Dynamics of Networking Social Agents: From Diplomacy to Friendship

Petter Holme¹ Gourab Ghoshal² Mark Newman²

¹University of New Mexico

²University of Michigan

July 17, 2007, Statistical mechanics of distributed information system

http://www.cs.unm.edu/~holme/

Petter Holme

P. Holme & M. E. J. Newman, Phys. Rev. E 74, 056108 (2006).

- Opinions spread over social networks.
- People with the same opinion are likely to become acquainted.
- We try to combine these points into a simple model of simultaneous opinion spreading and network evolution.

Petter Holme

Mark Newman

P. Holme & M. E. J. Newman, Phys. Rev. E 74, 056108 (2006).

• Opinions spread over social networks.

- People with the same opinion are likely to become acquainted.
- We try to combine these points into a simple model of simultaneous opinion spreading and network evolution.

Petter Holme

Mark Newman

P. Holme & M. E. J. Newman, Phys. Rev. E 74, 056108 (2006).

- Opinions spread over social networks.
- People with the same opinion are likely to become acquainted.
- We try to combine these points into a simple model of simultaneous opinion spreading and network evolution.

Petter Holme

Mark Newman

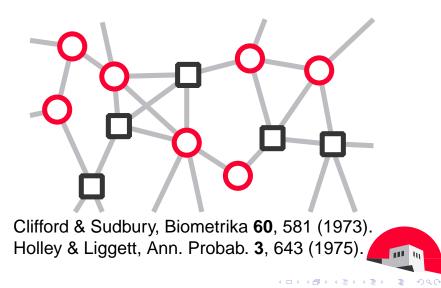
P. Holme & M. E. J. Newman, Phys. Rev. E 74, 056108 (2006).

- Opinions spread over social networks.
- People with the same opinion are likely to become acquainted.
- We try to combine these points into a simple model of simultaneous opinion spreading and network evolution.

Petter Holme

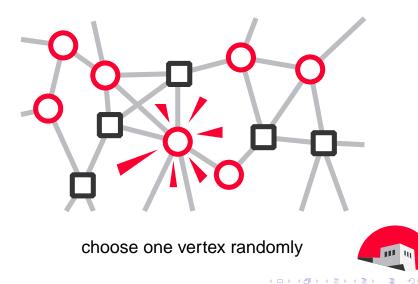
Mark Newman

the voter model



Petter Holme

the voter model

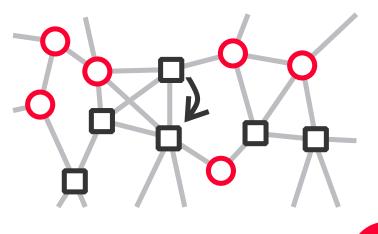


Petter Holme

Gourab Ghoshal

Mark Newman

the voter model



copy the opinion of a random neighbor

Petter Holme

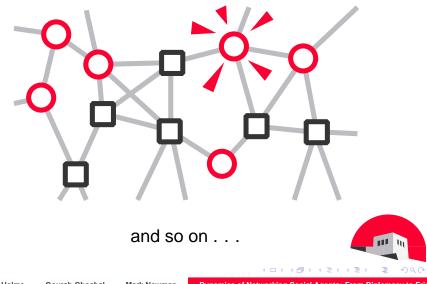
Gourab Ghoshal

Mark Newman

ৰ □ ৮ ৰ 🗇 ৮ ৰ ই ৮ ৰ ই ৮ ট ই 🔊 ৭ ্ে Dynamics of Networking Social Agents: From Diplomacy to Frie

