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Principles of Multicellular Life:
 

Complex genetic networks 
and cell fate decisions



  

Variety of cell types in metazoan tissue

Various cell typesEvery cell has the same genome = same genetic instructions



  

For non-biologists:
Some fundamental features



  

Cell types: 
Stable, discretely distinct 

phenotypic entities –
much like different species !



  

Tree of Embryonic development
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Arrow of time of development

time



  

C.F. Waddington, 1940s:

• Cells “switch between 
   well-recognisable types”.

• “Intermediates are rare”

What is the molecular / formal basis of this landscape?
● Valleys:  discrete stable states = cell fates / cell types
● Hills: unstable states =  decision points

 Two central questions:

Waddington’s  “Epigenetic landscape”



  

The molecular machinery 
underneath



  

The central dogma of biology (and genomics)

mRNA

Genome gene i

Protein

Active
Protein

•AAAAAA •AAAAAA •AAAAAA

gene i + 1 … gene N

( N = 24,000 )



  

. . .   as a cartoon:

Genome gene i gene 2 gene 3

The central dogma of biology (and genomics)



  

Sample with labelled 
targetunknown  

Microarray with  immobilized
   DNAs probeknown

cDNA species 3

cDNA species 6
cDNA species 5

hybridize microarray

Principle of DNA microarray expression profiling
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Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7

Sample ASample B
164.34 86.41
12.32 42.31

456.77 416.57
0.02 0.06

214.98 233.18
114.61 112.60
27.54 87.33

translate signal intensity
into gene expression level

wash unbound targets
scan m icroarray

Affymetrix GeneChips ®

(Photolithography); ~ 60,000 genes 

Spotted/Printed cDNA array
(on glass); 5000 genes Isolate RNA,

cDNA synthesis,
labeling



  

Formalizing the 
biological problem



  

The problem:
Embryonic stem cell
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S1 = [x1, x2, .., xN]
S2 = [x1, x2, .., xN]

S3 = [x1, x2, .., xN]

If each gene is either ON or OFF (1 or 0) 
and if there are N = 20,000 genes . . .

 We would have 2N = 220,000 = 10 6000  gene expression constellations
(compare: there are 1080 hydrogen atoms in the universe)

  Yet, we observe only  ~ 1000 discrete cell states / types

S0 = [x1, x2, .., xN]

Formalizing the problem

1 0 0 1 1…= 

“ gene expression profile ”

Network of regulatory interrelationships 
constrains the possibilities of gene activation configurations 

Multipotent state

0 1 1 1 1…= 1 1 0 0 1…= 



  

From Genes to System Behavior

One  Genome 

x1 = f1(x1, x2 .. xN)
.

x2 = f2(x1, x2 .. xN)
.

xN = fN(x1, x2 .. xN)
.

xi = fi (x1, x2 .. xN)
.

Whole Network Behavior
(DYNAMICS)

x1    x2           xi           xN

One  Network
(ARCHITECTURE)

x1
x2

x3

x4 xN

xi

~ 100% “known”

~ 1-10% “known”

<< 1% “known”

observable !

“Biological Observable”
(PHENOTYPE)

S(t1) = [ x1(t1), x2(t1), .., xN(t1) ]

S(t2) = [ x1(t2), x2(t2), .., xN(t2) ]Multiple stable states
Oscillations, Transitions



  

Biological observables to be explained

DIFFERENTIATION 

DISCRETENESS

DIVERSIFICATION

DIRECTIONALITY

The four D’s:

S1 = [x1, x2, .., xN] S2 = [x1, x2, .., xN]

S0 = [x1, x2, .., xN]

Multipotent 

Terminally differentiated



  The valleys in the epigenetic landscape represent
the stable gene expression profile which correspond to discrete cell fates

S*(t) = [ x1(t), x2 (t), ... xN (t) ]
Stable state = cell type

Epigenetic landscape and modern biology

More than a metaphor! 

Multipotent progenitor cell

CMP

MEP GMP

neutrophil macrophageerythrocyteMega
karyocyte

The hematopoietic system



  

The gene regulatory network

From: Swiers et al. Dev. Biol. 2006 Control logic model of erythroid development



  

From network to
landscape



  

Small circuits Complex network
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Tractable:  Reality:

Local circuits are embedded in a genome-wide network

Dilemma:
 

Observed network state: 
S(t) = [ x1(t), x2(t), … xN(t) ] 

Low  vs.  High-dimensional system
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Let’s start small . . . 

