
How Pencil could go GPU —
a roadmap?

M. Rheinhardt

May 12, 2015

M. Rheinhardt

Pencil to GPU: Specification sheet

Necessary requirements for transition

(i) preserve full (or almost full) functionality

(ii) preserve open source property,
avoid dependence on specific vendor or architecture

(iii) avoid extensive manual recoding

(iv) achieve significant speedup (say > 10)

(v) preserve coherence and extensibility

Disregarded for today
particles
CPU parallelization

M. Rheinhardt

Pencil to GPU: Specification sheet

Necessary requirements for transition
(i) preserve full (or almost full) functionality

(ii) preserve open source property,
avoid dependence on specific vendor or architecture

(iii) avoid extensive manual recoding

(iv) achieve significant speedup (say > 10)

(v) preserve coherence and extensibility

Disregarded for today
particles
CPU parallelization

M. Rheinhardt

Pencil to GPU: Specification sheet

Necessary requirements for transition
(i) preserve full (or almost full) functionality

(ii) preserve open source property,
avoid dependence on specific vendor or architecture

(iii) avoid extensive manual recoding

(iv) achieve significant speedup (say > 10)

(v) preserve coherence and extensibility

Disregarded for today
particles
CPU parallelization

M. Rheinhardt

Pencil to GPU: Specification sheet

Necessary requirements for transition
(i) preserve full (or almost full) functionality

(ii) preserve open source property,
avoid dependence on specific vendor or architecture

(iii) avoid extensive manual recoding

(iv) achieve significant speedup (say > 10)

(v) preserve coherence and extensibility

Disregarded for today
particles
CPU parallelization

M. Rheinhardt

Pencil to GPU: Specification sheet

Necessary requirements for transition
(i) preserve full (or almost full) functionality

(ii) preserve open source property,
avoid dependence on specific vendor or architecture

(iii) avoid extensive manual recoding

(iv) achieve significant speedup (say > 10)

(v) preserve coherence and extensibility

Disregarded for today
particles
CPU parallelization

M. Rheinhardt

Pencil to GPU: Specification sheet

Necessary requirements for transition
(i) preserve full (or almost full) functionality

(ii) preserve open source property,
avoid dependence on specific vendor or architecture

(iii) avoid extensive manual recoding

(iv) achieve significant speedup (say > 10)

(v) preserve coherence and extensibility

Disregarded for today
particles
CPU parallelization

M. Rheinhardt

Pencil to GPU: Specification sheet

Necessary requirements for transition
(i) preserve full (or almost full) functionality

(ii) preserve open source property,
avoid dependence on specific vendor or architecture

(iii) avoid extensive manual recoding

(iv) achieve significant speedup (say > 10)

(v) preserve coherence and extensibility

Disregarded for today
particles
CPU parallelization

M. Rheinhardt

Pencil to GPU: Specification sheet

from (ii)
CUDA disfavored:
tied to NVIDIA hardware,
CUDA-Fortran not free

OpenCL: a standard for
programming of heterogeneous
systems (GPU, multi-core CPU)

Pro: ∃ implementations for
several platforms
(NVIDIA, AMD, Intel)
∃ FortranCL
– a free wrapper library,
easy to extend

Con: performance perhaps
worse vs. CUDA,
implementation–dependent

from(iii):
manual rewriting of only a small
part of code acceptable
even FortranCL requires kernels
to be written in C
=⇒ bulk of code transformation

to be done by a program

M. Rheinhardt

Pencil to GPU: Specification sheet

from (ii)
CUDA disfavored:
tied to NVIDIA hardware,
CUDA-Fortran not free

OpenCL: a standard for
programming of heterogeneous
systems (GPU, multi-core CPU)

Pro: ∃ implementations for
several platforms
(NVIDIA, AMD, Intel)
∃ FortranCL
– a free wrapper library,
easy to extend

