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To start with l

In 2 Random Ising model, typically one has a phase diagram of
this kind:
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Graphsl

Let be given a graph g of N vertices. The set of links [ can be
defined through the adjacency matrix of the graph, 9ij = 0,1:

Fg={b=C(Cpa) €T¢: g5 =1, 1p <gp}, [ y=Fully Connected Graph

Example with N=28 and | | =27



Overlap versus Dimensionality I

In the thermodynamic limit, the mapping becomes exact if I
becomes infinite dimensional in a strict or in a weak sense:

e D(I') — oo in the strict sense if two paths of any length
overlap with probability O.

Typical example: the Fully Connected Graph I' =T

e D(I') — oo in the weak sense if two long paths overlap I
times with a probability p(l) < Cexp(—al).

Typical example: the Bethe Lattice



[ is infinite dimensional in the strict sense

Fr=4{b= () " do=1,..., N, iy <gp}, |Tyl=




The Bethe Lattice is infinite dimensional in the weak sensel

p(l=1) x =



The Bethe Lattice is infinite dimensional in the weak sense

p(l = 2)

Wl
N |~



The Bethe Lattice is infinite dimensional in the weak sensel

p(l = 3) = p(l)

3.20-1

Wl
N | —
N | —
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Random Models onto Quenched Graphsl

Given I we define

H ({oi}; {p}) = — ) Jyoi,0y,

bel
the Jp's are quenched couplings, o; Ising variable at the site 3.
The free energy F' and the physics are defined by

~BF = [P ({h})10a (Z ({A}), (0) = [ dP ({1}) (0}
Z ({Jp}) is the partition function of the quenched system
Yoy e~ BH{oir D)) o
- > (o) e—BH{0i}:{})

A EDD e PH{oi} b)) (O)
{op}

and dP ({J,}) is a product measure over all the possible bonds

b given in terms of a normalized measure du > 0

P {1 = T du(h), [ du(l) =1,

bel’f
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Universal Critical Parameter l

Note that, given an ordinary Ising model with some uniform
coupling J, its critical temperature depends on the value of J:

Be = Be(J).

But in terms of the product GJ there is just one critical param-
eter. The critical point of the model can be encoded in a single
universal critical parameter w = tanh(8.(J).J).

More precisely we have:

for any J > 0 there exists just a positive u. c. p., wgr > 0,

for any J < 0 there exists just a negative u. c. p., waqr <0

Example:
for d = 2, one has (Onsager) wp =+v2 —1 and wyp = —wp.
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I\/Iappingl

Random Model at g3 Related Ising Model at ﬁ(l)

= Jpoi 05, = g ({O‘i}; J(I)) =g > T3, Tj,
bel bel
4 y

(0) = (0)D) = f; (tanh (8D 1))

where, if D(IMN) = oo

H ({o:}: {Jp})

p

fr ([du(Jy) tanh (B8Jy)), for the P — F transition,

(O) = 4

1 (f du(Jp) tanh? (BJb)> , for the P —SG transition

in other words, the Mapping Trasformations are:

tanh (5@,](1)) — [du(Jy) tanh (3J,), for the P — F transition,

tanh (ﬁm]m) — [du(Jy) tanh? (B8J,), for the P — SG transition
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Equations of the Mapping for the Upper Critical Surfacel

In particular, if the Related Ising Model is critical at
wg) — tanh(8" 7)Y, for the Random Model we have:

[du(Jy)tanh(Ge I:)J) = w( ) for the P — F transition,

fdu(Jb)tanhQ(ﬁ(SG)J ) = wi! ), for the P — SG transition,

with the stable solution being given by:

mln{ﬁ(SG) ((;F)}.
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If we solve The Related Ising Model we obtain exactly:l

e if D(I') — oo strictly: everything in the P region

e if D(I"') — oo weakly: everything on and infinitely near (above)
the upper critical surface
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Inf. dim. in the strict sense
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Ex. with D(I') — oo in the strict sense : Sherrington-Kirkpatrick modeII

The SK model corresponds to the spin glass over the fully con-
nected graph and random couplings {Jp} s. t.:

[ du() gy = Jo/N,
[ dn(I) (I, = Jo/N)? = J2/N.
The Hamiltonian of the related Ising model is

_Z‘] i, 95, — Z‘](IU’LJ’

bel ¢ (,7)

As is well known, for this model, depending on the sign of the
coupling JU), a ferromagnetic-paramagnetic or an antiferromagnetic-
paramagnetic phase transition takes place at the same critical
temperature given by

s DN =1,
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for N large, in terms of the universal quantities

g/)AF — +tanh(89 17Dy gives

(D -
F/AF o :I: + 0O (N3)
On the other hand for N Iarge the two moments give

/dub(Jb)tanh (BJp) = (6]{[0) +0 (%) .

and

2
/dub(Jb)tanhQ (BTp) = (ﬁ]{) +0 <;3)

Hence, from the equations of the mapping, in the limit N — oo,
we get the following spin glass (SG) and, depending on the sign
of Jp, ferromagnetic (F) or antiferromagnetic (AF) boundaries

BT = 1
gSF/AR) 1y = 1.