Low   vs.  High - dimensional system
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The global dynamics of this system:

(section)

Y
X

Basin of
attraction

 System has two stable “attractors” :          A  and   B

A

B

A (high X, low Y )

B (low X, high Y )

A B

Gene X Gene Y

-

-

X

Y

S(t)= [ X(t),Y(t) ]

 =  Bistability (Multistability).

+ noise

+ noise

BASICS:  Two–gene network - mutual inhibition



  

GATA1 PU.1

GATA1 GATA2

GATA2 PU.1

Akt2 MyoD

HNF-1α HNF-4α

Egr-1 Id1

Pancreas, 
Liver

Endothelial cells

Muscle

Hematopoietic
cells

C/EBPα C-jun

OCT4/SOX2 NANOG

Embryonic cells
NANOG

GATA2

PU.1 GATA3

MyoD

STATs

E2F-1

Auto-regulation: 
Transcription factors

That bind their own promoters

OCT4

SOX2

Feedback “modules” in transcriptional regulation
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 A third stable state   C    between     A   and   B

A

B

A (high X, low Y )

B (low X, high Y )

A B
C (some X, someY ) C

     =  Tri-stability
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Two–gene network: mutual inhibition + auto-stimulation



  

THE  CENTRAL HYPOTHESIS : 

“ CELL  TYPES  ARE  ATTRACTORS
OF  THE  GENE  REGULATORY  NETWORK ”

1940s  Waddington:
“ Epigenetic landscape ” 

• 1949 Delbrück
• 1961 Jacob and Monod
• 1969 Stuart Kauffman  (complex networks)

Y
X

Multistability

… a formal and molecular basis
for Waddington’s metaphor
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N = 2

N = 10,000s

T O P O L O G Y
(“ wiring diagram “)

D Y N A M I C S
(“epigenetic landscape”)

S (t) = [ X(t), Y(t) ]

“CHAOTIC” (Derrida, Kauffman)
~UNSTABLE
Very long transients or
Very high-number of tiny attractors

ORDERED
~ STABLE / DISSIPATIVE
Relatively small number 
of compact attractors
(fixed-point or short-period cycles) 

S (t) = [ x1(t), x2(t), … xN(t) ]

?

 Discrete networks,
Ensemble approach

 Sparse networks ( k = 2 )
 “scale-free” networks
 Canalizing functions ( miRNA!) (Kauffman, Aldana, Shmulevich et al.)

From small circuits to complex networks

CRITICAL



  

N-dimensional hyper space

S (t) = [ x1(t), x2(t), … xN(t) ]

S (t) = [ x1(t), x2(t), … xN(t) ]

S’ (t’) = [ x’1(t), x2(t), … xN(t) ]

THEORY: 
With 25,000 genes (ON/OFF):
  225,000 ~ 107500 expression profiles: 
 a huge continuum of configurations

BIOLOGICAL REALITY: Only a tiny fraction 
of possible states are stable and realized



  

S (t) = [ x1(t), x2(t), … xN(t) ]

S (t) = [ x1(t), x2(t), … xN(t) ]

S’ (t’) = [ x’1(t), x2(t), … xN(t) ]



  



  

 
Attractor   

(Fixed-point,
Limit-cycle,

Strange) Basin of
 Attraction
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Biological observables to be explained

The four D’s:

DIFFERENTIATION 

DISCRETENESS

DIVERSIFICATION

DIRECTIONALITY

The four D’s:



  

Biological observables to be explained

The four D’s:

S2 = [x1, x2, .., xN]

S1 = [x1, x2, .., xN]

Is a differentiation a switch into a 
high-dimensional attractor state?

DIFFERENTIATION 

DISCRETENESS

DIVERSIFICATION

DIRECTIONALITY

The four D’s:



  

Some (experimental) results 



  

Progenitor DifferentiatedDifferentiation signal
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S(t1) = [ x1(t1), x2(t1)… xN(t1) ] S(t2) = [ x1(t2), x2(t2), … xN(t2) ]
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Differentiation as a state transition



  

Progenitor DifferentiatedDifferentiation signal

SProg (t) = [ x1
Prog (t), … xProg 

N(t) ] SDiff(t) = [ x1
Diff (t), … xDiff 

N(t) ]

“  Attractor landscape “
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1. Jacobian matrix  Eigenvalues: all <0 
(for small neighborhood of S*)

2. Lyapunov function V(S):   V(S) > 0 for S ≠ S*
 V(S*) = 0

V(S) =   V(S)·f(x)  <  0
.