Con: performance perhaps
worse vs. CUDA,
implementation–dependent

from(iii):
manual rewriting of only a small
part of code acceptable
even FortranCL requires kernels
to be written in C
=⇒ bulk of code transformation

to be done by a program

M. Rheinhardt

Pencil to GPU: Specification sheet

from (iv)
bulk of numerical work to be
brought to GPU
=⇒ ± everything inside time-loop
pursue optimum use
of GPU memory
exploit CPU-GPU concurrency

from (i) and (v):
no branching!
=⇒ a switchable GPU module,

+ few if (lgpu) clauses
maintain code structure,
in particular

pencil concept
switchable modules
flexibility of spatial and
temporal discretizations

M. Rheinhardt

Pencil to GPU: Specification sheet

from (iv)
bulk of numerical work to be
brought to GPU
=⇒ ± everything inside time-loop
pursue optimum use
of GPU memory
exploit CPU-GPU concurrency

from (i) and (v):
no branching!
=⇒ a switchable GPU module,

+ few if (lgpu) clauses
maintain code structure,
in particular

pencil concept
switchable modules
flexibility of spatial and
temporal discretizations

M. Rheinhardt

Pencil to GPU: A look at the code

Structure of time loop body (simplified)
while not <time limit>
df = 0
do i = 1,n_substeps

apply boundary conditions on system variables in array f
do n = 1,nzgrid
do m = 1,nygrid

calculate all pencils in structure p (“pencil case”)
use p for cumulatively constructing rhs of pde system
in array df

enddo
enddo
estimate optimum time step dt
f = f + beta(i)*dt*df

enddo
endwhile

M. Rheinhardt

Flow of data

variable massive f pencil case p

input data

massive of rhs df

Sizes
input data: < 1000 scalars,

< 100 1D arrays, size nxgrid, nygrid or nzgrid
variable massive f: nxgrid × nygrid × nzgrid

× number of variables
pencil case p: nxgrid × number of pencils
massive of rhs df: nxgrid × nygrid × nzgrid

× number of advanced variables

M. Rheinhardt

Flow of data

variable massive f pencil case p

input data

massive of rhs df

Sizes
input data: < 1000 scalars,

< 100 1D arrays, size nxgrid, nygrid or nzgrid
variable massive f: nxgrid × nygrid × nzgrid

× number of variables
pencil case p: nxgrid × number of pencils
massive of rhs df: nxgrid × nygrid × nzgrid

× number of advanced variables
M. Rheinhardt

Typical code
pencil calculation (calc_pencils_* subroutines)
if (lpencil(i_uu)) p%uu = f(l1:l2,m,n,iux:iuz)
if (lpencil(i_u2)) call dot2_mn(p%uu,p%u2)
if (lpencil(i_uij5)) call gij(f,iuu,p%uij5,5)

if (lpencil(i_sij)) call traceless_strain

(p%uij,p%divu,p%sij,p%uu,lshear_rateofstrain)

rhs calculation (d*_dtt subroutines)
if (ladvection_velocity) df(l1:l2,m,n,iux:iuz) =

df(l1:l2,m,n,iux:iuz) - p%ugu
if (ekman_friction /= 0) df(l1:l2,m,n,iux:iuz) =

df(l1:l2,m,n,iux:iuz) - ekman_friction*p%uu

either copy from f or differential operation (on p or f)
or linear combination of pencils;
only a few (mostly scalar) input data used

M. Rheinhardt

Typical code
pencil calculation (calc_pencils_* subroutines)
if (lpencil(i_uu)) p%uu = f(l1:l2,m,n,iux:iuz)
if (lpencil(i_u2)) call dot2_mn(p%uu,p%u2)
if (lpencil(i_uij5)) call gij(f,iuu,p%uij5,5)

if (lpencil(i_sij)) call traceless_strain

(p%uij,p%divu,p%sij,p%uu,lshear_rateofstrain)

rhs calculation (d*_dtt subroutines)
if (ladvection_velocity) df(l1:l2,m,n,iux:iuz) =

df(l1:l2,m,n,iux:iuz) - p%ugu
if (ekman_friction /= 0) df(l1:l2,m,n,iux:iuz) =

df(l1:l2,m,n,iux:iuz) - ekman_friction*p%uu

either copy from f or differential operation (on p or f)
or linear combination of pencils;
only a few (mostly scalar) input data used