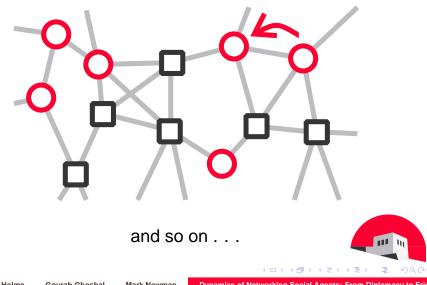
4 UL

the voter model



Petter Holme

the voter model

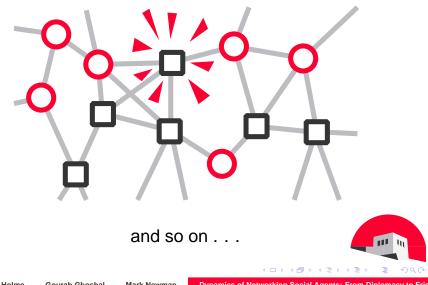


Petter Holme

Gourab Ghoshal

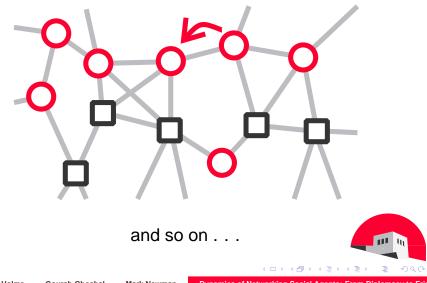
Mark Newman

the voter model



Petter Holme

the voter model



Petter Holme

the voter model

acquaintance dynamics

- People of similar interests are likely to get acquainted. e.g.: McPherson *et al.*, Ann. Rev. Sociol. 27, 415 (2001).
- The number of edges is constant.

Petter Holme

Mark Newman

the voter model

acquaintance dynamics

- People of similar interests are likely to get acquainted. e.g.: McPherson *et al.*, Ann. Rev. Sociol. **27**, 415 (2001).
- The number of edges is constant.

Petter Holme

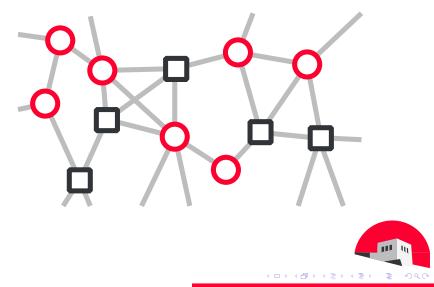
Mark Newman

the voter model

acquaintance dynamics

- People of similar interests are likely to get acquainted. e.g.: McPherson *et al.*, Ann. Rev. Sociol. **27**, 415 (2001).
- The number of edges is constant.

acquaintance dynamics

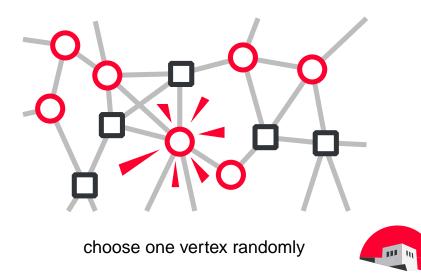


Petter Holme

Gourab Ghoshal

Mark Newman

acquaintance dynamics



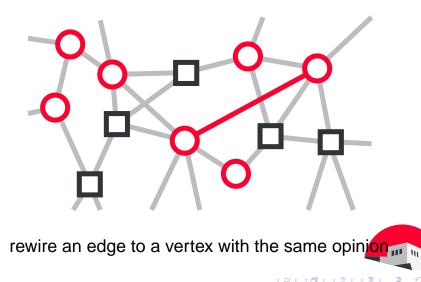
Petter Holme

Gourab Ghoshal

Mark Newman

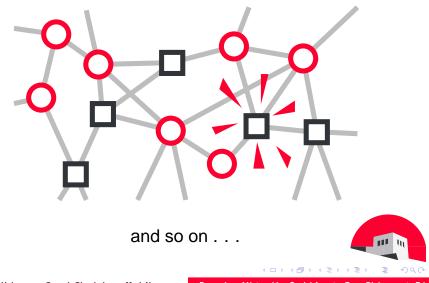
ৰ □ ৮ ৰ 🗇 ৮ ৰ ই ৮ ৰ ই ৮ ট ই 🔊 ৭ ্ে Dynamics of Networking Social Agents: From Diplomacy to Frie

