

Water pathway and hydrogen bonding

hydrogen bond energy per water molecule (kJ/mol)

Why are these calculations so expensive?

High performance parallel computing

Molecular dynamics simulations of biological processes requires huge computational resources. Typical simulation: 1-10 exaflop

"High performance" parallel computing

In-house linux cluster (~ 40 users): ~ 16000 CPU cores, 450 GTX GPUs

+ external sources, e.g. GWDG, Garching

Backup traffic: > 10 TB / week

Long term storage: > 200 TB / year

Molecular dynamics in drug design

AQP9 inhibitor design

- aquaglyceroporin expressed mainly in the liver
- plays a major role in glycerol metabolism
- possible diabetes target
- structure unknown, homology model based on bacterial GlpF

Collaborations: Michael Rützler (Aarhus)

Simulation of ligand binding to AQP9

ID	EC50 [µM]	Max. inhibition [%]	4x HTS2
HTS1	2.7	100	20 simulations à 100ns 4 intracellular associations
<u>HTS2</u>	0.4	90	1 extracellular association

Wacker et al. Mol. Memb. Biol, 30 (2013)

K⁺ permeation through potassium channels

Ion Channels in Excitable Cells

Potassium channels

Potassium channel SF:

- combines strong selectivity for K⁺ with impressive efficiency -catalyses transmembrane ion transfer to $\sim 10^8$ ions per second $\rightarrow \sim$ diffusion limited ion conduction

Mechanism of Selective Potassium Translocation across Membranes

Chemistry of ion coordination and hydration revealed by a K⁺ channel–Fab complex at 2.0 Å resolution

Yufeng Zhou, João H. Morais-Cabral*, Amelia Kaufman & Roderick MacKinnon

Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, New York 10021, USA

Energetic optimization of ion conduction rate by the K⁺ selectivity filter

João H. Morais-Cabral*, Yufeng Zhou & Roderick MacKinnon

Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, New York 10021, USA

Adjacent peaks in the K⁺ electron density profile are separated by about 3.2 Å (Fig. 3b). Potassium ions have a diameter of 2.7 Å, so they could, in principle, fit in the filter side by side, but this would seem to be an unstable binding configuration for electrostatic reasons. A survey of a database of small-molecule structure (Cambridge Crystallographic Data Centre, http://www.ccdc.cam. ac.uk) showed us that two K⁺ ions only very rarely occur with a separation distance of less than 3.5 Å. Therefore, although K⁺ ions

Nature, 2001; R. MacKinnon Nobel lecture, 2003

prokaryotic K⁺ channel KcsA

Molecular mechanism of Potassium Permeation

Open state structures of KcsA have recently become available

Computational electrophysiology Molecular Dynamics

How does the Selectivity Filter Conduct Ions?

Potassium Permeation Through Open State KcsA

Köpfer et al. Science, 346 (2014)

Potassium Permeation Through Open State KcsA

Accumulated ion permeation events on a microsecond timescale (>1500 individual permeation events)

Conductance agrees with experiment within experimental error

Mechanism of Diffusion-controlled Potassium Permeation

Detailed analysis of ion conduction mechanism

Same mechanism is seen in MthK and Kv1.2 channels

Köpfer et al. Science, 346 (2014)

Experimental Insights

Crystallography: Tim Gruene/George Sheldrick, Göttingen

		KcsA, PDB ID: 1r3j			MthK, PDB ID: 3ldc		
		refinement of Tl ⁺			refinement of K^+		
		res. id	abs. occ.	rel. occ.	res. id	abs. occ.	
Bind ing site	\mathbf{S}_1	C401	1.02 ± 0.04	1.0	A1	0.92 ± 0.07	
	S_2	C402	0.93 ± 0.03	0.9	A2	0.80 ± 0.07	
	S_3	C403	0.92 ± 0.04	0.9	A3	1.00 ± 0.09	
	S_4	C404	0.99 ± 0.04	1.0	A4	1.00 ± 0.09	

Occupancies refined against anomalous data PDB IDs 1R3J (KcsA, TI+), 3LDC (MthK, K+), 2QKS (Kir3.1, K+) : TI+, K+: 4x ~full occupancy

Molecular dynamics in protein recognition and design

Molecular dynamics in protein recognition and design: The case of ubiquitin

gcq#401: "Ubiquitin's just a rock" (Berk Hess).

Ubiquitin binds to many partners in different conformations

O. F. Lange, N.A. Lakomek, et al., Science, 320, 1471-1475 (2008)

Ubiquitin complexed and free in solution

Overlap of bound and unbound ubiquitin ensembles suggests conformational selection

O. F. Lange, N.A. Lakomek, et al., Science, 320, 1471-1475 (2008)

PCA: ubiquitin free vs complexed

Peters and de Groot. PLoS Comp. Biol (2012)

Ubiquitin mutants with altered affnity

Peters et al. Angewandte Chemie (2014)

Alchemical screening of 112 mutants

Peters et al. Angewandte Chemie (2014)

Complex formation of ubiquitin mutants

Peters et al. Angewandte Chemie (2014)

\rightarrow Conformational shift induces change in function

Peters et al. Angewandte Chemie (2014)

Positions available!