

the Beskow perspective

Gunilla Svensson

Department of Meteorology Bolin Centre for Climate Research SeRC

Our earth is getting warmer...

Produced by the Met Office. © Crown copyright 2014

Is it getting more extreme?

Selected Significant Climate Anomalies and Events in 2014

Please Note: Material provided in this map was compiled from NOAA's NCDC State of the Climate Reports and the WMO Provisional Status of the Climate in 2014. For more information please visit: http://www.ncdc.noaa.gov/sotc

Is it getting more extreme?

Selected Significant Climate Anomalies and Events in 2014

Please Note: Material provided in this map was compiled from NOAA's NCDC State of the Climate Reports and the WMO Provisional Status of the Climate in 2014. For more information please visit: http://www.ncdc.noaa.gov/sotc

Is man responsible?

FAR	SAR	TAR	AR4	AR5
1990	1995	2001	2007	2013
	Suggests	Likely	Very likely	Extremely likely

IPCC - Intergovernmental Panel on Climate Change Working Group I: The Physical Science Basis

Global change (AR5)

Global average surface temperature change 6.0 Mean over 2081-2100 historical RCP2.6 4.0 **RCP8.5** 39 ပ္ ၃ 2.0 RCP8.5 RCP6.0 RCP4.5 42 0.0 RCP2.6 32 -2.0 1950 2000 2100 2050

IPCC, 2013

Feedbacks in the climate system

IPCC, 2013

Climate models are the only scientific tool available to say something about future climate

Courtesy Christian Jakob

Climate model development

International climate research

DECK - Diagnostic, Evaluation and Characterization of *Klima*

NCRP 6

World Climate Research Programme

Coupled Model Intercomparison Project phase 6

The specific experimental design is focused on **three broad scientific questions:**

- 1. How does the Earth System respond to forcing?
- 2. What are the origins and consequences of systematic model biases?
- 3. How can we assess future climate changes given climate variability, predictability and uncertainties in scenarios?

CMIP6 experiment timeline Defining experiment protocols

CMIP6 experiment timeline Defining experiment protocols

Scales in the climate system

Length Time Complexity

CLOUD MACROSCALE

Thermodynamic forcing Supersaturation development

CLOUD MICROSCALE

Competitive vapor depletion Interstitial supersaturation

PARTICLE SCALE

Vapor, heat transport Mass growth / evaporation

MOLECULAR SCALE

Surface kinetics Condensation coefficient

Length Time Complexity

Complexity

Arctic climate change

Koenigk et al., 2013

Observed Carbon Accumulation Since 1850

Subgrid-scale terrain effects in GCM

Atmospheric blocking frequency

All model versions have too few blockings, specially for the Euro-Atlantic sector

University

Atmospheric blocking frequency Stockholm University 20 CTRL ANN Blocking frequency [%] NoTMS 15 Longtail Control is closer MERRA to observations No version ERA 10 than both captures the NoTMS and Atlantic 5 Longtail in blockings in winter spring 60E 120 E 180E 60W 270E 0 20 DJF MAM Blocking frequency [%] 15 10 5 60E 60W 120 E 180E 270E 60W 60E 120 E 180E 270E Longitude Longitude

CONTROL – With TMS (subgrid scale turbulent orographic drag)NoTMS - Without TMS (no subgrid scale turbulent orographic drag)Lindvall, Svensson and Caballero,LONGTAIL - Higher diffusivity in stably stratitified conditions + no turbulent orographic drag2015

The Beskow perspective so far... AMIP experiments

- Atmosphere-only simulation
- Prescribed SST and sea-ice concentration
- Standard method for testing climate models
- AMIP experiments have been done for CMIP5 and are planned for CMIP6 (part of the DECK runs)

First set of runs that we are doing on Beskow Klaus Wyser, Rossby Centre

AMIP experiments at PDC

Ekman (CMIP5):

- EC-EARTH v2.3
- Performance: 4 simulated years per day

Beskow (CMIP6):

• EC-EARTH v3.1

Is the only gain 2 more simulated years per day when going from Ekman to Beskow?

• Performance: 6 simulated years per day

But...

Ekman (CMIP5):

- EC-EARTH v2.3
- Horizontal resolution T1
- 62 vertical layers
- Timestep 1 hour

Beskow (CMIP6):

• EC-EARTH v3.1

- EC-EARTH has higher resolution on Beskow, horizontally and vertically, and a shorter timestep
- Roughly speaking the model is 60 times more complex
- Performance of Beskow is 50% better compared to Ekman yet the model is 60 times more complex model
- Horizontal resolution T511 (~0.35 degrees)
- 91 vertical layers
- Timestep 15 minutes

Summary

- The Swedish climate community contributed to CMIP5 and take part in CMIP6, currently leading the European consortium on EC-Earth
- For CMIP6 simulations we currently estimate an overall amount of **340 mio core-hours** over a period of 5 years (2015-2019).
- Climate science is a huge and challenging flow problem, a turbulent flow that range from the micrometer to the global scale
- The Earth is rotating and we have moist diabatic processes (clouds) that affect the flow and the subsystems are interacting
- Much science is not understand on a fundamental physical level where climate models is a indispensible tool

Swedish climate modeling research is performed at KTH, Stockholm, Lund, Gothenburg and Uppsala University in collaboration with the Rossby Centre at SMHI

