# Simulations of turbulent dynamos

Bidya Binay Karak (Nordita fellow)

Collaborators: Axel Brandenburg, Petri J. Kapyla, Maarit J. Kapyla, Matthias Rheinhardt

Pencil Code meeting 2015

## Large-scale magnetic field of Sun

Generated from the (global) large-scale dynamo operating in the solar convection zone.

**<u>Rotation:</u>** Makes the convective motion helical (mirror-asymmetric) <u>Non-uniform rotation:</u> Stretch the magnetic field lines.

#### **Small-scale magnetic field of Sun**



Vertical flux density map, calculated from the MDI line-ofsight magnetogram recorded on 2002 April 26. Bipolar magnetic regions are enclosed in rectangular boxes. The gray-scale cuts are set at +100 G (white) and -100 G (black).



#### MDI magnetogram:

Solar maximum

Lin et al. (2011) Moy 12, 1997



Solar minimum

Is it coming from the decay of active regions magnetic field (shredding and tangling of the large-scale magnetic field)? (Stenflo 2012

#### **Observational supports of small-scale dynamo in SCZ**

Small-scale magnetic field does not have solar cycle dependence, as it does not have any correlation with the large-scale global magnetic field,

and it does not have any latitudinal dependence (Hagenaar et al. 2003; S'anchez Almeida 2003; Lites et al. 2008; Lites 2011).

Cyclic Variation of the Network Elements in Different Flux Ranges

|                  |                               |              |                                  |       | lin at al  |
|------------------|-------------------------------|--------------|----------------------------------|-------|------------|
| Category         | Flux (in Mx)                  | Number ratio | Flux (ratio)                     | Cor.  |            |
| No Correlation   | $(1.5-2.9) \times 10^{18}$    | 0.58%        | $6.48 \times 10^{21} \ (0.05\%)$ | -0.04 | (2011)     |
| Anti-correlation | $(2.9-32.0) \times 10^{18}$   | 77.19%       | $4.72 \times 10^{24} (37.40\%)$  | -0.45 |            |
| Transition       | $(3.20-4.27) \times 10^{19}$  | 6.59%        | $1.15 \times 10^{24} \ (9.08\%)$ | -0.03 | lin & Wang |
| Correlation      | $(4.27-38.01) \times 10^{19}$ | 15.65%       | $6.74 \times 10^{24} (53.46\%)$  | 0.82  | (2012)     |
|                  |                               |              |                                  |       | (2012)     |

Solar small-scale dynamo and polarity of sunspot groups

D. Sokoloff<sup>1\*</sup>, A. Khlystova<sup>2</sup>†, V. Abramenko<sup>3</sup>‡ obtained by several scientific teams, including ours, to find that the percentage of anti-Hale groups becomes indeed maximal during a solar minimum. Our interpretation is that this fact may be explained by the small-scale dynamo action inside the solar convective zone.

#### Small-scale dynamo/local dynamo (Do not call it turbulent dynamo or fluctuating dynamo!)

Three-dimensional velocity fields sufficiently random in space and/or time will amplify small-scale magnetic fluctuations via random stretching of the field lines (Batchelor 1950; Zel'dovich et al. 1984; Childress & Gilbert 1995).

No *net helicity* is required!

We believe that this small-scale dynamo can be studied in a homogeneous and isotropic setting. However difficult to simulate at solar parameters.

We want to setup a dynamo model which allows to excite both largescale and small-scale dynamo, but it is computationally not very expensive!

# A simple setup for dynamo simulations

&

is

$$\frac{DU}{Dt} = -SU_x \hat{y} - c_s^2 \nabla \ln \rho + \rho^{-1} \left[ \mathbf{J} \times \mathbf{B} + \nabla \cdot (2\rho\nu\mathbf{S}) \right] + \mathbf{f}, \quad \text{compressible} \quad \text{(2)} \quad \text{(2)} \quad \text{(3)} \quad \text{(2)} \quad \text{(3)} \quad \text{(4)} \quad \text{(4)} \quad \text{(4)} \quad \text{(5)} \quad \text{(5)} \quad \text{(5)} \quad \text{(6)} \quad$$

```
! run parameters for forced helical
MHD turbulence
```

&run\_pars

```
/
&forcing_run_pars
iforce='helical', force=.02, relhel=1.
lmomentum_ff=T
```

&magnetic\_run\_pars eta=8e-3

```
&shear_run_pars
Sshear=-.20
```

. . . . .

#### **In Pencil Code**

#### ! calculate and add forcing function

select case (iforce) case ('2drandom\_xy'); call forcing\_2drandom\_xy(f) case ('2drxy simple'); call forcing 2drandom xy sin case ('ABC'); call forcing\_ABC(f) case ('blobs'); call forcing blobs(f) case ('chandra kendall'); call forcing chandra kendall( case ('cktest'); call forcing cktest(f) case ('diffrot'); call forcing diffrot(f,force) case ('fountain', '3'); call forcing\_fountain(f) case ('gaussianpot'); call forcing gaussianpot(f,force) case ('white noise'); call forcing white noise(f) case ('GP'); call forcing GP(f) case ('irrotational'); call forcing irro(f,force) case ('helical', '2'); call forcing\_hel(f) case ('helical both'); call forcing hel both(f) case ('helical kprof'); call forcing hel kprof(f) case ('hel smooth'); call forcing hel smooth(f) case ('horiz-shear'); call forcing hshear(f) case ('nocos'); call forcing\_nocos(f) case ('TG'); call forcing TG(f) call forcing twist(f) case ('twist'):