acquaintance dynamics



Petter Holme

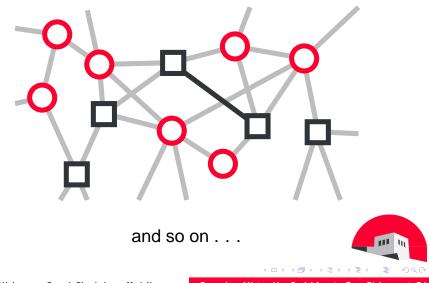
acquaintance dynamics



Petter Holme

Mark Newman

acquaintance dynamics

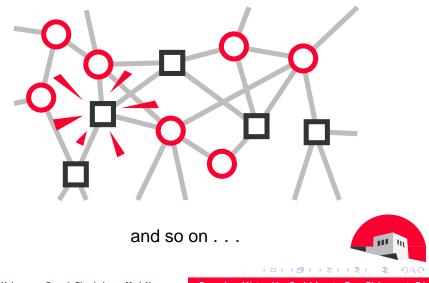


Petter Holme

Gourab Ghoshal

Mark Newman

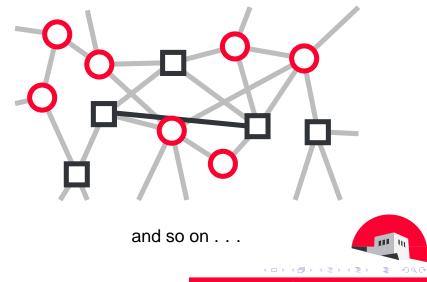
acquaintance dynamics



Petter Holme

Mark Newman

acquaintance dynamics



Petter Holme

Gourab Ghoshal

Mark Newman

- Start with a random network of *N* vertices $M = \overline{k}N/2$ edges and $G = N/\gamma$ randomly assigned opinions.
- Pick a vertex *i* at random.
- 3 With a probability ϕ make an acquaintance formation step from *i*.
- I... otherwise make a voter model step from i.
- If there are edges leading between vertices of different opinions—iterate from step 2.

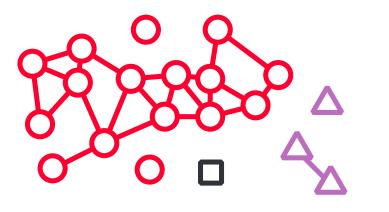
- Start with a random network of *N* vertices $M = \overline{k}N/2$ edges and $G = N/\gamma$ randomly assigned opinions.
- Pick a vertex *i* at random.
- 3 With a probability ϕ make an acquaintance formation step from *i*.
- I... otherwise make a voter model step from i.
- If there are edges leading between vertices of different opinions—iterate from step 2.

- Start with a random network of *N* vertices $M = \overline{k}N/2$ edges and $G = N/\gamma$ randomly assigned opinions.
- Pick a vertex i at random.
- 3 With a probability ϕ make an acquaintance formation step from *i*.
- I... otherwise make a voter model step from i.
- If there are edges leading between vertices of different opinions—iterate from step 2.

- Start with a random network of N vertices $M = \overline{k}N/2$ edges and $G = N/\gamma$ randomly assigned opinions.
- Pick a vertex i at random.
- Solution With a probability ϕ make an acquaintance formation step from *i*.
- ... otherwise make a voter model step from i.
- If there are edges leading between vertices of different opinions—iterate from step 2.

- Start with a random network of *N* vertices $M = \overline{k}N/2$ edges and $G = N/\gamma$ randomly assigned opinions.
- Pick a vertex i at random.
- Solution With a probability ϕ make an acquaintance formation step from *i*.
- ... otherwise make a voter model step from i.
- If there are edges leading between vertices of different opinions—iterate from step 2.

