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Variety of cell types in metazoan tissue
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Every cell has the same genome = same genetic instructions



For non-biologists:
Some fundamental features
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Cell types:
Stable, discretely distinct

phenotypic entities —
much like different species !



BRANCHING DEVELOPMENT

Tree of Embryonic development
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Arrow of time of development
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Waddington’s “Epigenetic landscape”

C.F. Waddington, 1940s:

* Cells “switch between
well-recognisable types”.

* ‘Intermediates are rare”
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Two central questions:

What is the molecular / formal basis of this landscape?

e Valleys: discrete stable states = cell fates / cell types
e Hills: unstable states = decision points




The molecular machinery
underneath



The central dogma of biology (and genomics)
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The central dogma of biology (and genomics)
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Isolate RNA,

cDNA synthesis,

labeling

Sample with labelled
unknown target

Microarray with immobilized
known DNAs probe
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Affymetrix GeneChips
(Photolithography); ~ 60,000 genes




Formalizing the
biological problem



The problem:

SOM-based “GEDI maps”
(Eichler et al., Bioinformatics 2003)
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Formalizing the problem
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“ gene expression profile ”

If each gene is either ON or OFF (1 or 0)
and if there are N = 20,000 genes . ..

- We would have 2N = 220,000 = 1() 6000 gene expression constellations
(compare: there are 108 hydrogen atoms in the universe)

- Yet, we observe only ~ 1000 discrete cell states / types

Network of regulatory interrelationships

constrains the possibilities of gene activation configurations



From Genes to System Behavior

One Genome

— X1- X2_Xi_ _XN — — ~ 100% “known”

One Network X, —» Xy
(ARCHITECTURE) 6‘ g \ P
X, 5 -10% “known

I X, — X,

Whole Network Behavior X, =F(X, X, X)

(DYNAMIGS) X, = £,(X, X, X

.- << 1% “known”
X; = f(X; X, Xp)

Xy = n(X1 X5 Xp)

"Biological Observable” | S(t)=[x.(t,), x,(t.), .., X\(t.) ]
(PHENOTYPE) v

Multiple stable states S(t,)=[ X,(L,), XAL,), .., X(t,) ]
Oscillations, Transitions

observable !




Biological observables to be explained

The four D’s: Multipotent
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Epigenetic landscape and modern biology

The hematopoietic system
Multipotent progenitor cell
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SH(t) = [ x4(t), X, (1), ... xy (1) ]
Stable state = cell type

More than a metaphor!
e valleys in the epigenetic landscape represen

the stable gene expression profile which correspond to discrete cell fates



The gene regulatory network

Mesoderm
f-catenin
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From network to
landscape



Low vs. High-dimensional system

Dilemma:

Tractable: (uu—)y  Rcality:

Small circuits Complex network
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Local circuits are embedded in a genome-wide network




Low vs. High - dimensional system

dX S, X"
— kK tk, - U
dt S, + Y St X"

B = k=L k¥
dt - 3SYn+ Xn SSyn+ Yn 6

Let’s start small . ..




l/-\/ l ¢ + noise
g 'Sy y 7
Gene X Gene Y
ﬂ' '\-/ ﬁ ar k i - kY '
dt - 3 SYn+ Xn 4 + nOISe
The global dynamics of this system:
S(t)= [ X(t),Y(t) ]
tate spac . as “potential landscape” (section)

“Potential function = -In(P)

‘= Bistability (Multistability).




Feedback “modules” in transcriptional regulation
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Huang, Comp. Systems Biol. (2005)

= Tri-stability



THE CENTRAL HYPOTHESIS :

“CELL TYPES ARE ATTRACTORS
OF THE GENE REGULATORY NETWORK"”

* 1949 Delbruck
* 1961 Jacob and Monod
* 1969 Stuart Kauffman (complex networks)
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From small circuits to complex networks

TOPOLOGY DYNAMICS
(“ wiring diagram “) i (“epigenetic landscape”)
ax i’ ;
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S () = [ X(D), Y() ]

“CHAOTIC” (Derrida, Kauffman)
~ ~UNSTABLE

Very long transients or

Very high-number of tiny attractors

CRITICAL

ORDERED

~ STABLE / DISSIPATIVE
Relatively small number
of compact attractors

(fixed-point or short-period cycles)

Sparse networks (k= 2) .
“scale-free” networks

Canalizing functions (= miRNA!) RGEEEiinERraeElaRRslslnlil[EVi[ea NI R=1N)



N-dimensional hyper space

THEORY:

With 25,000 genes (ON/OFF):

= 225000 ~ 1075 gxpression prafiles:

—> a huge continuum of configurations

— BIOLOG|CAL REALITY: Onlya tiny fraction .
of posgible statessare stable and realized"
® 0 =

S (1)




S (1)