By taking the envelope of these curves we get the upper phase
boundaries.
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S-K phase diagram I
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Ex. with D(I') — oo in the weak sense: Bethe IatticeI

Spin glass model defined over a Bethe lattice of coordination
number q.

The related Ising model is the homogeneous Ising model over a
regular Bethe lattice with coordination number g for which the
exact solution is known (e.g. Baxter)

wl(g,l) = tanh (ﬁéDJ(D> = q—il’

T herefore, by using the equation of the mapping we find that a
spin glass (SG) and a disordered ferromagnetic (F') transitions

take place at 6((;56) and 5((;':) solutions of:
1
[dn(ptann (67,) = = P-F,
q —_—
1
/d,u(Jb)tanhQ (ﬁéSGUb) =~ P-sG
q —_—
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Generalization: du(Jy) — {duy(Jp)}

Let define as many different Jb(f) as many are the different duy.
Let be zél) = tanh(ﬁjb(l)) and let

I
ar{="1 =0
represents the equation (possibly vectorial) for the critical sur-
face of the related Ising model. It describes a transition between

the P phase and an ordered F/AF phase. The upper critical
temperature of the spin glass model is given by

B = min{pS, g4,
where ﬁ((;SG) and ﬂ((;F/AF) satisfy

G <{/dﬂb(Jb)tanhQ(ﬁ(gSG)Jb)}> = 0,
Gr ([ dmy(tann(s* M 3)y) = o

Note that the last two equations describe completely the upper

critical surface.
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So, for example, in a case with two families of bonds b1 and b5,
the equation

G (/ dubl(Jbl)tanh(ﬁJl),/dubQ(JbQ)tanh2(ﬁb)) =0

does not describe any upper critical surface; there are no inter-
mediate situations between Eqgs. (1) and (1).

Equations (1) - (1) give the exact critical P-SG and P-F/AF
temperatures. In the case of a homogeneous measure, the
suffix F and AF stay for disordered ferromagnetic and anti-
ferromagnetic phases, respectively. In the general case, such
a distinction is possible only in the positive and negative sec-

tors where one has respectively fdub(Jb)tanh(ﬁéF/AF Jp) > 0 or

fdub(Jb)tanh(ﬂgF/AF)Jb) < 0, for any bond, whereas, for the
other sectors, we use the symbol F/AF only to stress that the
transition is not P-SG.

Near the upper critical surface, the mapping allows also to de-
termine coexistence surfaces and correlation functions.
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Random Models onto Random Graphsl

Given an ensemble of graphs g € G distributed with P(g), define

Hg ({o;}:i{h}) = — Z Jvoi,05,
bErg

The free energy F and the physcis are now given by

~BF = 3" P(g) [ dP ({J}) 109 (Zg ({1}))
gcg

Zg ({Jp}) is the partition function of the quenched system onto
the graph realization I'g

Zg({H) = Y e PHg(Loi} D))
{ob}
and dP ({Jp}) is again a product measure over all the possible
bonds b given in terms of a normalized measure du > 0

P D = T du(h), [ du(l) =1,

bel’f
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Application to Unconstrained Random Graphsl

For unconstrained random graphs we have

P(g) = ]] P(g)-

berl
In this case it is useful to define the effective coupling fb:
Jy=Jdp g5, JER, gp=0,1,
correspondingly:

di(Jy) = du(Jy) - P(gp),  dP ({J}) = P(g) - dP ({Jp})
so that
1P (7)) = I daCh),  [dati)ie = 3 [du)f0).
bGrf g,=0,1

and the mapping can be applied as we had
a single effective graph I'p

rp={berl;: P(g,=1)# 0}
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Application to Unconstrained Random Graphs: Erdbs—RenyI

Random model defined over Poissonian graphs with ¢/N bonds.

H ({0} {}) = - D Jijgijoio; = — ) J;jojoj, where
i<j 1<J

C

c
_592',3',1 + (1 - N)(ng',j,o’

P(g; ;) = N

where

c = (k), the average degree.

What is the Related Ising Model of this random model?
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Application to Unconstrained Random Graphs: Erdbs—RenyI

Random model defined over Poissonian graphs with ¢N bonds.

H({oi}; {h}) = - D Jijgijoio; = — ) J; jojoj, where
i< i<j

C

C
P(g;;) = N5gi’j,1 + (1 — Nﬁgi,j,o,

where

c = (k), the average degree.