- Start with a random network of *N* vertices $M = \overline{k}N/2$ edges and $G = N/\gamma$ randomly assigned opinions.
- Pick a vertex i at random.
- Solution With a probability ϕ make an acquaintance formation step from *i*.
- ... otherwise make a voter model step from i.
- If there are edges leading between vertices of different opinions—iterate from step 2.



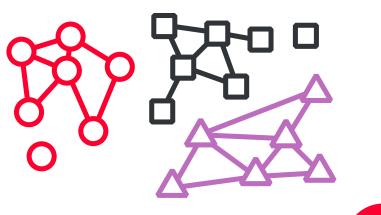
low ϕ —one dominant cluster

Petter Holme

Gourab Ghoshal

Mark Newman

ৰ □ ৮ ৰ 🗇 ৮ ৰ ই ৮ ৰ ই ৮ ট ই 🔊 ৭ ্ে Dynamics of Networking Social Agents: From Diplomacy to Frie



high ϕ —clusters of similar sizes

Petter Holme

Gourab Ghoshal

Mark Newman

ৰ □ ৮ ৰ 🗇 ৮ ৰ ই ৮ ৰ ই ৮ ট ই 🔊 ৭ ্ে Dynamics of Networking Social Agents: From Diplomacy to Frie

Ju

quantities we measure

- The relative largest size *S* of a cluster (of vertices with the same opinion).
- The average time τ to reach consensus.

Petter Holme

Mark Newman

quantities we measure

- The relative largest size *S* of a cluster (of vertices with the same opinion).
- The average time τ to reach consensus.

Petter Holme

Mark Newman

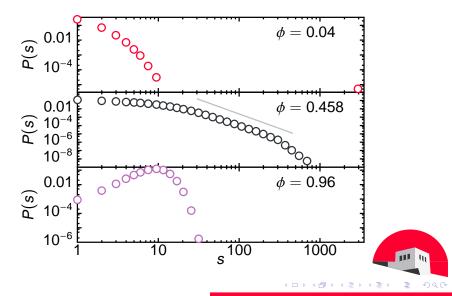
quantities we measure

- The relative largest size *S* of a cluster (of vertices with the same opinion).
- The average time τ to reach consensus.

Petter Holme

Mark Newman

cluster size distribution



Petter Holme

Mark Newman

finding the phase transition

Assume a critical scaling form:

scaling form

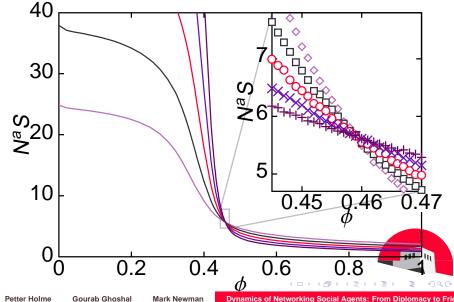
$${m S}={m N}^{-a}\,{m F}\!\!\left({m N}^b(\phi-\phi_c)
ight)$$

900 E (E) (E) (B) (D)

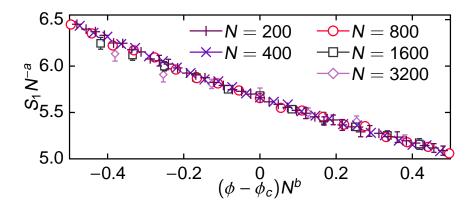
Petter Holme

Mark Newman

finding the phase transition



finding the phase transition



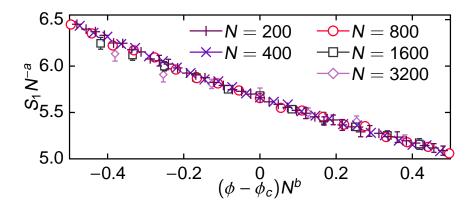
 $a = 0.61 \pm 0.05$, $\phi_c = 0.458 \pm 0.008$, $b = 0.7 \pm 0.1$ random graph percolation: a = b = 1/3

