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Example of CSP: Coloring of random graphs

Coloring = Antiferromagnetic Potts model at zero temperature
 
N=100 vertices, M=218 edges, average degree c=2M/N=4.36
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Less trivial example
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Why is random graph coloring interesting?

• Colorable threshold at average degree 
• a.s. colorable for                and a.s. uncolorable for        

• (A part of ) Proof of existence (Friedgut 1997, Achlioptas, Friedgut, 1999)

• Exact (but not rigorous) location via cavity method (Mezard, Zecchina, 2002 + 
Mulet, Pagnani, Weight, Zecchina, 2002)

• Computationally hard region near to the colorable threshold
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c < cs c > cs

cs

Why are the typical instances near to the threshold hard?

Is there a way how to make them easy?
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cd cs

Insight From Statistical Physics of Spin Glasses

Prediction of a glassy (clustered) phase in the colorable region Mezard, 
Zecchina, Parisi, 2002, Biroli, Monasson, Weigt, 1999)

Clusters (roughly said): groups of nearby solutions which are in 
some sense disconnected from each other (more precisely later in the presentation). 

Suggestion: Clustering responsible for the onset of hardness.

Accomplishments (Mezard, Zecchina, Parisi, 2002): 
✓ The exact colorable threshold computed.
✓ Survey Propagation algorithm designed.
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cd cs

Loose ends to be tied up

• Computed value of the clustering transition did not correspond to 
the empirically obtained values of the onset of hardness (linear 
performance of Walk-SAT etc.)

• Clustering transition continuous or discontinuous?

• Frozen variables present in clusters or not? (Frozen variable takes 
the same color in all the solutions belonging to the cluster.)

• SP works with frozen variables, but finds solutions without them.
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What do we mean by clusters?

• Roughly said: Lumps (groups) of nearby solutions which are in 
some sense disconnected from each other.

• For mathematical physicist: “Extremal Gibbs measures = pure 
states”.

• For computer scientist: Fixed points of belief propagation.

• For spin glass physicist: Solutions of TAP equations.

Why do we need to speak about clusters above     ?

• The Gibbs measure cease to be extremal. (Mézard, Montanari, 2005)

• The point-to-set correlations do not decay. 

➡ Different from: A non-trivial solution of the survey propagation 
exists!
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Refining the structure of clusters

‣ Entropy (size) of a cluster s: logarithm of the number of solutions 
belonging to the cluster (divided by the number of variables).

‣ Complexity function            : logarithm of the number of clusters of 
size s (divided by the number of variables). 

• The zero temperature entropic 1RSB cavity method allows us to 
compute the Legendre transform           of           . Main idea (Mézard, 

Palassini, Rivoire, 2005) weight each cluster by its size to the power m:  

Note: the approach of Mézard, Zecchina, Parisi 2002; Mulet, Pagnani, Weigt, Zecchina 2002 was at m=0. 
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Φ(m) = ms + Σ(s),
∂Σ(s)

∂s
= −m

Σ(s)

Σ(s)

Φ(m)

eNΦ(m) =
∑

α

(eNsα)m =
∫

eN [ms+Σ(s)]ds
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Solve (mostly numerically) the 1RSB cavity equations

+ Work out the several special cases when the equations simplify 
(m=1, m=0, frozen variables, regular graphs ...)
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Our results (+ their meaning)⇒
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 Learning from         

Example of 6-coloring, regular graphs, degrees 17, 18, 19, 20 
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6 coloring of regular random graph degree c=18
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6 coloring of regular random graph degree c=19
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6 coloring of regular random graph degree c=20
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The important phase transitions: Overview

cs(3) = 4.69, cs(4) = 8.90, cs(5) = 13.67Colorable threshold:

➡ Moreover: The entropically dominating clusters are 1RSB stable 
in the colorable phase (at least for q>3)

cd(3) = 4, cd(4) = 8.35, cd(5) = 12.84

    

Clustering (dynamical) transition
Glassy solution appears at m=1.
The replica symmetric entropy still correct, no non-analyticity.
Entropy dominated by exponentially many states.

cc(3) = 4, cc(4) = 8.46, cc(5) = 13.23Condensation (Kauzmann) transition 
Discontinuity in the second derivative of entropy. 
Entropy dominated by finite number of the largest states.

cr(3) = 4.66, cr(4) = 8.83, cr(5) = 13.55 Rigidity transition 
Frozen variables appears in the dominating states.
Frozen clusters disappear abruptly.

Minimal rearrangements diverge (Semerjian, 2007). 
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Large number of colors (analytical results)
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0

cSP ! q(log q + log log q + 1− log 2)

cr ! q(log q + log log q + 1)

cg ! 2q log q − log q − 2 log 2
cq ! 2q log q − log q − 12q log q

q log q
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Algorithms beyond clustering transition
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‣ Hard to uniformly sample solutions with Monte Carlo 
(equilibration time diverges). 

‣ Not necessarily hard to find solutions. 

• Belief Propagation gives correct marginals up to the condensation 
transition. Walk-COL works in linear time (empirical) beyond clustering 
(clusters without frozen variables cannot “end” at positive energy).

Walk-COL 

BP + decimation 
                    (q=4)
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Is the rigidity more significant for hardness?

Two arguments:

• All the solutions we are able to find on large graphs (N>10 000) 
belong to clusters without frozen variables. 

• Minimal rearrangments (Semerjian, 2007) diverge if and only if frozen 
variables present. Local search should fail.
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Conclusions

The dynamical transition redefined with respect to the 
dominating clusters and located. 

The condensation and rigidity transitions revealed and located.  

Algorithmic consequences understood better, but more work 
have to be done in this direction.
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