M. Rheinhardt

Typical code
pencil calculation (calc_pencils_* subroutines)
if (lpencil(i_uu)) p%uu = f(l1:l2,m,n,iux:iuz)
if (lpencil(i_u2)) call dot2_mn(p%uu,p%u2)
if (lpencil(i_uij5)) call gij(f,iuu,p%uij5,5)

if (lpencil(i_sij)) call traceless_strain

(p%uij,p%divu,p%sij,p%uu,lshear_rateofstrain)

rhs calculation (d*_dtt subroutines)
if (ladvection_velocity) df(l1:l2,m,n,iux:iuz) =

df(l1:l2,m,n,iux:iuz) - p%ugu
if (ekman_friction /= 0) df(l1:l2,m,n,iux:iuz) =

df(l1:l2,m,n,iux:iuz) - ekman_friction*p%uu

either copy from f or differential operation (on p or f)
or linear combination of pencils;
only a few (mostly scalar) input data used

M. Rheinhardt

PC transformation: Naïve approach

algorithm has strict SIMD property w.r.t. x , y , z
=⇒ simplest: parallelize on GPU w.r.t. x (pencil direction)
=⇒ rewrite all differential operations,

including underlying difference formulae, as kernels;
replace each operation on p and df by kernel call

Pro:
no need to copy input data to GPU,
appear as actual parameters in kernel calls
most code changes local, only modules Deriv and Sub
need to be dubbed in (OpenCL-) C

Con:
number of threads = nxgrid, but should be . 10,000
use of shared memory for p, f, df ruled out
as scope and lifetime limited to those of kernel
=⇒ optimum speedup not achievable

M. Rheinhardt

PC transformation: Naïve approach

algorithm has strict SIMD property w.r.t. x , y , z
=⇒ simplest: parallelize on GPU w.r.t. x (pencil direction)
=⇒ rewrite all differential operations,

including underlying difference formulae, as kernels;
replace each operation on p and df by kernel call

Pro:
no need to copy input data to GPU,
appear as actual parameters in kernel calls
most code changes local, only modules Deriv and Sub
need to be dubbed in (OpenCL-) C

Con:
number of threads = nxgrid, but should be . 10,000
use of shared memory for p, f, df ruled out
as scope and lifetime limited to those of kernel
=⇒ optimum speedup not achievable

M. Rheinhardt

PC transformation: Naïve approach

algorithm has strict SIMD property w.r.t. x , y , z
=⇒ simplest: parallelize on GPU w.r.t. x (pencil direction)
=⇒ rewrite all differential operations,

including underlying difference formulae, as kernels;
replace each operation on p and df by kernel call

Pro:
no need to copy input data to GPU,
appear as actual parameters in kernel calls
most code changes local, only modules Deriv and Sub
need to be dubbed in (OpenCL-) C

Con:
number of threads = nxgrid, but should be . 10,000
use of shared memory for p, f, df ruled out
as scope and lifetime limited to those of kernel
=⇒ optimum speedup not achievable

M. Rheinhardt

PC transformation: Naïve approach

algorithm has strict SIMD property w.r.t. x , y , z
=⇒ simplest: parallelize on GPU w.r.t. x (pencil direction)
=⇒ rewrite all differential operations,

including underlying difference formulae, as kernels;
replace each operation on p and df by kernel call

Pro:
no need to copy input data to GPU,
appear as actual parameters in kernel calls
most code changes local, only modules Deriv and Sub
need to be dubbed in (OpenCL-) C

