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Outline 

Aspects of THz - FELs: 
• Radiation bandwidth 
• Resonator issues 
• Slippage effects 

 

Applications: 
• nonlinear optics 
• nano-spectroscopy 
• 'action spectroscopy' 

 

The FELIX laboratory 
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Generic layout 
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Radiation bandwidth: linac pulse structure 
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Radiation bandwidth: Fourier transform 

∆ 

δ 

pulse shape spectrum 

∆ . δ  ε  constant 

'transform limited' : no frequency / phase fluctuations of the carrier 
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Radiation bandwidth: Fourier transform 

∆ 
Γ δ 

γ 

Γ . γ  = O(1) 

∆ . δ  = O(1) 

multiple pulses multiple spikes 



Institute for Molecules and Materials 

Radiation bandwidth: phase locking 
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Phase locking & single mode selection 
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Phase locking & single mode selection 
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out-coupling schemes:  
 

• 'semi-transparent' mirrors 

• beam splitter 

• hole coupling 

• edge coupling 

Resonator issues 
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Resonator issues: on-axis hole coupling 
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Resonator issues: on-axis hole coupling 
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Resonator issues: on-axis hole coupling 
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Resonator issues: edge-coupling 
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Hole vs edge coupling: λ - dependence 
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Hole vs edge coupling: λ - dependence 

Typical gain curve 
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Hole coupling: tuning curves 



Institute for Molecules and Materials 

Hole coupling: measured losses 

α0,c  = computed outcoupling loss 
 
   α  = measured roundtrip loss 
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Partial-waveguide resonator 
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e-beam 

Eigenmodes are a combination of TE and Hermit-Gaussian modes: 
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Typical tuning curve FELIX waveguide FEL 
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Mode conversion in free-space part 

   

Power loss of n = 1 in free-space part 
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Measured roundtrip gain and loss 
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Measured roundtrip gain and loss  cont. 

   

slit width = 15 mm 



Institute for Molecules and Materials 

'FLARE' in Nijmegen 

e-beam:  10-15 MeV, 3 GHz, 10 µs, 10 Hz 
wavelength range:  100 – 1500 µm 
special feature:  narrow-band mode 
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cm-1 
 14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 

11.3 MeV 

cm-1 
 31 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 

13.2 MeV 

FLARE tuning gaps 
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Slippage effects 

•  Lethargy 
•  Efficiency enhancement 
•  Limit-cycles 
•  Bandwidth tuning 
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FELIX macropulse shape at λ = 40 µm 

Slippage effects 
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Slippage effects: gain and saturation 
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Slippage effects: gain and saturation 

Slippage correction: 

Gain   

Gain   
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Slippage effects: gain and saturation 
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entrance 

exit 

short pulse propagation 

Slippage effects: efficiency enhancement 



Institute for Molecules and Materials 

FELIX macropulse shape at λ = 40 µm 

Slippage effects 
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Slippage effects: limit cycles 
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λ = 18 µm • bandwidth 0.4 - 6% [FWHM] 
 
• near transform limited  
 

Slippage effects: bandwidth tunability 
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 delay time [ps]

 

FELIX micro-pulse shape at λ = 150 mm  
for different cavity detunings 

c
L

α
τ ∆

=
2Exponential leading edge has a time constant:                      

where α are the cavity losses and ∆L is the  
cavity detuning from synchronism 
 

Slippage effects: pulse length tunability 
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Nonlinear optics: lifetime of quantum-dot intersubband levels 

InGaAs self-assembled quantum dots 
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Nonlinear optics: lifetime of quantum-dot intersubband levels 

Lifetime strongly depends on  
energetically available decay channel 

FELBE: E.Zibik et al., Nature Materials 8 (2009) 803 
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A hydrogen-like atom in a silicon chip 

H Si:P 
εr 1 11.4 
me 1 0.19 
ER 13.6 eV 0.020 eV 
a0 0.056 nm 3.2 nm 
B0 117,000 T 32 T 

• Characteristic field 
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QIP proposal: THz control of entanglement 

A. M. Stoneham et al, J. Phys. C, 15, L447, 2003. 

control:1s(A1) 

2p 

qubitA:1s(A1) 
e.g. Bi 

e.g. P 

Continuum 

E 

THz 

qubitA:1s(A1) 
e.g. Bi 
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Coherent control of orbital states: Hahn echo in Si:P 
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Coherent control of orbital states: Hahn echo in Si:P 

T2 ~ 160 ps lifetime 

Greenland et al, Nature 465 (2010) 1057 

delay   [ps] 
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Nano spectroscopy: single quantum dot 

FELBE: R. Jacob et al., Nano lett.12 (2012) 4336 
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Nano spectroscopy: PHB inside bacteria 
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CLIO: C. Mayet et al., Analyst 135 (2010) 2540 

Nano spectroscopy: PHB inside bacteria 
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Nano spectroscopy: spin-off 
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Infrared Action Spectroscopy 

Dissociation 
Fragmentation 
Ionization 
Electron Loss 
…. 

