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To start with

In a Random Ising model, typically one has a phase diagram of

this kind:
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Outline

• Graphs - Infinite Dimensionality

• Random Models

• Mapping to a Non Random Model: The Related Ising Model

• Equations of the mapping (very simple!)

• Applications to Random Graphs

• Conclusions and Outlooks
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Graphs

Let be given a graph g of N vertices. The set of links Γ can be

defined through the adjacency matrix of the graph, gi,j = 0,1:

Γg ≡ {b = (ib, jb) ∈ Γf : gib,jb = 1, ib < jb}, Γf = Fully Connected Graph
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Overlap versus Dimensionality

In the thermodynamic limit, the mapping becomes exact if Γ

becomes infinite dimensional in a strict or in a weak sense:

• D(Γ) → ∞ in the strict sense if two paths of any length

overlap with probability 0.

Typical example: the Fully Connected Graph Γ = Γf

• D(Γ) → ∞ in the weak sense if two long paths overlap l

times with a probability p(l) ≤ C exp(−αl).

Typical example: the Bethe Lattice
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Γf is infinite dimensional in the strict sense

Γf ≡ {b = (ib, jb) : ib, jb = 1, . . . , N, ib < jb}, |Γf | =
N(N − 1)

2
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The Bethe Lattice is infinite dimensional in the weak sense

p(l = 1) ∝ 1

3
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The Bethe Lattice is infinite dimensional in the weak sense

p(l = 2) ∝ 1

3
· 1
2
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The Bethe Lattice is infinite dimensional in the weak sense

p(l = 3) ∝ 1

3
· 1
2
· 1
2

⇒ p(l) ∝ 1

3 · 2l−1
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Random Models onto Quenched Graphs

Given Γ we define

H ({σi}; {Jb}) ≡ −
∑

b∈Γ

Jbσibσjb

the Jb’s are quenched couplings, σi Ising variable at the site i.

The free energy F and the physics are defined by

−βF ≡
∫

dP ({Jb}) log (Z ({Jb})) , 〈O〉 =

∫

dP ({Jb}) 〈O〉

Z ({Jb}) is the partition function of the quenched system

Z ({Jb}) =
∑

{σb}
e−βH({σi};{Jb}), 〈O〉 =

∑

{σb} e−βH({σi};{Jb}) O
∑

{σb} e−βH({σi};{Jb})

and dP ({Jb}) is a product measure over all the possible bonds

b given in terms of a normalized measure dµ ≥ 0

dP ({Jb}) ≡
∏

b∈Γf

dµ (Jb) ,
∫

dµ (Jb) = 1.
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Universal Critical Parameter

Note that, given an ordinary Ising model with some uniform

coupling J, its critical temperature depends on the value of J:

βc = βc(J).

But in terms of the product βJ there is just one critical param-

eter. The critical point of the model can be encoded in a single

universal critical parameter w = tanh(βc(J)J).

More precisely we have:

for any J > 0 there exists just a positive u. c. p., wF > 0,

for any J < 0 there exists just a negative u. c. p., wAF < 0

Example:

for d = 2, one has (Onsager) wF =
√

2 − 1 and wAF = −wF .
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Mapping

Random Model at β Related Ising Model at β(I)

H ({σi}; {Jb}) ≡ −
∑

b∈Γ

Jbσibσjb =⇒ H(I)
(

{σi}; J(I)
)

≡ −J(I)
∑

b∈Γ

σibσjb

⇓ ⇓
〈O〉 ⇐= 〈O〉(I) = fI

(

tanh
(

β(I)J(I)
))

where, if D(Γ) = ∞:

〈O〉 =















fI (
∫

dµ(Jb) tanh (βJb)) , for the P − F transition,

fI

(

∫

dµ(Jb) tanh2 (βJb)
)

, for the P − SG transition

in other words, the Mapping Trasformations are:

tanh
(

β(I)J(I)
)

→ ∫

dµ(Jb) tanh (βJb) , for the P − F transition,

tanh
(

β(I)J(I)
)

→ ∫

dµ(Jb) tanh2 (βJb) , for the P − SG transition
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Equations of the Mapping for the Upper Critical Surface

In particular, if the Related Ising Model is critical at

w
(I)
F = tanh(β

(I)
c J(I)), for the Random Model we have:

∫

dµ(Jb)tanh(β
(F)
c Jb) = w

(I)
F , for the P − F transition,

∫

dµ(Jb)tanh
2(β

(SG)
c Jb) = w

(I)
F , for the P − SG transition,

with the stable solution being given by:

βc = min{β(SG)
c , β

(F)
c }.
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If we solve The Related Ising Model we obtain exactly:

• if D(Γ) → ∞ strictly: everything in the P region

• if D(Γ) → ∞ weakly: everything on and infinitely near (above)

the upper critical surface
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Ex. with D(Γ) → ∞ in the strict sense : Sherrington-Kirkpatrick model

The SK model corresponds to the spin glass over the fully con-

nected graph and random couplings {Jb} s. t.:
∫

dµ(Jb)Jb = J0/N,
∫

dµ(Jb)(Jb − J0/N)2 = J̃2/N.

The Hamiltonian of the related Ising model is

HI = −
∑

b∈Γf

J(I)σibσjb = −
∑

(i,j)

J(I)σiσj,

As is well known, for this model, depending on the sign of the

coupling J(I), a ferromagnetic-paramagnetic or an antiferromagnetic-

paramagnetic phase transition takes place at the same critical

temperature given by

β
(I)
c |J(I)|N = 1,
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for N large, in terms of the universal quantities

w
(I)
F/AF

= ± tanh(β
(I)
c |J(I)|) gives

w
(I)
F/AF

= ± 1

N
+ O

(

1

N3

)

On the other hand for N large the two moments give
∫

dµb(Jb)tanh (βJb) =
(βJ0)

N
+ O

(

1

N3

)

.

and

∫

dµb(Jb)tanh
2 (βJb) =

(

βJ̃
)2

N
+ O

(

1

N3

)

,

Hence, from the equations of the mapping, in the limit N → ∞,

we get the following spin glass (SG) and, depending on the sign

of J0, ferromagnetic (F) or antiferromagnetic (AF) boundaries

β
(SG)
c J̃ = 1

β
(F/AF )
c J0 = ±1.

By taking the envelope of these curves we get the upper phase

boundaries.
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S-K phase diagram
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Ex. with D(Γ) → ∞ in the weak sense: Bethe lattice

Spin glass model defined over a Bethe lattice of coordination

number q.

The related Ising model is the homogeneous Ising model over a

regular Bethe lattice with coordination number q for which the

exact solution is known (e.g. Baxter)

w
(I)
F = tanh

(

β
(I)
c J(I)

)

=
1

q − 1
,

Therefore, by using the equation of the mapping we find that a

spin glass (SG) and a disordered ferromagnetic (F) transitions

take place at β
(SG)
c and β

(F)
c solutions of:

∫

dµ(Jb)tanh

(

β
(F)
c Jb

)

=
1

q − 1
, P − F,

∫

dµ(Jb)tanh
2

(

β
(SG)
c Jb

)

=
1

q − 1
, P − SG
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Generalization: dµ(Jb) → {dµb(Jb)}

Let define as many different J
(I)
b as many are the different dµb.

Let be z
(I)
b = tanh(βJ

(I)
b ) and let

GI({z(I)
b }) = 0

represents the equation (possibly vectorial) for the critical sur-

face of the related Ising model. It describes a transition between

the P phase and an ordered F/AF phase. The upper critical

temperature of the spin glass model is given by

βc = min{β(SG)
c , β

(F/AF )
c }

where β
(SG)
c and β

(F/AF )
c satisfy

GI

(

{
∫

dµb(Jb)tanh
2(β

(SG)
c Jb)}

)

= 0,

GI

(

{
∫

dµb(Jb)tanh(β
(F/AF )
c Jb)}

)

= 0.

Note that the last two equations describe completely the upper

critical surface.
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So, for example, in a case with two families of bonds b1 and b2,

the equation

GI

(∫

dµb1(Jb1) tanh(βJ1),
∫

dµb2(Jb2) tanh2(βJ2)

)

= 0

does not describe any upper critical surface; there are no inter-

mediate situations between Eqs. (1) and (1).

Equations (1) - (1) give the exact critical P-SG and P-F/AF

temperatures. In the case of a homogeneous measure, the

suffix F and AF stay for disordered ferromagnetic and anti-

ferromagnetic phases, respectively. In the general case, such

a distinction is possible only in the positive and negative sec-

tors where one has respectively
∫

dµb(Jb)tanh(β
(F/AF )
c Jb) > 0 or

∫

dµb(Jb)tanh(β
(F/AF )
c Jb) < 0, for any bond, whereas, for the

other sectors, we use the symbol F/AF only to stress that the

transition is not P-SG.