What is the Related Ising Model of this random model?

H(I) ({Ui}; J(I)> = —J(I) Z 0i0,

1<J

The Fully Connected Model ('p =T ¢)!
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We can solve exactly the uniform and fully connected model:

m; = tanh [ﬁU)J(DNmI +5(Dh] ,

from which in particular we get its critical temperature

NgPaD =1 = Wl =tann( M) =tanh(%) _ 1

By applying the equations of the mapping
[ di(Tptanh (59 7) = wid,

[ di(Ttann(5E9 5,) = wil’,

1
N

— SG

with da(J,) = du(Jy) - P(gp), du(Jp) arbitrary and P(g, = 1) = ~

we find:

¢ [ du(Jy) tanh(8¢F 7)) = 1,
2/3(SG) 71y _
c [ du(Jy) tanh=(8e™ "/ J) = 1,

P—F
P —SG

Viana and Bray 1985
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Critical Behaviorl

The mapping is rigorously defined only for 8 < 8., = min(ﬁém,ﬁ(AF)).
However, except for the free energy, by analytic continuation be-
low B, we get very easily good estimations of the effective fields

m(F) — tanh _c/du(Jb)tanh(ﬁJb)m(F)],

m(SG) — tann _C/dM(Jb) tanhz(ﬁ‘]b)m(SG)] ’

where m(56) = /AEA-

As expected, the critical behavior of the Ising model over
the E.- R. random graph is Mean-Field-like.
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Application to Unconstrained Random Graphs: Small Worldl

Random model defined over a Small World Graph. Poissonian
graphs with ¢N bonds superimposed onto a one dimensional ring:

H {oi}; {}) = —Jo > oioig1 — ) Jijcijoio;, Where
i i<

C

C
P(Ci,j) — Néci,j’l + (1 o N)5Ci,j,0'

What is the related Ising model of this random model?
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Application to Unconstrained Random Graphs: Small Worldl

Random model defined over a Small World Graph. Poissonian
graphs with ¢N bonds superimposed onto a one dimensional ring:

H {oi}; {}) = —Jo > oioig1 — ) Jijcijoio;, Where
i i<
C

C
P(Ci,j) — Néci,j’l + (1 o N)5Ci,j,0'

What is the related Ising model of this random model?

A ({Uz’}; 5, JU)) = —J§" S ioig1 — I DY o0,

i<j
Fully Connected superimposed onto a one dimensional ring!
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We can solve exactly this model. Its critical surface is given by
(1) (1)
N/B((:I)J(I)ezgc JO =1
By applying the Mapping Substitutions to J{) and J(g]):

{ tanh(8D I = [ du(J; ;) tanh(BJ; ),

tanh(BDJED) = fdu(io) tanh(Bg),

and
tanh(8DJDY) — [ du(J; ;) tanh2(8J; ;),
tanh (8D J§") — | du(Jo) tanh2(8.Jp),
with du(Jgy) = 6(J) — Jo), we find

P —SG

F
¢ [du(Jy) tanh(889 )28 =1, p_F
Nikoletopoulus et al 2004

¢ [dJy f(J) tanh2(8559) 1) cosh(28859 1) = 1, P —SG

And similarly to the previous case we can write readily the equa-
tions for the effective fields m(F) and m(5®) = /gz71.
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Application to Unconstrained Random Graphs: Small World in generall

We can even approximately solve the related Ising model directly
by the mean-field approach. In general, given a Poissonian ran-
dom graph superimposed onto a d-dimensional hypercube lattice
with couplings Jp, we have:

my ~ tanh [5<I>J<”Nm[ + Qdﬁ(I)JéDmI] |
from which by applying the mapping we get

m(F) ~ tanh _c/d,u(Jb) tanh(ﬁJb)m(F) + QdﬁJom(F)] ,

m(S) ~ tanh |e / du(Jy) tanh(8.J,)mSS) + 2dtanh~1(tanh2(3.J5))m S| |

The mapping establishs clearly that on unconstrained random
graphs, the Univeral Mean-Field-like critical behavior takes place!
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Small World, D=1, c=2, Jozl, P-F and P-SG lines

2 . T T T | T

L
' . — P-F rough mean-field |
2 \ = = P-F exact mean-field
. » = P-SG rough mean-field
15 :_\ == P-SG exact mean-field |
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Effectivefieldsm and q_, J,=1, J=6, c=2

m exact mean-field
= M rough mean-field

- ( exact mean-field
» = (rough mean-field
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Application to Complex Networksl

In this case, the graphs ['g are drawn out from an ensemble G
with some given distribution P(g) characterized by some given
constrain = this implies that the {g,} are no longer independent
random variables

