Calculating finite-differences
with GPUs

Discussing an implementation called

Astaroth
by Miikka Vaisala (University of Helsinki)
and Johannes Pekkild (Aalto University)

A

. 13.5.2015 @ NTNU

% UNIVERSITY OF HELSINKI

Introduction

* Graphics Processing Units (GPUs) as tools for
scientific high-performance computing have been
gaining increasing attention.

 GPUs promise increased computational
performance, so far, with the cost of more complex
programming.

* Personally, I have worked with CUDA C since 2012,
and I would like to share some experiences and
insights.

Background

* The only way to understand how GPUs could
be used for computational MHD, is to actually
program something.

« CUDA C was chosen over CUDA Fortran
because CUDA C is more available, free and

up to date.

o After a series of wrong choices, dead ends and
rewrites, our unholy baby was born...

e The code utilize

finite differences and 2N-
Runge-Kutta scheme.

At the moment,

supports isothermal

hydrodynamics.

« Experimental and under

development.

Astaroth

s 6th order

the code

“He is a Mighty, Strong Duke and appeareth in the Form of an hurtful
Angel riding on an Infernal Beast like a Dragon, and carrying in his
right hand a Viper. He giveth true answers of things Past, Present, and
to Come, and can discover all Secrets. He ruleth 40 Legions of Spirits.”
— Ars Goetia, S. L. MacGregor Mathers' translation (1904)

CUDA basics

« CUDA stands for Compute Unified Device Architecture

 CUDA devices (GPUs) contain several parallel streaming multiprocessors.
 Compute capability version determines the basic capabilities of the device.
e Parts of the computation jobs are divided into blocks.

* A block contains a number of tAreads.

* Threads within a block are computed simultaneously by default.

 Memory management is a complicated business.

CUDA kernels

 GPU operations are handles by kernel functions.

* global kernels can be invoked by the Ahost.

Eg: sample kernel<<<blocksPerGrid,
threadsPerBlock>>>(d array, ..);

e device kernels only operate within a thread,

and act otherwise like any C style function.

Our basic methods

* Variable arrays are operated within the

global memory of the GPU device.

* Derivatives are always computed in the

shared memory, because it has less
latency than the global memory.

» A shared memory block contains all
points needed by the derivatives.

« Variables which stay constant during a

time step are computed host-side and
used from the constant memory in
device operations.

Local memory / registers

Me I I lOr y Thread Thread Thread Thread

fviscx fviscx fviscx fviscx
[]

Astraroth

Shared memory

(and CUDA in

Block Block
__device__ void navier_stokes(...) __device__ void navier_stokes(...)

general)

Global memory

CUDA array
__global _ void rungekutta_step(...)

Constant
memory

d_CONST

Host memory *

Standard array
int main(int argc, char** argv) { ... }

Challenges: conceptual

* You need to think with threads not loops: if you

include a loop within a CUDA kernel, be very
careful.

* You need to pay attention to the hardware to
optimize reasonably.

« Memory management takes a lot of work:

coding can become easily pretty complicated
and difficult to read.

Challenges: hardware

» CUDA supports only Nvidia hardware:
limits the portability.

o Shared memory space is very limited.
48 KB per thread block is very hard
limit when you need many points for
finite differences.

It is perhaps impossible to avoid some
memory issues.

o Very large grids will require multiple
GPU:s. 2563 resolution is still ok for
modern Tesla devices.

Device

SIMD processor

1]

SIMD processor

HEn

SIMD processor

(T 1]

]

J

|
HE

)
HEE

)
]

SIMD processor

ams

)
HEE

Shared memory

Shared memory

Shared memory

N

‘Shared memoryJ
1
i

L2 cache

A

3

.

Global memory (SGRAM)

)

PCle bus

Host memory (SDRAM)

Challenges: testing and debugging

o Complex memory management can easily create less
than obvious programming errors, and you might not
get a warning.

e Multiple stmultaneous threads make finding errors
challenging.

o Debugging tools are very limited. E.g. cuda-gdb is very
cumbersome.

o Synchronization needs special attention. Danger to
overwrite data that is still in use.

Why CUDA/GPUSs?

 Nvidia devices are popular in CPGPU computing.

o The speed-up can be significant. Might be worth the
effort in long term.

* OpenACC code is still difficult to optimize in satisfying
way for complicated problems. With CUDA you know
what it does.

 But might be too much work. You might want to wait.

Future

« Using Astaroth for actual science.

* Other ways of memory handling in
consideration.

 Using what learned in the GPU-
implementation of the Pencil Code. (?)

Thank you for listening!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