Dissipative system:

" 0f,(%)

Attractor
(Fixed-point,
Limit-cycle,
Strange)







Biological observables to be explained

The four D’s:

DISCRETENESS “
DIFFERENTIATION
DIVERSIFICATION
DIRECTIONALITY




Biological observables to be explained

The four D’s:

DISCRETENESS \/ . |
DIFFERENTIATION l
DIVERSIFICATION ;= DXy X X

DIRECTIONALITY

Is a differentiation a switch into a

high-dimensional attractor state?
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Differentiation as a state transition

Progenitor Differentiation signal Differentiated
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apoptosis

S(t,) = [ x4(t;), x,(t)... Xp(t;) ] /
differentiation

proliferation

S(t,) = [ X,(t,), X2<t2)’ - Xpll

, Bioinformatics (2003)

GEDI - Eichler et al.



Progenitor
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When is a stationary state a stable (attractor) state?

Is a measured, stationary gene expression profile
SH(f) = [x,(1), x,(1),...xy (D)]

a “stable” state ?

If network architecture known x = f(x)

1. Jacobian matrix - Eigenvalues: all <0
(for small neighborhood of S*)
2. Lyapunov function V(S): V(S)>O0for S# S~
V(S*) =0
V(S) =VV(S)f(x) < O

If network architecture unknown:

1ar 2

Realistically: Vo z d (t) = div(f)< 0
- Look for convergence

of trajectories




What to expect from time course of expression profiles

Progenitor HL60 Differentiation signal Differentiated “neutrophil”
AtRA .
o " S 1 dV X
¢ . = di <0
X . v di 2 T )

R Basin of attraction !

SO(t) = [ X,P7(1), ... X7 \(0)]

700 (1) = [ X775 (1), <. X0 (f)]




Progenitor HL60 Differentiation signal Differentiated “neutrophil”

N

| 4

Look for: | ¢ Initial divergence of trajectories, followed
by convergence of trajectories

* Distributed contribution by a
genome-scale number of genes




ATRA

DMSO

Two trajectories of HL-60 differentiation

Oh

[ For N = 2773 genes (= 72%) shared by “DMSO- and ATRA-neutrophils” ]

2h 4h 8h 12h 18h

24h

Huang, Eichler, Bar-Yam, Ingber, PRL (2005)



Convergence of two high-dimensional (N ~ 2700) trajectories
as indication (necessary condition) for state space contraction




Biological observables to be explained

The four D’s:

DISCRETENESS \/
DIFFERENTIATION \/
DIVERSIFICATION
DIRECTIONALITY




Biological observables to be explained

The four D’s:

DISCRETENESS \/
DIFFERENTIATION \/
DIVERSIFICATION
DIRECTIONALITY

S*p(t,) = [ X4(t,), X,(ty)- .. Xp(Ey) ]

N\

STe(ty) = [ X4(t,), Xy(ty), - Xp(ty) ] Silty) = [ X,(E), Xo(ty), ... Xp(t5) ]



What is the very essence of “path separation” ?
Tariq Enver, Oxford

‘ FDCP-mix cells
-3 (“CMP” )
G-CSF + GM-CSF

N , (IL-3/ow)

Ry M Myeloid/monocytic

EPO + haemin
(IL-3'ow)

Erythroid

S*p(t,) = [ X,(t,), x5(t,)... xp(ty) ]

N\

S*ty) = [ X4(ty), Xo(ty), - Xp(ty) ] Sulty) = [ X4(t5), Xo(t3), - Xp(t) ]



347 differentially expressed genes

Gene expression profiling of cell fate decision
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Principal component analysis
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Fate commitment as two-phase process

EPO

Progenitor
cell
IL-3

@ Erythroid

+ GM-CSF

1. Destabilization of the multipotent progenitor cell P

2. Decision
» stochastic influences (noise)
» bias/small perturbation by “deterministic” signals

Attractor landscape view:
= “bifurcation” event




Low vs. High-dimensional system

Dilemma:

Tractable: (uu—)y  Rcality:

Small circuits Complex network
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d_X- SX" +k X"
dt- lSXn+ Yn ZSXn+Xn

- kX

LA TR S Observed network state:
aoE e S(t) = [ x,(8), X(), ... xp(1) ]




A core network that determines dynamics
may be reasonably small

10-20 % of genome:
Kauffman: O ® O Transcription/signaling
medusa network ® PS ® ® - ® proteins

S (t) = [X1(t)’ X2(t)’ " Xi(t)’ Xk(t)’ Xk+1(t)"' XN(t) ]
Determines R el el Additional degrees of

Global dynamics Core regulatory set Peripheral genes freedom for
of network (Transcription factors, ...)  (non-regulatory effectors) JEEGINALLTaTo MESITs [ =185

(phenotype fine tuning)



comprehensive view:

Mesoderm ==
B-catenin

» v
...... Runx] HoxB4

Definitive Hemangioblast
LTR-HSC

Primitive
Hemangioblast

ve  STR-HSC
STR-HSC

Transcription factors only
(“medusa head”)

BFU-E . &) ‘
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Pro-eryb P8 X 1 X
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CMP
(bipotential progenitor, P)

GATA1 + GATA1 -
PU.1 - PU1 +

* Accessibility to multiple attractors !
* Promiscuous (“preview”) gene expression




+ GATAT1
X, v X;
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a, - ag exp(- 4 ,1)

. myeloid

erythroid

N

=
o
S
X
()
-—
K
[}
S
<
o
ko)
-
>
o

X,-position of fixed-points

-1 0 1
GATA1 [log,(relat. expr.)] Parameter kor a




/1" I\
i‘ 72h‘

‘ ‘ 24 h
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168 h
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Convergence Divergence
—> Cell fate as a high-dimensional —> Cell fates are separated
attractor state by a repellor state

(“ valley “) (“ hill top*)



Biological observables to be explained

The four D’s:

DISCRETENESS \/
DIFFERENTIATION \/
DIVERSIFICATION \/
DIRECTIONALITY

S*p(t,) = [ X4(t,), X,(ty)- .. Xp(Ey) ]

N\

STe(ty) = [ X4(t,), Xy(ty), - Xp(ty) ] Silty) = [ X,(E), Xo(ty), ... Xp(t5) ]



Biological observables to be explained

The four D’s:

DISCRETENESS 4/
DIFFERENTIATION 4/
DIVERSIFICATION ¥
DIRECTIONALITY < curentwork..

So far: every regulatory event is reversible.

Hypothesis:
Directionality emerges at network level + probabilistic events




Single cell level analysis of multicellularity

Inter-type Diversity

(Stable cell types, subtypes)
“ MACRO-HETEROGENEIT®

o
Nominally
uniform

“MICRO-HETEROGENEITY “
Intra-type Heterogeneity

(Stochastic epigenetic population heterogeneity)

Old idea: Spudich & Koshland (1976); ...
Recent: Singer (2001); Leibler (2004 ); Cluzel (2005); etc

- “ Gene expression noise ”



Basis for intra-type heterogeneity

1 Clone l ,
cell1 @ .
e g
Cell2 @ [
A%NA cell3 @ 5
@O, % ¢'® -
e e ‘.” Cell5 @ | 3
vesy
FLOW Time
CYTOMETRY Snapshot ¢, Snhapshot t, Snhapshot t,
(72]
E < < | | |
o — — 10-1000 fold range K A
* Of protein X )\
) N

Level of protein X If dynamics is

Is the typical time scale
of cell regulatory processes
< the ‘ergodic regime’ ??

MESF standard
Beads (2-fold)

Then, not just ensemble but can also determine

macroscopic biology (different from thermod



Exploring MICRO-HETEROGENEITY

MACRO-heterogeneity

Deterministic cell fate regulation

MICRO-heterogeneity

Stochastic clonal heterogeneity

X
Q.
£
| State
Space x

L H

m Kinetics ? Slow, with distinct cell behaviors -
Or just noisy fluctuation ?

Multipotency and Plasticity: always due to Micro-Heterogeneity ?



Sorted fraction: | M H

Clonal population
Of EML cells

In [ P(x) ]

PROGENITOR  DIFFERENTIATED

Time (~ 10 cell generations)

Sca-1 high Sca-1 low

Population dispersion is caused by
slow relaxing individuality

Parental distribution is established
- attractor state




+ Erythropoietin (EPO)
- measure rate of differentiation

Higher propensity to
differentiate?

Relative rate of
differentiation

PROGENITOR DIFFERENTIATED

Stochastic, epigenetic cell heterogeneity has biological implications.







Biological observables to be explained

The four D’s:
0
DISCRETENESS Y\
® 0O

DIFFERENTIATION r

Q\@’ RO -
DIVERSIFICATION
DIRECTIONALITY i}x\xj

S,=[x,, x X\ S,=[X,, X5 ooy X,

Q«’ﬁ O O WSy W s



For biologists: a new “biological observable”

Pathway Path

in network diagrams in state space
= developmental path = trajectory

cause

Gene C







DRE A.M:_"qu' 'e'nti_re _epigen_etic landscape of our genome

+ External signals:
Cell-Cell Communication
Network
Local Microenvironment
(ECM mechanlcal S|gnals)

June 7, 2007
BIOLOGISTS MAKE SKIN CELLS WORK LIKE
STEM CELLS

By NICHOLAS WADE

rance tll at could sidestep tllt- ethical debates ~1111nlultl

. aj
of a patient's wll~ ito specialize

o disease.
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