\*\*\*\*\*\*\*\*\*\*\*

## subroutine forcing\_hel(f)

Add helical forcing function, using a set of precomputed wavevectors.
The relative helicity of the forcing function is determined by the factor
sigma, called here also relhel. If it is +1 or -1, the forcing is a fully
helical Beltrami wave of positive or negative helicity. For |relhel| < 1</li>
the helicity less than maximum. For relhel=0 the forcing is nonhelical.
The forcing function is now normalized to unity (also for |relhel| < 1).</li>

 $f(\boldsymbol{x},t) = \operatorname{Re}\{Nf_{\boldsymbol{k}(t)} \exp[i\boldsymbol{k}(t) \cdot \boldsymbol{x} + i\phi(t)]\}$   $10-\operatorname{apr-oor}(\mathbf{x},t) = \operatorname{Re}\{Nf_{\boldsymbol{k}(t)} \exp[i\boldsymbol{k}(t) \cdot \boldsymbol{x} + i\phi(t)]\}$   $3-\operatorname{sep-i}(-\pi < \phi(t) \leq \pi \operatorname{yed} k1_{1}N = f_{0}c_{s}(|\boldsymbol{k}|c_{s}/\delta t)^{1/2} \operatorname{function} \operatorname{if} k1/=1.$   $25-\operatorname{sep-02/axel:} \operatorname{preset} \operatorname{force}_{ampl} \operatorname{to} \operatorname{unity}(\operatorname{in} \operatorname{case} \operatorname{slope} \operatorname{is} \operatorname{not} \operatorname{controll}_{s} f_{\boldsymbol{k}} = \operatorname{R} \cdot f_{\boldsymbol{k}}^{(\operatorname{nohel})} \quad \text{with} \quad \operatorname{R}_{ij} = \frac{\delta_{ij} - i\sigma\epsilon_{ijk}\hat{k}_{k}}{\sqrt{1 + \sigma^{2}}} \sup_{case |\text{remen}| < 1.}$   $23-\operatorname{feb-10/axel:} \operatorname{added} \operatorname{helicity} \operatorname{profile} \operatorname{with} \operatorname{finite} \operatorname{second} \operatorname{derivative.}$   $\frac{13}{06} f_{\boldsymbol{k}}^{(\operatorname{nohel})} = (\boldsymbol{k} \times \hat{\mathbf{e}})/\sqrt{\boldsymbol{k}^{2} - (\boldsymbol{k} \cdot \hat{\mathbf{e}})^{2}} \operatorname{f}^{f} f_{\boldsymbol{k}} \cdot (i\boldsymbol{k} \times f_{\boldsymbol{k}})^{*} = 2\sigma k/(1 + \sigma^{2})^{1/2}$ 



#### Dynamo simulations in Regime II (small Rm, large D)













# Conclusion

We have considered a simple setup of turbulent dynamo: It captures the essential mechanism of alpha-Omega dynamo model.

When both dynamos are operating, the small-scale field is produced from both the small-scale dynamo and the tangling of the large-scale field.

In this scenario, when the large-scale field is weaker than Beq, the small-scale field is almost uncorrelated with the large-scale magnetic cycle. However, when the large-scale field > Beq, we observe an anticorrelation. This could be due to the suppression of small-scale field and the suppression of tangling.

**Convection simulations in spherical geometry**  $\partial A$  $\frac{\partial \mathbf{u}}{\partial t} = \mathbf{u} \times \mathbf{B} - \mu_0 \eta \mathbf{J},$  $\frac{D\ln\rho}{Dt} = -\boldsymbol{\nabla}\cdot\boldsymbol{u},$  $\frac{D\boldsymbol{u}}{Dt} = \boldsymbol{g} - 2\boldsymbol{\Omega}_0 \times \boldsymbol{u} + \frac{1}{\rho} \left( \boldsymbol{J} \times \boldsymbol{B} + \boldsymbol{\nabla} \cdot 2\nu\rho \boldsymbol{\mathsf{S}} - \boldsymbol{\nabla}p \right)$  $T\frac{Ds}{Dt} = -\frac{1}{\rho}\boldsymbol{\nabla}\cdot\left(\boldsymbol{F}^{\mathrm{rad}} + \boldsymbol{F}^{\mathrm{SGS}}\right) + 2\nu\boldsymbol{S}^{2} + \frac{\eta\mu_{0}}{\rho}\boldsymbol{J}^{2},$  $p = (\gamma - 1)\rho e$ ,  $e = c_V T$  $\boldsymbol{F}^{\mathrm{rad}} = -K\boldsymbol{\nabla}T$  and  $\boldsymbol{F}^{\mathrm{SGS}} = -\chi_{\mathrm{SGS}}\rho T\boldsymbol{\nabla}s$  $K(r) = K_0[n(r) + 1]$  $n(r) = \delta n (r/r_0)^{-15} + n_{\rm ad} - \delta n$   $n_{\rm ad} = 1.5$  $K_0 = (\mathcal{L}/4\pi)c_{\rm V}(\gamma - 1)(n_{\rm ad} + 1)\rho_0\sqrt{GM_{\odot}R_{\odot}}$ 

Kapyla et al. (2012, 2013, 2014)

# Thank you!