0 

main application: 
gas phase studies 
molecules, clusters, complexes 
neutral, ionic species 
molecular beams, ion traps 
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Mechanism, Infrared Spectrum, Molecular Structure 
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Mechanism, Infrared Spectrum, Molecular Structure 
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P. Ehrenfreund  

Large organic compounds in space 
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Gas-phase infrared spectra of ionic PAHs 

ApJ 542 404 (2000) 
ApJL 560 L90 (2001) 
JPC-A 105 8302 (2001)  
JPC-A 107 782 (2003) 
ApJ 591 968 (2003) 
ApJ L66 706 (2009) 
JCP 131 184307 (2009) 
ANIE 50 7004 (2011) 
ApJ 83 746 (2012) 
ApJ 170 787 (2014) 
….. 

- Investigate various and larger systems in various states – cation, anion, protonated, deprotonated etc. 
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Understanding Mechanisms of Peptide sequencing 

mobile 
proton 

nucleophilic 
attack 

amide bond 
cleavage 

collisional 
activation 

b/y  
fragments 

http://upload.wikimedia.org/wikipedia/commons/f/fb/Peptide_fragmentation.gif
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b/y fragmentation pathway 

mobile proton 

nucleophilic 
attack 

amide bond 
cleavage 

b-fragment: oxazolone y-fragment: truncated peptide 
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Do all b2 ions have oxazolone structures? 
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Alternative b/y pathway: N-terminus as nucleophile 

mobile proton 

nucleophilic 
attack 

amide bond 
cleavage 

b-fragment: diketopiperazine y-fragment: truncated peptide 

Lower in energy than oxazolone ! 
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Oxazolone fragment structure identified by spectroscopy 

b2 from AAA 
Oomens, Young, Molesworth, van Stipdonk, JASMS 2009, 
20, 334 

b2 from AGG 
Yoon, Chamot-Rooke, Perkins, Hilderbrand, Poutsma, 
Wysocki JACS, 2009, 20, 334 

b2 from GGG 
Chen, Steill, Oomens, Polfer, JACS, 2009, 191, 18272 
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H2O-loss from protonated GlyArg and ArgGly 

Zou, Oomens, Polfer, IJMS 2012, 316-318, 12 

no oxazolone 

N-terminus as nucleophile: Arg 

oxazolone 
diketopiperazine 
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Spectroscopy in the THz range 
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Production of clusters 

• Smalley-type cluster source 
 

• Laser vaporization of metal rod 
in presence of He 
 

• Clusters cooled to ~ 100K  
 

• Optional: reaction gas added in 
reaction channel (prior to 
expansion) 

• Interaction with laser(s) 

• Mass spectrometric detection 

532 nm YAG 

skimmer 

reflectron 

ions 

MCP detector 

FELICE 

sample  
rod 

pulsed  
valve 

LN2 cooled 
channel 
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Gruene, Science 321, 674 (2008). 

Catalysis: Structure determination of metal clusters 
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Catalysis: Molecular vs dissociative adsorption 

CO adsorption on metal clusters  
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FELIX Laboratory: The Infrared Sources 

The FELIX Laboratory 
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FELIX Laboratory: The Infrared Sources 

The FELIX Laboratory 
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The FELICE beam line 

molecular beam experiment FTICR-MS experiment 

FELICE resonator  
configuration 
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FELIX vs FELICE 

FELIX 

FELICE 

mass spectra IR spectra 
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FELIX Laboratory: The Infrared Sources 

three independent beamlines 
to serve user experiments  
simultaneously 
   - FLARE 
   - FELIX FEL1 or FEL2 
   - FELICE 

The FELIX Laboratory 
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FELIX facility @ Nijmegen: User Laboratories 

 
 

User laboratory 1 – FLARE & FELIX 
FLARE Diagnostic 

Station 
Ultrafast laser system 
Kimel & Rasing (RU) 

He-droplet machine 
Havenith (Bochum) 

Dilution Refrigerator 
EPSRC, Aeppli, Murdin 
 

Molecular beam  
apparatus Paul type Ion trap  Cold 22-pole ion trap 

Schlemmer (Cologne) 

To be defined 
 

(currently construction of 
FLARE beam line) 

muli-purpose 
station with  
optical table 
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FELIX facility @ Nijmegen: User Laboratories 

 
 

User laboratory 2 – 
 FELIX & FELICE 

Ultrafast laser 
systems 

Non-linear optics 
laboratory 

Versatile FTICR 
mass spectrometer 

Bruker 
ion trap 

FELIX  
diagnostic  

station 

FELICE 
FTICR mass 
spectrometer 

FELICE 
cluster apparatus 

Cluster  
setup 
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Our neighbour: HFML 

Site Magnet Planned Bore 

1 32T  (Optics above) 50mm 

2 38T 32mm 

3 33T (FIR above) 38T (2015) 32mm 

4 30T (hybrid, 10MW) 50mm 

5 33T  38T (2015) 32mm 

6 45T (2017) 32mm 

M6M2 M4

Main Entrance

Control 
Room

M1 M3 M5

P1

P3 P2

S/C 2

S/C1

2 4 6 

5 3 1 

IR and THz FEL light 
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Combination of THz radiation and Magnetic Field 
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ωp = 6.33 THz 
meff = 0.021 m0 
n = 1.66 x 1017 cm-3  

Te-doped n-InSb  

Magneto-plasma oscillations: n-type InSb  
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Magneto-plasma oscillations: n-type InSb  

Calculations Experiment 
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Thank you for your attention 

72 
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