Petter Holme

Gourab Ghoshal

Mark Newman

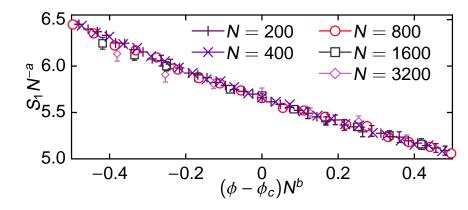
finding the phase transition



 $a = 0.61 \pm 0.05$, $\phi_c = 0.458 \pm 0.008$, $b = 0.7 \pm 0.1$ random graph percolation: a = b = 1/3

Petter Holme

finding the phase transition

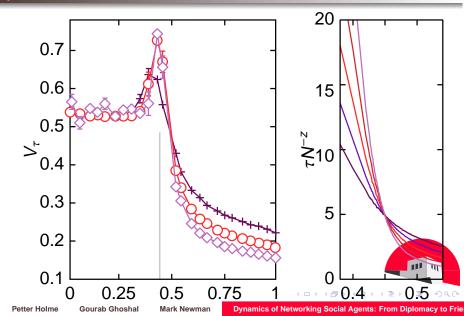


 $a = 0.61 \pm 0.05$, $\phi_c = 0.458 \pm 0.008$, $b = 0.7 \pm 0.1$ random graph percolation: a = b = 1/3

Petter Holme

▲ □ ▷ ▲ 관 ▷ ▲ 볼 ▷ ▲ 볼 ▷ 월 ♡ Q (~ Dynamics of Networking Social Agents: From Diplomacy to Frie

dynamic critical behavior



- We have proposed a simple, non-equilibrium model for the coevolution of networks and opinions.
- The model undergoes a second order phase transition between: One state of clusters of similar sizes. One state with one dominant cluster.
- The universality class is not the same as random graph percolation.
- In society, a tiny change in the social dynamics may cause a large change in the diversity of opinions.

Petter Holme

Mark Newman

- We have proposed a simple, non-equilibrium model for the coevolution of networks and opinions.
- The model undergoes a second order phase transition between: One state of clusters of similar sizes. One state with one dominant cluster.
- The universality class is not the same as random graph percolation.
- In society, a tiny change in the social dynamics may cause a large change in the diversity of opinions.

Petter Holme

Mark Newman

- We have proposed a simple, non-equilibrium model for the coevolution of networks and opinions.
- The model undergoes a second order phase transition between: One state of clusters of similar sizes. One state with one dominant cluster.
- The universality class is not the same as random graph percolation.
- In society, a tiny change in the social dynamics may cause a large change in the diversity of opinions.

Petter Holme

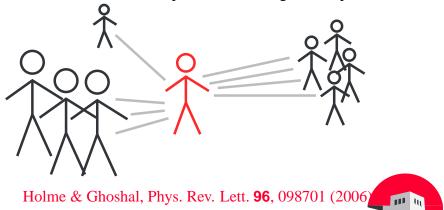
Mark Newman

- We have proposed a simple, non-equilibrium model for the coevolution of networks and opinions.
- The model undergoes a second order phase transition between: One state of clusters of similar sizes. One state with one dominant cluster.
- The universality class is not the same as random graph percolation.
- In society, a tiny change in the social dynamics may cause a large change in the diversity of opinions.

- We have proposed a simple, non-equilibrium model for the coevolution of networks and opinions.
- The model undergoes a second order phase transition between: One state of clusters of similar sizes. One state with one dominant cluster.
- The universality class is not the same as random graph percolation.
- In society, a tiny change in the social dynamics may cause a large change in the diversity of opinions.

motivation

In diplomacy, lobbying or other political or corporate networking, it is important to:

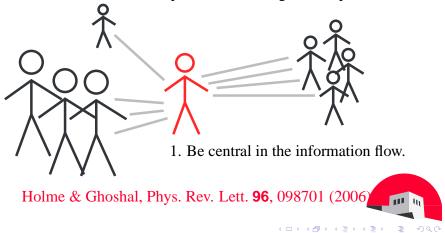


Petter Holme

▲ □ ▷ ▲ đ ▷ ▲ 클 ▷ ▲ 클 ▷ ▲ 클 ▷ ○ Q (~ Dynamics of Networking Social Agents: From Diplomacy to Frie

motivation

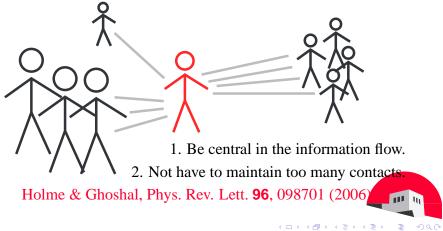
In diplomacy, lobbying or other political or corporate networking, it is important to:



Petter Holme

motivation

In diplomacy, lobbying or other political or corporate networking, it is important to:



Petter Holme

• Central is good—closeness centrality

$$C(i) = (N-1) / \sum_{j \neq i} d(i,j)$$

- If the network is disconnected, being a part of a large component is good.
- Large degree is bad.

(□) < 個) < 言) < 言) < 言) < ○)

• Central is good—closeness centrality

$$C(i) = (N-1) / \sum_{j \neq i} d(i,j)$$

- If the network is disconnected, being a part of a large component is good.
- Large degree is bad.

ৰ 🗆 ৮ ৰ 🗇 ৮ ৰ ই ৮ ৰ ই ৮ টি হ 🔊 ৭ ি Dynamics of Networking Social Agents: From Diplomacy to Frie

Petter Holme

Gourab Ghoshal

Mark Newman

• Central is good—closeness centrality

$$C(i) = (N-1) / \sum_{j \neq i} d(i,j)$$

- If the network is disconnected, being a part of a large component is good.
- Large degree is bad.

Petter Holme

ৰ □ ৮ ৰ 🗇 ৮ ৰ ই ৮ ৰ ই ৮ ট ই 🔊 ৭ ্ে Dynamics of Networking Social Agents: From Diplomacy to Frie

• Central is good—closeness centrality

$$C(i) = (N-1) / \sum_{j \neq i} d(i,j)$$

- If the network is disconnected, being a part of a large component is good.
- Large degree is bad.

Component size can be incorporated by modifying the definition of closeness: If we sum the reciprocals (instead of inverting the sum), we get the score function:

Definition

$$s(i) = \begin{cases} (1/k_i) \sum_{H_i} 1/d(i,j) & \text{if } k_i > 0 \\ 0 & \text{if } k_i = 0 \end{cases}$$

H_i is the component *i* belongs to, except *i*

Petter Holme

ৰ □ ৮ ৰ 🗇 ৮ ৰ ই ৮ ৰ ই ৮ ট ই 🔊 ৭ ্ে Dynamics of Networking Social Agents: From Diplomacy to Frie

Component size can be incorporated by modifying the definition of *closeness:* If we sum the reciprocals (instead of inverting the sum), we get the score function:

Definition

$$s(i) = \begin{cases} (1/k_i) \sum_{H_i} 1/d(i,j) & \text{if } k_i > 0\\ 0 & \text{if } k_i = 0 \end{cases}$$

 H_i is the component *i* belongs to, except *i*

Petter Holme

Mark Newman

ৰ াচ ৰ ঐচিৰ ইচৰ ইচি ই তি ়ি Dynamics of Networking Social Agents: From Diplomacy to Frie

Component size can be incorporated by modifying the definition of *closeness:* If we sum the reciprocals (instead of inverting the sum), we get the score function:

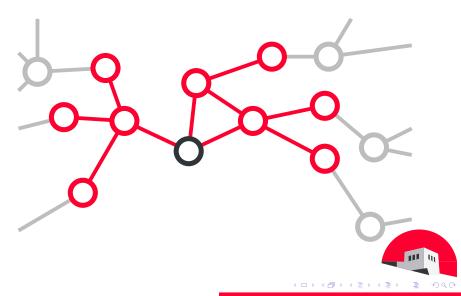
Definition $s(i) = \begin{cases} (1/k_i) \sum_{H_i} 1/d(i,j) & \text{if } k_i > 0 \\ 0 & \text{if } k_i = 0 \end{cases}$ (1)

 H_i is the component *i* belongs to, except *i*

Petter Holme

▲ □ ▷ ▲ đ ▷ ▲ 클 ▷ ▲ 클 ▷ ▲ 클 ▷ ◇ < ↔ Dynamics of Networking Social Agents: From Diplomacy to Frie

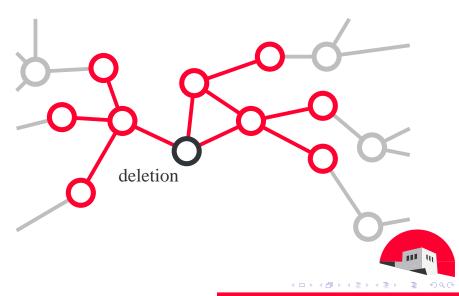
moves



Petter Holme

Mark Newman

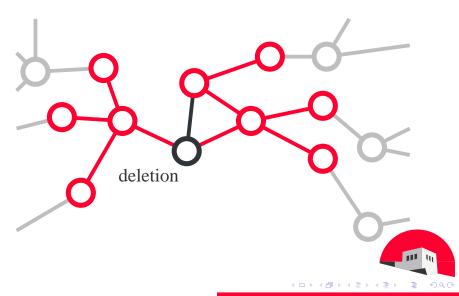
moves



Petter Holme

Mark Newman

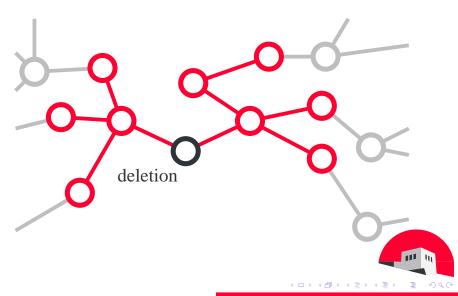
moves



Petter Holme

Mark Newman

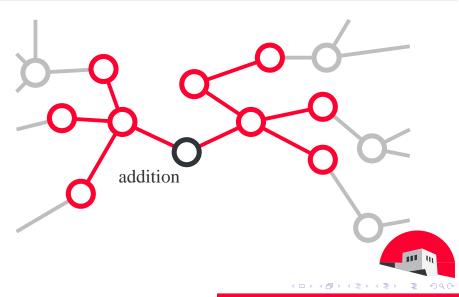
moves



Petter Holme

Mark Newman

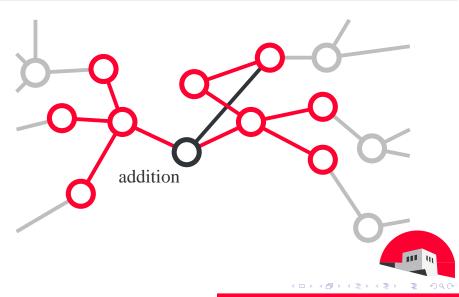
moves



Petter Holme

Mark Newman

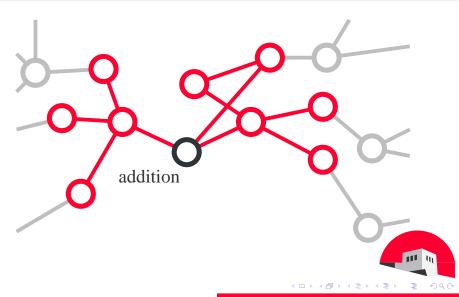
moves



Petter Holme

Mark Newman

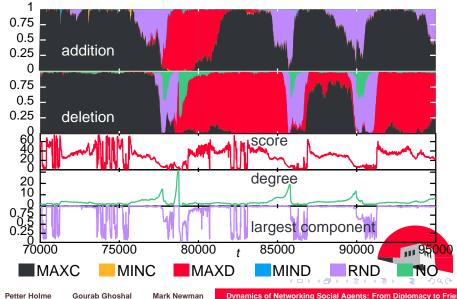
moves



Petter Holme

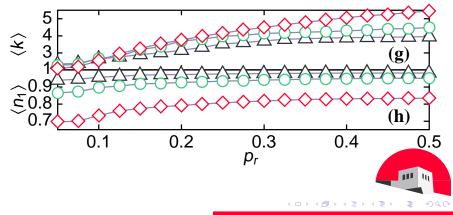
Mark Newman

time evolution



effect of random moves: degree & cluster size

$$\wedge$$
 $N = 200$ $N = 800$



Petter Holme

Mark Newman

- A simple problem that gets quite convoluted when one wants to be general.
- Complex time evolution with spikes, quasi-equilibria and trends.
- Network structure and strategy densities are correlated.
- The most common strategy, over a large range of parameter space, is MAXC.
- MAXC gives a bimodal degree distribution
- The NO/NO strategy is not stable—Red Queen.
- The network gets sparser and more connected with size

- A simple problem that gets quite convoluted when one wants to be general.
- Complex time evolution with spikes, quasi-equilibria and trends.
- Network structure and strategy densities are correlated.
- The most common strategy, over a large range of parameter space, is MAXC.
- MAXC gives a bimodal degree distribution
- The NO/NO strategy is not stable—Red Queen.
- The network gets sparser and more connected with size

- A simple problem that gets quite convoluted when one wants to be general.
- Complex time evolution with spikes, quasi-equilibria and trends.
- Network structure and strategy densities are correlated.
- The most common strategy, over a large range of parameter space, is MAXC.
- MAXC gives a bimodal degree distribution