Is a measured, stationary gene expression profile 
S*(t) = [x1(t), x2(t),…xN (t)]  

a “stable” state ?

Realistically:  
  Look for convergence 

of trajectories

If network architecture unknown:      

If network architecture known  x = f (x)
.

When is a stationary state a stable (attractor) state?
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Progenitor HL60 Differentiated “neutrophil”Differentiation signal

DMSO

AtRA

SProg (t) = [ x1
Prog (t), … xProg 

N(t) ]
SDiff(t) = [ x1

Diff (t), … xDiff 
N(t) ]

What to expect from time course of expression profiles

Basin of attraction !



  

Progenitor HL60 Differentiated “neutrophil”Differentiation signal

DMSO

AtRA

• Initial divergence of trajectories, followed 
by convergence of trajectories

• Distributed contribution by a
 genome-scale number of genes

Look for:



  

 Two trajectories of HL-60 differentiation 
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Summary (1)
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96h
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120h
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168h

168h

HL60

“ neutrophil “
12h

DMSO

ATRA

Convergence of two high-dimensional (N ~ 2700) trajectories
as indication (necessary condition) for state space contraction



  

Biological observables to be explained

The four D’s:

DIFFERENTIATION 

DISCRETENESS

DIVERSIFICATION

DIRECTIONALITY

The four D’s:



  

Biological observables to be explained

The four D’s:

DIFFERENTIATION 

DISCRETENESS

DIVERSIFICATION

DIRECTIONALITY

The four D’s:

S*P(t1) = [ x1(t1), x2(t1)… xN(t1) ]

SM(t2) = [ x1(t2), x2(t2), … xN(t2) ]S*E(t2) = [ x1(t2), x2(t2), … xN(t2) ]



  

Megakaryocyte Erythocyte Neutrophil Monocyte/
Macropahge

MEP GMP

What is the very essence of “path separation” ?

Erythroid Myeloid/monocytic

FDCP-mix cells
EPO + haemin 

(IL-3low)

IL-3

G-CSF + GM-CSF 
(IL-3low)

Tariq Enver, Oxford

PE M

S*P(t1) = [ x1(t1), x2(t1)… xN(t1) ]

SM(t2) = [ x1(t2), x2(t2), … xN(t2) ]S*E(t2) = [ x1(t2), x2(t2), … xN(t2) ]

(“CMP” )



  

Gene expression profiling of cell fate decision
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Principal component analysis
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Erythroid

Myeloid

Hypothesis: 
Fate commitment as two-phase process

1.  Destabilization of the multipotent progenitor cell P  

2.   Decision 
► stochastic influences (noise)
► bias/small perturbation by “deterministic” signals

n = 3Attractor landscape view:
= “bifurcation” event 

Progenitor 
cell

EPO 

G-CSF 
+ GM-CSF

IL-3



  

Small circuits Complex network
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Tractable:  Reality:

Dilemma:
 

Observed network state: 
S(t) = [ x1(t), x2(t), … xN(t) ] 

Low  vs.  High-dimensional system



  

A core network that determines dynamics 
may be reasonably small

S (t) = [ x1(t), x2(t), .. xi(t), xk(t), xk+1(t),.. xN(t) ]

Core regulatory set
(Transcription factors, …)

Peripheral genes
(non-regulatory effectors)

Additional degrees of 
freedom for 

environm. signals
(phenotype fine tuning)

Determines
Global dynamics 

of network

Kauffman: 
“medusa network”

10-20 % of genome:
Transcription/signaling

proteins
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Transcription factors only
 (“medusa head”)

comprehensive view:
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GATA1-PU.1 system in cell fate decision
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GATA1   PU.1   ++ x1 x2

CMP 
(bipotential progenitor, P )

MEP
( E )

GATA1  PU.1  

GATA-1
PU.1

GMP  
( M )

  Obligate promiscuity!

