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Our earth is getting warmer...
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Is it getting more extreme?

Selected Significant Climate Anomalies and Events in 2014

ARCTIC SEA ICE EXTENT

During its growth season, the Arctic had its fifth smallest annual
maximum extent. During its melt season, the Arctic reached its
sixth smallest minimum extent on record.

ALASKA

Experienced its warmest year since

CANADA

statewide records began in 1916. Canada had its coldest year since 1996. Winter
2013-14 was characterized by crippling cold
temperatures and record snowfalls, resulting in

the coldest winter in 18 years and third coldest

RUSSIA
Russia had its warmest March—May
since national records began in 1936.

UROPE
Europe, as a whole, experienced its warmest
year on record. Germany, Austria, France,
Sweden, Belgium, and the United Kingdom
each experienced their warmest year on record.

in 35 years.

@NTIGUOUS UNITED STATES

JAPAN

Western Japan had its wettest August since
1946, receiving nearly triple its monthly average.
Typhoons Halong and Nakri contributed to the
extreme wetness.

Numerous Arctic air outbreaks in early 2014 set
the stage for a cool year across the Midwest and
Mississippi River Valley. Seven states had a top 10
cool year. Meanwhile, much of the West was

HURRICANE ISELLE INDIA & PAKISTAN
(July 31#-August 11, 2014)
Maximum winds - 220 km/hr

The strongest tropical cyclone on record to impact

Torrential downpours caused severe floods in
September. Over 100,000 people were displaced
and 250 fatalities were reported.

Hawaii's Big Island and the first tropical cyclone to make

landfall anywhere in Hawaii since Hurricane Inikiin 1992, @

~ $)

EASTERN NORTH PACIFIC
HURRICANE SEASON
Above average activity

143% of normal ACE

20 storms, 14 hurricanes

warmer-than-average, with eight states having a
top 10 warm year. AZ, CA, and NV had their
warmest year on record.

ATLANTIC HURRICANE
SEASON

Below average activity
63% of normal ACE

8 storms, 6 hurricanes

MOROCCO

Heavy rain in late November triggered severe
floods in southern Morocco. Some locations
recorded more than the yearly average rainfall
in only a few days.

MEXICO
Much of the year was warmer than average.
Several months ranked among their top 10
warmest.

SOUTH AFRICA

Drought conditions persisted through the
beginning of 2014 in the north-west province
of South Africa. This was considered to be the
worst drought since 1933.

SOUTH WEST INDIAN
OCEAN CYCLONE
SEASON

Near average activity

9 storms, 5 cyclones

HURRICANE ODILE

(September 1019, 2014)
Maximum winds - 215 km/hr

Tied with Hurricane Olivia of 1967
as the strongest hurricane to make
landfall in the state of Baja California
in the satellite era.

SOUTH AMERICA

Wetter-than-normal conditions were observed
across parts of Paraguay, southern Bolivia, and
southeastern Brazil during May and June.
Precipitation totals were over 250% of the long
term average.

NORTH INDIAN OCEAN
CYCLONE SEASON

Near average activity

3 storms, 2 cyclones

WESTERN PACIFIC OCEAN
TYPHOON SEASON

Near average activity

23 storms, 11 typhoons

CYCLONE HUDHUD

(October 7"-14t, 2014)

Maximum winds - 215 km/hr

Brought heavy rain to southeastern India. One localized
area in the state of Andhra Pradesh reported a 24-hour
rainfall total of 380 mm. _/

AUSTRALIAN CYCLONE

SEASON SOUTH WEST PACIFIC

Below average activity OCEAN CYCLONE
SEASON

8 storms, 4 cyclones
Below average activity

6 storms, 2 cyclones

AUSTRALIA

Persistent warmth affected Australia
throughout the year, contributing to
the warmest spring on record, the
third warmest autumn, and the third
warmest year on record.

ARGENTINA
Second warmest year, behind 2012, since
national records beganin 1961. J

ANTARCTIC SEA ICE EXTENT

MOSE,
el g, ®
o 3

During its growth season, the Antarctic had its largest annual
maximum extent. During its melt season, the Antarctic reached

NEW ZEALAND

Several stations across New Zealand
experienced one of their three driest
months of March on record.

Dy <
4 O
Nt oF

| its fourth largest minimum extent on record.

