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COEVOLUTION OF NETWORKS & OPINIONS: the idea

P. Holme & M. E. J. Newman, Phys. Rev. E 74, 056108 (2006).

Opinions spread over social networks.

People with the same opinion are likely to become acquainted.

We try to combine these points into a simple model of
simultaneous opinion spreading and network evolution.

Petter Holme Gourab Ghoshal Mark Newman Dynamics of Networking Social Agents: From Diplomacy to Friendship



coevolution of networks & opinions
agents competing for high-centrality & low degree

COEVOLUTION OF NETWORKS & OPINIONS: the idea

P. Holme & M. E. J. Newman, Phys. Rev. E 74, 056108 (2006).

Opinions spread over social networks.

People with the same opinion are likely to become acquainted.

We try to combine these points into a simple model of
simultaneous opinion spreading and network evolution.

Petter Holme Gourab Ghoshal Mark Newman Dynamics of Networking Social Agents: From Diplomacy to Friendship



coevolution of networks & opinions
agents competing for high-centrality & low degree

COEVOLUTION OF NETWORKS & OPINIONS: the idea

P. Holme & M. E. J. Newman, Phys. Rev. E 74, 056108 (2006).

Opinions spread over social networks.

People with the same opinion are likely to become acquainted.

We try to combine these points into a simple model of
simultaneous opinion spreading and network evolution.

Petter Holme Gourab Ghoshal Mark Newman Dynamics of Networking Social Agents: From Diplomacy to Friendship



coevolution of networks & opinions
agents competing for high-centrality & low degree

COEVOLUTION OF NETWORKS & OPINIONS: the idea

P. Holme & M. E. J. Newman, Phys. Rev. E 74, 056108 (2006).

Opinions spread over social networks.

People with the same opinion are likely to become acquainted.

We try to combine these points into a simple model of
simultaneous opinion spreading and network evolution.

Petter Holme Gourab Ghoshal Mark Newman Dynamics of Networking Social Agents: From Diplomacy to Friendship



coevolution of networks & opinions
agents competing for high-centrality & low degree

the voter model

Clifford & Sudbury, Biometrika 60, 581 (1973).
Holley & Liggett, Ann. Probab. 3, 643 (1975).
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the voter model

choose one vertex randomly
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the voter model

copy the opinion of a random neighbor
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the voter model

and so on . . .
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the voter model

acquaintance dynamics

People of similar interests are likely to get acquainted. e.g.:
McPherson et al., Ann. Rev. Sociol. 27, 415 (2001).

The number of edges is constant.

Petter Holme Gourab Ghoshal Mark Newman Dynamics of Networking Social Agents: From Diplomacy to Friendship



coevolution of networks & opinions
agents competing for high-centrality & low degree

the voter model

acquaintance dynamics

People of similar interests are likely to get acquainted. e.g.:
McPherson et al., Ann. Rev. Sociol. 27, 415 (2001).

The number of edges is constant.

Petter Holme Gourab Ghoshal Mark Newman Dynamics of Networking Social Agents: From Diplomacy to Friendship



coevolution of networks & opinions
agents competing for high-centrality & low degree

the voter model

acquaintance dynamics

People of similar interests are likely to get acquainted. e.g.:
McPherson et al., Ann. Rev. Sociol. 27, 415 (2001).

The number of edges is constant.

Petter Holme Gourab Ghoshal Mark Newman Dynamics of Networking Social Agents: From Diplomacy to Friendship



coevolution of networks & opinions
agents competing for high-centrality & low degree

acquaintance dynamics

Petter Holme Gourab Ghoshal Mark Newman Dynamics of Networking Social Agents: From Diplomacy to Friendship



coevolution of networks & opinions
agents competing for high-centrality & low degree

acquaintance dynamics

choose one vertex randomly
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acquaintance dynamics

rewire an edge to a vertex with the same opinion
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our model

1 Start with a random network of N vertices M = k̄N/2 edges
and G = N/γ randomly assigned opinions.

2 Pick a vertex i at random.
3 With a probability φ make an acquaintance formation step

from i.
4 . . . otherwise make a voter model step from i.
5 If there are edges leading between vertices of different

opinions—iterate from step 2.
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phases

low φ—one dominant cluster
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phases

high φ—clusters of similar sizes
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quantities we measure

The relative largest size S of a cluster (of vertices with the
same opinion).

The average time τ to reach consensus.
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cluster size distribution
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finding the phase transition

Assume a critical scaling form:

scaling form

S = N−a F
(

Nb(φ − φc)
)
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finding the phase transition
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finding the phase transition

(φ − φc)Nb
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a = 0.61 ± 0.05, φc = 0.458 ± 0.008, b = 0.7 ± 0.1
random graph percolation: a = b = 1/3
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dynamic critical behavior
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conclusions

We have proposed a simple, non-equilibrium model for the
coevolution of networks and opinions.

The model undergoes a second order phase transition
between: One state of clusters of similar sizes. One state with
one dominant cluster.

The universality class is not the same as random graph
percolation.

In society, a tiny change in the social dynamics may cause a
large change in the diversity of opinions.
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motivation

In diplomacy, lobbying or other political

or corporate networking, it is important to:

Holme & Ghoshal, Phys. Rev. Lett.96, 098701 (2006).
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motivation

In diplomacy, lobbying or other political

or corporate networking, it is important to:

1. Be central in the information flow.

2. Not have to maintain too many contacts.

Holme & Ghoshal, Phys. Rev. Lett.96, 098701 (2006).
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score function

Central is good—closeness centrality

C(i) = (N − 1)/
∑

j,i

d(i, j)

If the network is disconnected, being a part of a large
component is good.

Large degree is bad.
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score function

Component size can be incorporated by modifying the definition of
closeness: If we sum the reciprocals (instead of inverting the sum),
we get the score function:

Definition

s(i) =

{

(1/ki)
∑

Hi
1/d(i, j) if ki > 0

0 if ki = 0
(1)

Hi is the component i belongs to, except i
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moves
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moves

deletion
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time evolution
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effect of random moves: degree & cluster size
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conclusions

A simple problem that gets quite convoluted when one wants
to be general.

Complex time evolution with spikes, quasi-equilibria and
trends.

Network structure and strategy densities are correlated.

The most common strategy, over a large range of parameter
space, is MAXC.

MAXC gives a bimodal degree distribution

The NO/NO strategy is not stable—Red Queen.

The network gets sparser and more connected with size.
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