P(g) # [l Plaw).

bEl—f

= the mapping cannot be applied to this ensemble.
However, in any fixed (quenched) sample I'g the {J,} are again
independent, (g, =1 if b€ g) so that we have

dPrg ({Jo}) = 1] du ()
bel g
and the mapping can be applied to the single graph if I'g is
infinite dimensional in the weak sense a.s.w.r. to P(g). If now
the graphs obey to a self-average property, we can simply exploit
the solution known for the complex graph with uniform coupling.
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In particular, if we condiser the random graphs where the only
constraint is p(k), for a uniform coupling we have
Dorogovtesv et al 2002 - Leone et al 2002:

I) /(1) _ (k)p
tanh(8¢" (1) = ,
(k2)p — (k)p
and by applying the mapping we get the exact P-F and P-5SG
critical lines for a complex network with coupling disorder:

fdu(Jp) tanh (B8 g) = e P _F
(62} (o
Kim et al 2005 — Ostilli 2006
[ du(Jp) tanh2(88 ) = ke p_sG
62}y

AS in the previous cases, we can study also the critical behavior
of the coupling disordered model by the effective substitutions

tann(3DJD) = [du(s) tann(8s), P -F,

tanh(8(D Dy /d,u(,]b) tanh2(4.J;), P _SG,

to be plugged into the expressions of the related Ising model.
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Key ingredients of the “proof” I

1. High temperature expansion
2. Replica trick : 2", ne R—2z", neN

n—1
3. Or, alternatively, log(z) =log(1 4+ (2 —1)) = Zn%

4. D(IN) — oo

There is no functional to be extremized = as a consequence:
NO ANSATZ IS REQUIRED!
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High Temperature Expansion I

Z ({Bp}) = 2V I[ cosh (k) Y~ T tanh (k3),

bel T obery

where the sum runs over all the multipolygon (closed paths) ~
and

Kb = ﬁJb.
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Averaging over the disorder we have

/dP (L)) 10g (Z ({J,})) = /dp ({Jp}) log (QN I1 COSh(Kb))

bel

+/d7’({Jb}) log (Z 11 tanh(Kb)) :

T obey
from which we get

—BF = Nlog(2) + 3 /dub log (cosh(K3)) + &,
bel

where the non trivial part ¢ is given by

b= /dP ({Jp}) log (Z 11 tanh(Kb)> .

T obery
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Replica Trickl

Let
P ({tanh(Kp)}) =) ][ tanh(Ky).

T obey
To evaluate the free energy we need to consider the averages of

P" for n €N
p(n) = /d7> ({J,}) P™ ({tanh(K&})}) .

The free energy term ¢ can be obtained in terms of P(”), via
the replica method:

(n) _
b= lim P L

n—0 n
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Exploiting D — ooI

Let us consider a measure du with zero average. The general
evaluation of the term P(27) is a formidable task, in which one
has to deal with 2n paths which can overlap in all the possible
ways with 0,2,...,2n overlaps. Nevertheless, if D — oo strictly,
up to terms O(1/D) the only possible overlap correspond to the
“two to two” one = in the thermodynamic limit we have

P o (P (tann?(k)))" vs < 9.
If D(I') — oo only weakly, the above equality holds only in the

left-limit 8 — ﬁéSG)_. For this last statement it is crucial to use

the fact that:

The critical behavior of the system is determined by the paths
of arbitrarily large length

By using the last equation with the replica formula we have

¢ o pr(tanh?(Ky))
and the mapping follows immediately.
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Conclusions and Outlooksl

e An exact and general method to get the upper critical surface
and the upper critical behavior of quenched models

e NO ansatz

e In the P phase we can solve as many random models as
many non random models we are able to solve, analytically
or numerically
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e A method particularly suitable for models defined over net-
works. In particular we have:

— Great semplification

— No tree-like ansatz required! (The related Ising model is
Fully Connected)

— For models on Poissonian Graphs: A clear Universal Mean-
Field-like behavior

— For Complex Networks we are able to study exactly the
random versions (du(Jy) # 6(J] — Jp,)dJ})
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Open problemsl

e Generalization to other (non Ising) models? (for p-spin mod-
els is already clear)

e \What happens adding A7 Can we formulate the mapping
rigorously also when h # 07

e \What happens when there are important constrains on the

2
{g9p}? The effective substitution (k)p, — %C—QP works well for
p
power law distributions not too flat, v > 5. Can we formulate
the mapping more in general?

41



References l

Mainly for the strict infiniteness:
M. Ostilli, J. Stat. Mech. (2006) P10004

Application to random graphs:
M. Ostilli, J. Stat. Mech. (2006) P10005

For the weak infiniteness:
M. Ostilli, arXiv:0706.1949

42