- The NO/NO strategy is not stable—Red Queen.
- The network gets sparser and more connected with size

- A simple problem that gets quite convoluted when one wants to be general.
- Complex time evolution with spikes, quasi-equilibria and trends.
- Network structure and strategy densities are correlated.
- The most common strategy, over a large range of parameter space, is MAXC.
- MAXC gives a bimodal degree distribution
- The NO/NO strategy is not stable—Red Queen.
- The network gets sparser and more connected with size

- A simple problem that gets quite convoluted when one wants to be general.
- Complex time evolution with spikes, quasi-equilibria and trends.
- Network structure and strategy densities are correlated.
- The most common strategy, over a large range of parameter space, is MAXC.
- MAXC gives a bimodal degree distribution
- The NO/NO strategy is not stable—Red Queen.
- The network gets sparser and more connected with size

- A simple problem that gets quite convoluted when one wants to be general.
- Complex time evolution with spikes, quasi-equilibria and trends.
- Network structure and strategy densities are correlated.
- The most common strategy, over a large range of parameter space, is MAXC.
- MAXC gives a bimodal degree distribution
- The NO/NO strategy is not stable—Red Queen.
- The network gets sparser and more connected with size

- A simple problem that gets quite convoluted when one wants to be general.
- Complex time evolution with spikes, quasi-equilibria and trends.
- Network structure and strategy densities are correlated.
- The most common strategy, over a large range of parameter space, is MAXC.
- MAXC gives a bimodal degree distribution
- The NO/NO strategy is not stable—Red Queen.

- A simple problem that gets quite convoluted when one wants to be general.
- Complex time evolution with spikes, quasi-equilibria and trends.
- Network structure and strategy densities are correlated.
- The most common strategy, over a large range of parameter space, is MAXC.
- MAXC gives a bimodal degree distribution
- The NO/NO strategy is not stable—Red Queen.
- The network gets sparser and more connected with size.