Near the upper critical surface, the mapping allows also to de-

termine coexistence surfaces and correlation functions.
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Random Models onto Random Graphs

Given an ensemble of graphs g ∈ G distributed with P(g), define

Hg ({σi}; {Jb}) ≡ −
∑

b∈Γg

Jbσibσjb

The free energy F and the physcis are now given by

−βF ≡
∑

g∈G
P(g)

∫

dP ({Jb}) log
(

Zg ({Jb})
)

,

Zg ({Jb}) is the partition function of the quenched system onto

the graph realization Γg

Zg ({Jb}) =
∑

{σb}
e−βHg({σi};{Jb}),

and dP ({Jb}) is again a product measure over all the possible

bonds b given in terms of a normalized measure dµ ≥ 0

dP ({Jb}) ≡
∏

b∈Γf

dµ (Jb) ,
∫

dµ (Jb) = 1.
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Application to Unconstrained Random Graphs

For unconstrained random graphs we have

P(g) =
∏

b∈Γf

P(gb).

In this case it is useful to define the effective coupling J̃b:

J̃b ≡ Jb · gb, Jb ∈ R, gb = 0,1,

correspondingly:

dµ̃(J̃b) = dµ(Jb) · P(gb), dP̃
(

{J̃b}
)

= P(g) · dP ({Jb})
so that

dP̃
(

{J̃b}
)

=
∏

b∈Γf

dµ̃(J̃b),
∫

dµ̃(J̃b)f(·) =
∑

gb=0,1

∫

dµ(Jb)f(·),

and the mapping can be applied as we had

a single effective graph ΓP

ΓP ≡ {b ∈ Γf : P(gb = 1) 6= 0}
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Application to Unconstrained Random Graphs: Erdös-Reny

Random model defined over Poissonian graphs with cN bonds.

H ({σi}; {Jb}) ≡ −
∑

i<j

Ji,jgi,jσiσj = −
∑

i<j

J̃i,jσiσj, where

P(gi,j) =
c

N
δgi,j,1 + (1 − c

N
)δgi,j,0,

where

c = 〈k〉, the average degree.

What is the Related Ising Model of this random model?
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Application to Unconstrained Random Graphs: Erdös-Reny

Random model defined over Poissonian graphs with cN bonds.

H ({σi}; {Jb}) ≡ −
∑

i<j

Ji,jgi,jσiσj = −
∑

i<j

J̃i,jσiσj, where

P(gi,j) =
c

N
δgi,j,1 + (1 − c

N
)δgi,j,0,

where

c = 〈k〉, the average degree.

What is the Related Ising Model of this random model?

H(I)
(

{σi};J(I)
)

≡ −J(I)
∑

i<j

σiσj,

The Fully Connected Model (ΓP = Γf)!
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We can solve exactly the uniform and fully connected model:

mI = tanh
[

β(I)J(I)NmI + β(I)h
]

,

from which in particular we get its critical temperature

Nβ
(I)
c J(I) = 1 ⇒ w

(I)
F = tanh(β

(I)
c J(I)) = tanh(

1

N
) =

1

N

By applying the equations of the mapping
∫

dµ̃(J̃b)tanh(β
(F)
c J̃b) = w

(I)
F , P − F

∫

dµ̃(J̃b)tanh
2(β

(SG)
c J̃b) = w

(I)
F , P − SG

with dµ̃(J̃b) = dµ(Jb) ·P(gb), dµ(Jb) arbitrary and P(gb = 1) = c
N ,

we find:

c
∫

dµ(Jb) tanh(β
(F)
c Jb) = 1, P − F

c
∫

dµ(Jb) tanh2(β
(SG)
c Jb) = 1, P − SG

Viana and Bray 1985

27



Critical Behavior

The mapping is rigorously defined only for β ≤ βc = min(β
(F)
c , β(AF )).

However, except for the free energy, by analytic continuation be-

low βc we get very easily good estimations of the effective fields

m(F) = tanh

[

c
∫

dµ(Jb) tanh(βJb)m
(F)

]

,

m(SG) = tanh

[

c
∫

dµ(Jb) tanh2(βJb)m
(SG)

]

,

where m(SG) =
√

qEA.