Please Note: Material provided in this map was compiled from NOAA's NCDC State of the Climate Reports and the WMO Provisional Status of the Climate in 2014.

For more information please visit: http://www.ncdc.noaa.gov/sotc



Is it getting more extreme?

Selected Significant Climate Anomalies and Events in 2014
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Is man responsible? e
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University

Climate Shange 2001

CLIMATE CHANGE

FAR SAR TAR AR4 AR5
1990 1995 2001 2007 2013
Suggests Likely Very likely Extremely likely

IPCC - Intergovernmental Panel on Climate Change
Working Group I: The Physical Science Basis


http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html
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Main drivers of climate change
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Feedbacks in the climate system et
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Climate models are the only
scientific tool available to say Stockholm

something about future climate
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Climate model development

Mid-1970s Mid-1980s Early-1990s Late-1990s 2001 2012
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Coupled Model Intercomparison %gé@
Project phase 6

Sto.ckho.lm
University

The specific experimental design is focused on three
broad scientific questions:

1. How does the Earth System respond to forcing?

2. What are the origins and consequences of
systematic model biases?

3. How can we assess future climate changes given

climate variability, predictability and uncertainties
In scenarios?



CMIP6 experiment timeline

Defining experiment protocols
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Scales in the climate system A
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Swedish climate modeling
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CLOUD MACROSCALE

Thermodynamic forcing
Supersaturation development

CLOUD MICROSCALE

Competitive vapor depletion
Interstitial supersaturation

PARTICLE SCALE

Vapor, heat transport
Mass growth / evaporation

MOLECULAR SCALE

Surface kinetics
Condensation coefficient
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Swedish climate modeling o )
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Arctic climate change
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Observed Carbon Accumulation Since 1850
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Subgrid-scale terrain effects i
GCM
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Formation of
a regional wind

Lower flow eneration of turbulence by shear

Deviated flow

Bougeault 1990
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Atmospheric blocking frequency

All model
versions have
too few
blockings,
specially for
the Euro-
Atlantic sector

Blocking frequency [%]
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Lindvall, Svensson and Caballero,
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The Beskow perspective so far...
AMIP experiments

e Atmosphere-only simulation
e Prescribed SST and sea-ice concentration

e Standard method for testing climate models

e AMIP experiments have been done for CMIP5
and are planned for CMIP6 (part of the DECK

runs)

First set of runs that we are doing on Beskow
Klaus Wyser, Rossby Centre

Stockholm
University
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Ekman (CMIP5):
e EC-EARTH v2.3
e Performance: 4 simulated years per day

Is the only gain 2 more
, simulated years per day
Beskow (CMIP6): when going from Ekman to

_ ?
e EC-EARTH v3.1 L Beskow: -

e Performance: 6 simulated years per day
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Ekman (CMIP5): ooty

e EC-EARTH v2.3 / \
: : « EC-EARTH has higher resolution
e Horizontal resolution T1 on Beskow, horizontally and

e 62 vertical layers vertically, and a shorter timestep

« Roughly speaking the model is
60 times more complex

 Performance of Beskow is 50%

e Timestep 1 hour

Beskow (CMIP6): better compared .to Ekman yet
the model is 60 times more
e EC-EARTH v3.1 complex model /

e Horizontal resolution T511 (~U.35 degrees)
e 91 vertical layers
e Timestep 15 minutes




Summary S

e The Swedish climate community contributed to CMIP5  gtgckholm
and take part in CMIP6, currently leading the European University
consortium on EC-Earth

e For CMIP6 simulations we currently estimate an overall
amount of 340 mio core-hours over a period of 5
years (2015-2019).

e (Climate science is a huge and challenging flow problem, LU&[;S
a turbulent flow that range from the micrometer to the HNIVERSTIET
global scale

Rossby Centre
e The Earth is rotating and we have moist diabatic
processes (clouds) that affect the flow and the

subsystems are interacting

e Much science is not understand on a fundamental

physical level where climate models is a indispensible GOTEBORGS
tOOl UNIVERSITET

Swedish climate modeling research is performed at KTH,
Stockholm, Lund, Gothenburg and Uppsala University in UPPSALA
collaboration with the Rossby Centre at SMHI UNIVERSITET



http://www.smhi.se/
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