Onsala Space Observatory

The Swedish National Facility for Radio Astronomy (VR & Chalmers) located on the peninsula Onsala, 45 km S of Göteborg

25m cm-wave telescope

built 1963
the first high-sensitive maser radiometers
detected interst. CH
first intercontinental VLBI

- operating range: 0.8-1.8, 4.5-5.3, 6.0-6.7 GHz

- receivers: HEMT, T_{rec} ≈ 40-80 K
- spectrometers: >0.002 km/s resolution,
 <12.8 MHz bandwidth

20m mm-wave telescope

built 1976
largest mm-wave telescope for several year => astronomical molecular line discoveries
first mm-wave VLBI

operating range: 18-50, 84-116 GHz
receivers: HEMT (T_{rec} ≈ 80 K), SIS (T_{rec} ≈ 100 K)
spectrometers: >0.04 km/s resolution, <1.3 GHz bandwidth
2.2-12 GHz for astro/geo-VLBI

The Swedish-ESO Submillimetre Telescope (SEST), La Silla, Chile

2003 A very successful

1988

project, now in mothballs

View of Northern Chile (NASA Space Shuttle)

ESO PR Photo 24b/99 (8 June 1999)

© ESO - ESA - Claude Nicollier

Llano Chajnantor (5100 m alt.) in the Chilean Atacama desert

Atacama Pathfinder Experiment (APEX)

Atmospheric transmission

zenith Transmission (%)

The Bolivian winter Jan-March

Division of costs and observing time MPG 50%, ESO 27%, Sweden 23% (Chile 10%)

Diameter: 12m Surface acc.: 17µm (rms) 264 aluminium panels Pointing: 2.5" (rms) Beamwidth (345 GHz): 18" Total mass: 125 ton

Holographic measurements of surface accuracy

Receiver development: Group for advanced receiver development, Chalmers group leader Victor Belitsky Common-user heterodyne instruments: APEX: - APEX-1, SIS 211-275 GHz - APEX-4, 600-700 GHz not approved, - APEX-5, 780-950 GHz nor financed

APEX2a: 350 GHz SIS heterodyne receiver

APEX 2a

APEX1 SIS receiver at 230 GHz (1.3 mm)

2SB Mixer Chip for 211-275 GHz Using SMMIC Technology

SIS junction with area 3.5 μ m² \sim

Group for Advanced Receiver Development (GARD OSO)

50 µm

Additional instruments

- LABOCA: 300 element bolometer array, 870 μ m
- SABOCA: 37 element bolometer array, 350 μ m
- 300 element bolometer array at 2mm, for the Sunyayev-Zeldovich effect
- FLASH: heterodyne receiver at 490 and 810 GHz

- CHAMP+: 2x7 element het. rec. array at 670 and 870 GHz

Sequitor (San Pedro de Atacama) the observing base

Very Long Baseline Interferometry (VLBI)

VLBI Configuration

A much larger telescope is synthesized => much higher angular resolution

OSO-Haystack (US): the first intercontinental baseline (1968)

OSO: the first mm wavelength VLBI yielding an angular resolution of 50 µarcs (1980)

OSO-Haystack: the current e-VLBI record, 512 Mbit/s through "dedicated light path" (2005)

≈100 days/year is used for VLBI observations at OSO

European VLBI network

Development of high-angular-resolution radio astronomy

Figure 2 Illustration showing the improvement over the past half century in imaging the radio galaxy Cygnus A. (*a*) The intensity interferometer observations of Jennison & Das Gupta (1953). (*b*) Observations at 20 cm with the Cambridge 1-mile radio telescope (Ryle et al. 1965). (*c*) Observations with the 5-km radio telescope at 6 cm (Hargrave & Ryle 1974). (*d*) 6-cm VLA observations of Perley et al. (1984). (*e*) Same as in (*d*) but with CLEANing. (*f*) Same as (*d*) with CLEANing and self-calibration. (*g*) Self-calibrated CLEAN 6-cm image based on more extensive VLA observations by Carilli and Perley (see Carilli & Harris 1996). (*h*) Image of the nuclear region made with a 13-station global array working at 1.3 cm by Krichbaum et al. (1998). (*i*) The inner region of the nucleus imaged with a resolution of 0.00015 arcsec using an 8-station VLBI array at 7-mm wavelength (Krichbaum et al. 1998). The right hand panel of the figure was provided by T. Krichbaum.