As expected, the critical behavior of the Ising model over

the E.- R. random graph is Mean-Field-like.
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Application to Unconstrained Random Graphs: Small World

Random model defined over a Small World Graph. Poissonian

graphs with cN bonds superimposed onto a one dimensional ring:

H ({σi}; {Jb}) ≡ −J0

∑

i

σiσi+1 −
∑

i<j

Ji,jci,jσiσj, where

P(ci,j) =
c

N
δci,j,1 + (1 − c

N
)δci,j,0.

What is the related Ising model of this random model?
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Application to Unconstrained Random Graphs: Small World

Random model defined over a Small World Graph. Poissonian

graphs with cN bonds superimposed onto a one dimensional ring:

H ({σi}; {Jb}) ≡ −J0

∑

i

σiσi+1 −
∑

i<j

Ji,jci,jσiσj, where

P(ci,j) =
c

N
δci,j,1 + (1 − c

N
)δci,j,0.

What is the related Ising model of this random model?

H(I)
(

{σi};J
(I)
0 , J(I)

)

≡ −J
(I)
0

∑

i

σiσi+1 − J(I)
∑

i<j

σiσj,

Fully Connected superimposed onto a one dimensional ring!
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We can solve exactly this model. Its critical surface is given by

Nβ
(I)
c J(I)e2β

(I)
c J

(I)
0 = 1

By applying the Mapping Substitutions to J(I) and J
(I)
0 :







tanh(β(I)J(I)) → ∫

dµ(Ji,j) tanh(βJi,j),

tanh(β(I)J
(I)
0 ) → ∫

dµ(J0) tanh(βJ0),
P − F

and






tanh(β(I)J(I)) → ∫

dµ(Ji,j) tanh2(βJi,j),

tanh(β(I)J
(I)
0 ) → ∫

dµ(J0) tanh2(βJ0),
P − SG

with dµ(J ′
0) = δ(J ′

0 − J0), we find

c
∫

dµ(Jb) tanh(β
(F)
c Jb)e

2β
(F)
c J0 = 1, P − F

Nikoletopoulus et al 2004

c
∫

dJbf(Jb) tanh2(β
(SG)
c Jb) cosh(2β

(SG)
c J0) = 1, P − SG

And similarly to the previous case we can write readily the equa-

tions for the effective fields m(F) and m(SG) =
√

qEA.

30



Application to Unconstrained Random Graphs: Small World in general

We can even approximately solve the related Ising model directly

by the mean-field approach. In general, given a Poissonian ran-

dom graph superimposed onto a d-dimensional hypercube lattice

with couplings J0, we have:

mI ≃ tanh

[

β(I)J(I)NmI + 2dβ(I)J
(I)
0 mI

]

,

from which by applying the mapping we get

m(F) ≃ tanh

[

c
∫

dµ(Jb) tanh(βJb)m
(F) + 2dβJ0m(F)

]

,

m(SG) ≃ tanh

[

c
∫

dµ(Jb) tanh(βJb)m
(SG) + 2d tanh−1(tanh2(βJ0))m

(SG)
]

.

The mapping establishs clearly that on unconstrained random

graphs, the Univeral Mean-Field-like critical behavior takes place!
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Small World, D=1, c=2, J
0
=1, P-F and P-SG lines
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Application to Complex Networks

In this case, the graphs Γg are drawn out from an ensemble G
with some given distribution P(g) characterized by some given

constrain ⇒ this implies that the {gb} are no longer independent

random variables

P(g) 6=
∏

b∈Γf

P(gb).

⇒ the mapping cannot be applied to this ensemble.

However, in any fixed (quenched) sample Γg the {Jb} are again

independent, (gb ≡ 1 if b ∈ Γg) so that we have

dPΓg
({Jb}) =

∏

b∈Γg

dµ (Jb)

and the mapping can be applied to the single graph if Γg is

infinite dimensional in the weak sense a.s.w.r. to P(g). If now

the graphs obey to a self-average property, we can simply exploit

the solution known for the complex graph with uniform coupling.
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In particular, if we condiser the random graphs where the only

constraint is p(k), for a uniform coupling we have

Dorogovtesv et al 2002 - Leone et al 2002:

tanh(β
(I)
c J(I)) =

〈k〉p
〈k2〉p − 〈k〉p

,

and by applying the mapping we get the exact P-F and P-SG

critical lines for a complex network with coupling disorder:

∫

dµ(Jb) tanh(β
(F)
c Jb) =

〈k〉p
〈k2〉p−〈k〉p, P − F

Kim et al 2005 − Ostilli 2006
∫

dµ(Jb) tanh2(β
(SG)
c Jb) =

〈k〉p
〈k2〉p−〈k〉p, P − SG

As in the previous cases, we can study also the critical behavior

of the coupling disordered model by the effective substitutions

tanh(β(I)J(I)) →
∫

dµ(Jb) tanh(βJb), P − F,

tanh(β(I)J(I)) →
∫

dµ(Jb) tanh2(βJb), P − SG,

to be plugged into the expressions of the related Ising model.
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Key ingredients of the “proof”

1. High temperature expansion

2. Replica trick : zn, n ∈ R → zn, n ∈ N

3. Or, alternatively, log(z) = log(1 + (z − 1)) =
∑

n
(−1)n−1

(z−1)n

4. D(Γ) → ∞

There is no functional to be extremized ⇒ as a consequence:

NO ANSATZ IS REQUIRED!
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High Temperature Expansion

Z ({Jb}) = 2N
∏

b∈Γ

cosh (Kb)
∑

γ

∏

b∈γ

tanh (Kb) ,

where the sum runs over all the multipolygon (closed paths) γ

and

Kb ≡ βJb.
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Averaging over the disorder we have

∫

dP ({Jb}) log (Z ({Jb})) =

∫

dP ({Jb}) log



2N
∏

b∈Γ

cosh(Kb)





+

∫

dP ({Jb}) log





∑

γ

∏

b∈γ

tanh(Kb)



 ,

from which we get

−βF = N log(2) +
∑

b∈Γ

∫

dµb log (cosh(Kb)) + φ,

where the non trivial part φ is given by

φ ≡
∫

dP ({Jb}) log





∑

γ

∏

b∈γ

tanh(Kb)



 .
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Replica Trick

Let

P ({tanh(Kb)}) ≡
∑

γ

∏

b∈γ

tanh(Kb).

To evaluate the free energy we need to consider the averages of

Pn for n ∈ N

P (n) ≡
∫

dP ({Jb})Pn ({tanh(Kb)}) .

The free energy term φ can be obtained in terms of P (n), via

the replica method:

φ = lim
n→0

P (n) − 1

n
.
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Exploiting D → ∞

Let us consider a measure dµ with zero average. The general

evaluation of the term P (2n) is a formidable task, in which one

has to deal with 2n paths which can overlap in all the possible

ways with 0,2, . . . ,2n overlaps. Nevertheless, if D → ∞ strictly,

up to terms O(1/D) the only possible overlap correspond to the

“two to two” one ⇒ in the thermodynamic limit we have

P (2n) ∝
(

P
(

tanh2(Kb)
))n

,∀β ≤ β
(SG)
c .

If D(Γ) → ∞ only weakly, the above equality holds only in the

left-limit β → β
(SG)
c

−
. For this last statement it is crucial to use

the fact that:

The critical behavior of the system is determined by the paths

of arbitrarily large length

By using the last equation with the replica formula we have

φ ∝ φI(tanh
2(Kb))

and the mapping follows immediately.
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Conclusions and Outlooks

• An exact and general method to get the upper critical surface

and the upper critical behavior of quenched models

• No ansatz

• In the P phase we can solve as many random models as

many non random models we are able to solve, analytically

or numerically
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• A method particularly suitable for models defined over net-

works. In particular we have:

– Great semplification

– No tree-like ansatz required! (The related Ising model is

Fully Connected)

– For models on Poissonian Graphs: A clear Universal Mean-

Field-like behavior

– For Complex Networks we are able to study exactly the

random versions (dµ(Jb) 6= δ(J ′
b − Jb)dJ ′

b)
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Open problems

• Generalization to other (non Ising) models? (for p-spin mod-

els is already clear)

• What happens adding h? Can we formulate the mapping

rigorously also when h 6= 0?

• What happens when there are important constrains on the

{gb}? The effective substitution 〈k〉p → 〈k2〉p
〈k〉p works well for

power law distributions not too flat, γ ≥ 5. Can we formulate

the mapping more in general?
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