GATA1  -
PU.1     +

GATA1  +
PU.1      -

“STEMNESS”  /  MULTIPOTENCY
• Accessibility to multiple attractors !
• Promiscuous (“preview”) gene expression



  

Pitchfork Bifurcation for  P  ( M,E )
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Summary  (2)

FDCP
-mix

Erythroid

Neutrophil-
Monocyte
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Convergence 

 Cell fate as a high-dimensional 
attractor state

(“ valley “)

Divergence 

 Cell fates are separated 
by a repellor state

(“ hill top“ )



  

Biological observables to be explained

The four D’s:

DIFFERENTIATION 

DISCRETENESS

DIVERSIFICATION

DIRECTIONALITY

The four D’s:

S*P(t1) = [ x1(t1), x2(t1)… xN(t1) ]

SM(t2) = [ x1(t2), x2(t2), … xN(t2) ]S*E(t2) = [ x1(t2), x2(t2), … xN(t2) ]



  

Biological observables to be explained

The four D’s:

DIFFERENTIATION 

DISCRETENESS

DIVERSIFICATION

DIRECTIONALITY

The four D’s:

So far:  every regulatory event is reversible.

Hypothesis:
Directionality emerges at network level  + probabilistic events

 Current work… 



  

 Single cell level analysis of multicellularity

Inter-type Diversity  
(Stable cell types,  subtypes) 

Intra-type Heterogeneity  
(Stochastic epigenetic population heterogeneity)

Old idea: Spudich & Koshland (1976); …
Recent: Singer (2001); Leibler (2004); Cluzel (2005); etc
  “ Gene expression noise ” 

One genome

?

 Nominally 
 uniform 
 clone

“ MACRO-HETEROGENEITY “

“ MICRO-HETEROGENEITY “



  

Basis for intra-type heterogeneity
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Of protein X

Level of protein X

MESF standard
Beads (2-fold)

Then, not just  ensemble average but outliers can also determine 
macroscopic biology  (different from thermodynamics!)

FLOW  
CYTOMETRY

If dynamics is slow: 
Is the typical time scale 

of cell regulatory processes 
<   the ‘ergodic regime’ ??



  

 Exploring  MICRO-HETEROGENEITY

Attractor
Repellor

Attractor

PROGENITOR DIFFERENTIATED State 
Space x

- l
n 

[ P
(x

) ]

Repellor

■ Kinetics ? Slow,  with distinct cell behaviors -   
Or just noisy fluctuation ?

Multipotency and Plasticity: always due to Micro-Heterogeneity ?

Deterministic cell fate regulation
MACRO-heterogeneity

Stochastic clonal heterogeneity
MICRO-heterogeneity

HL
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Micro-heterogeneity of progenitors and differentiation rate

PROGENITOR DIFFERENTIATED 

LH M

High Sca-1 Low Sca-1

Sca-1

L M H
L

L M H

+ Erythropoietin (EPO) 
 measure rate of differentiation 
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 Higher propensity to
differentiate?

Cells that “happen” to express low Sca-1, are more prone to differentiate.
Stochastic, epigenetic cell heterogeneity has biological implications.

= 1 nominally uniform population in common biology



  

More details 
to follow tomorrow



  

Biological observables to be explained

DIFFERENTIATION 

DISCRETENESS

DIVERSIFICATION

DIRECTIONALITY

The four D’s:

S1 = [x1, x2, .., xN] S2 = [x1, x2, .., xN]

S1 = [x1, x2, .., xN]



  

Robustness ● Buffering ● Discrete Decision 
Stochastic fate commitment ● Irreversibility

Plasticity ● Reprogramming ● Rebooting

For biologists: a new “biological observable”

Pathway Path

= developmental path = trajectory
in network diagrams in state space

 [1 ]  P U .1  [8]  E g r-2

 [9]  G f i-1

 [10] G f i- 1 b  

 [2] G ATA 1

 [3 ] G ATA 2
 [4 ] c M Y B

 [5] C /E B P α

 [6 ] M A F - B

 [7 ] c J U N

 

Gene A

Gene B

Gene C

cause

effect

Gene A
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S(t) = [A, B, 
C]

A B C
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D R E A M:  The entire epigenetic landscape of our genome



  

D R E A M:  The entire epigenetic landscape of our genome

 
+ External signals:
• Cell-Cell Communication 

Network
• Local Microenvironment 
   (ECM, mechanical signals)
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