Con:
number of threads = nxgrid, but should be . 10,000
use of shared memory for p, f, df ruled out
as scope and lifetime limited to those of kernel
=⇒ optimum speedup not achievable

M. Rheinhardt

PC transformation: Doing better

simplest: parallelize w.r.t. x and y with number of threads
= nxgrid*(nygrid/ystep)
=⇒ p inflates by nygrid/ystep
ystep: from trade-off between number of threads

and available shared memory

=⇒ all code within mn loop to be converted in one kernel
=⇒ much more/more complex code to be touched

p and df should (can?) sit completely in shared memory
f perhaps not, as access is not frequent
(rare for calculation of p and df
+ once in each substep for integration)
minimize by use of pencils

needed input data to be transferred
into GPU’s constant (global) memory

M. Rheinhardt

PC transformation: Subtasks

develop optimal recipe for shared memory use depending
on device limitations and problem size
(↗ “rolling cache”, experience from other GPU codes)

code modules Deriv and Sub (conservative!) in
OpenCL-C; make use of specific vector data types;
promote use of registers (=⇒ avoid local arrays)

comb manually through all calc_pencils_* and
d*_dtt subroutines and their callees for

purification from any nm constant operations
minimization of auxiliary arrays (favor in-place work)
removal of non-standard behavior (early f modification)
insertion of helper directives for code converter

code a module GPU for initializing GPU use (FortranCL)

create a code converter for calc_pencils_* and
d*_dtt subroutines and their callees

M. Rheinhardt

PC transformation: The GPU module

Tasks
determines GPU type and memory limitations
determines optimum scheme of GPU memory use
initializes GPU memory with input data
(grid, pencil mask etc.) in constant memory,
performs data exchange between CPU and GPU
(global memory) for f array
loads GPU program (precompiled OpenCL-C code)

M. Rheinhardt

PC transformation: The code converter

Tasks
generates C constant definitions for all compile-time
constants, e.g. i<variable name>,

i_<pencil name>, l<module name>
(from cparam.f90, cparam.local, cparam.inc)
generates C constant definitions for accessing
pencil case p as an array (from cparam_pencils.inc)

parses for
output (usually informative) =⇒ remove
error handling =⇒ modify into “return with error code”
used input data: generate constant definitions, e.g.
#define l_<name> for any logicals l<name>
#define i[xyz]_<name> for any vector of dimension
n[xyz]grid etc.
=⇒ generate array references

M. Rheinhardt

PC transformation: The code converter

More tasks
collects all calc_pencils_* and d*_dtt calls
into one kernel function (OpenCL C)
transforms all callees into device functions
generates code for declaration of global-scope data on
GPU (avoids excessive parameter lists)
and transfer from CPU to GPU (Fortran)
replace global reduction operations
by dedicated OpenCL library calls

How to be implemented?
preprocessor — Fortran to C converter — postprocessor
*processor: Perl script?
Fortran to C converter: open source?, yacc, lex ?
(no experience)

M. Rheinhardt

PC transformation: The code converter

More tasks
collects all calc_pencils_* and d*_dtt calls
into one kernel function (OpenCL C)
transforms all callees into device functions
generates code for declaration of global-scope data on
GPU (avoids excessive parameter lists)
and transfer from CPU to GPU (Fortran)
replace global reduction operations
by dedicated OpenCL library calls

How to be implemented?
preprocessor — Fortran to C converter — postprocessor
*processor: Perl script?
Fortran to C converter: open source?, yacc, lex ?
(no experience)

M. Rheinhardt

PC transformation: keep CPU busy

Concurrent with GPU calculations
CPU–GPU data transfer
application of boundary conditions
I/O and related calculations
calculation of diagnostics, in particular averages

via non-blocking OpenCL command queue

M. Rheinhardt

Proposals most welcome !!!

M. Rheinhardt