Geodetic VLBI (crustal motion)

Geodetic-VLBI (polar motion)

 $0.1'' \approx 3 \text{m}$

Huygen's descent to Titan

JIVE led Ground based VLBI Observations of the ESA Huygens Probe during its descent through the atmosphere of Titan...

Observations proved to be crucial due to communications failure in Cassini...

The Odin astronomy/aeronomy satellite

Participating countries: Sweden, France, Canada, Finland Launched: Febr. 2001 Radiometer: 119 GHz, 487-585 GHz

Odin data centre at OSO Astronomy and aeronomy project scientists at "OSO"

The Atacama Large Millimeter Array (ALMA)

- A collaboration between Europe, USA, and Japan to build:
 50 x 12m antenna array
 4 x 12m + 12 x 7m compact array
- Initially 4 bands: 115, 230, 345, 670 GHz
- Baselines: from 150 m to 18.5 km
- Angular resolution: < 0.01"
- Flux sensitivity: < 1 mJy in 10 min.
- Data rate: ≈ 10 Tbit/s

Atmospheric transmission at Chajnantor, pwv = 0.5 mm

Continuous "Zoom" configuration (devised by John Conway, OSO)

- From 150-m to 4 km in a quasi-continuous zoom
- Homogeneous beam properties for intermediate configurations
- Well defined move strategy
- 33 different configurations with 3 antenna moved each time, or 24 configurations with 4 antennas moved each time
- Resolution changes by 9% (or 14 % for 4 ant.) at each step
- Flexible scheme: less than 2% sensitivity loss if configuration does not exactly match the required angular resolution.

Configuration Number 15

Two antenna designs!!!! Two prototypes (Alcatel & Vertex) at VLA site for testing

ALMA compared to existing mm-wave arrays

Collecting area 6000 m² (x 6 over existing) Speed up time for a given sensitivity:

- Collecting areax 40Bandwidth & polx 20 (continuum)Receivers + sitex 10OVERALLx 8,000 for continuum observations
- x 400 for line observations T_b sensitivity 1K in 1hr for thermal emission (100 times better than today)

ALMA timescale: unofficially 16 telescopes operating in 2010

e-VLBI (real-time VLBI)

The data is not compressible, white noise All data rates through network must be the same

Low Frequency Radio Array (LOFAR)

- Frequency range: 30-240 MHz, cheap antennae
- 15400 antennae, 77 stations with 200 antennae (LB/HB)
- 74 M€ secured (station cost 700 k€, 80m diameter)
- Germany: 6 (+6) stations
- France, Italy, United Kingdom, Sweden: ?
- Science data start: 2008

Multi-beaming (electronically)

Copies of signals processed separately to give multiple beams

software radiotelescope

LOFAR

LOFAR in 2008

Total data generation rate:	22 Tbit/s
77 sensor stations	
Edge processing:	116 Top/s
FPGA's for local signal conditioning	
Data transport to Central Processor:	0,8 Tbit/s
Raw Ethernet for max data rates	
TCP/IP for lowest data rates	
Central processing:	43 Tflop/s
IBM BlueGene/L in LINUX cluster	
Internally within correlator: 46 Tbit/s	
I/O: 400 Gb/s / 50 Gb/s	
Data storage	PetaByte
Data output to end users:	40 Gbit/s
Output to Géant users: 20 Gbit/s	

TIMELINE

Concept

International Working Group

Start of Prototyping

2000 Signing of first Memorandum of Agreement

2005

Signing of extended Memorundum of Agreement

2005 Site Ranking Decision

2009 Final Technology Decision

20 Construction of pathfinder on site

20 3 Early Science

20 4 Construction of full array

2020 Full SKA operational! Square Kilometer Array (SKA) construction cost ≈ 1000 M€ running cost ≈ 100 M€

Argentina, Australia, China, South Africa

Economy

- VR running budget: 21.5 Mkr/yr
- Chalmers running budget: 6.5 Mkr/yr
- EU TNA: 530 k€ over 5 years
- VR+Wallenberg, APEX receivers: 16 Mkr
- VR, LOFAR planning grant: 675 kkr
- EU, SIS junctions: 420 k€ over 3 years
- EU, ALMA Band 5: 5.1 M€ over 5 years
- EU, EXPReS (e-VLBI): 135 k€ over 3 years
- ESO, Water vapour radiometer: 315 k€
- ESO, ALMA SiS junctions: 120 k€

