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X-ray free-electron lasers may enable atomic-resolution 
imaging of biological macromolecules 
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J. Hajdu,  Nature 406 (2000) 



Our first experiments set out to answer a number of open 
questions  

CBST - DOE Workshop 
March 2004 at SLAC 
Janos Hajdu 
Keith Hodgson 
Henry Chapman 

1. How short is short enough to outrun radiation damage? 
2. How can you get single molecules into the X-ray beam? 
3. How can you determine orientation from noisy diffraction? 



Single particles give rise to continuous diffraction 
patterns 



Phase retrieval can be accomplished with iterative 
transform algorithms 
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Coherent X-ray diffraction data   =1.6 nm, from a sample of 50-
nm gold spheres arranged on a pyramid on a synchrotron 
 
Complete image reconstruction achieved, without any prior 
knowledge, using our “shrinkwrap” algorithm, parallelized for 
3D on 32-CPU cluster.  Resolution = 10 nm 

Coherent X-ray diffraction data, rotating 
the sample -70 to +70 degrees (5⋅108 
data points) 

1 micron 
H. Chapman, et al., JOSA A 23 1169 
(2006) 

We reconstructed a 3D X-ray image of a non-crystalline 
object at 10 nm resolution 
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Our diffraction camera can measure forward scattering 
close to the direct soft-X-ray FEL beam  

Multilayer reflectivity is uniform across the 
30° to 60° gradient  

“Soft edge” prevents any 
scatter from the hole   



“Diffraction before destruction” was demonstrated with soft 
X-rays at DESY’s FLASH FEL 

1 micron 

Chapman et al, Nature Physics 2 839 
(2006) 



“Diffraction before destruction” was demonstrated with soft 
X-rays at DESY’s FLASH FEL 



We perform ab initio image reconstruction with our 
“Shrinkwrap” algorithm 
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Our first experiment was actually a bit simpler… 
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First EUV-FEL experiments show that structural 
information can be obtained before destruction 
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Initial high-angle diffraction shows no change in structure 
of particles greater than 12 nm 
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XFEL diffraction of molecules and clusters is modified 
(damaged) by photoionization and motion of atoms 
Photoionization (and subsequent collisional ionization) releases charges from the free 

molecule which lead to Coulomb explosion.   
After ~10 fs, charges are trapped and neutralize the core of the particle 
Nuclear motion occurs on outer layers first 
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S. Hau-Riege et al, Phys Rev E  69, 051906 
(2004) 
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We invented a new method called femtosecond time-
delay holography  
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Prompt diffraction 
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H. Chapman et al., Nature 448 676 (2007) 



Time-delay holography with 3 fs time resolution indicates 
the particle explosion 

Single shot ultrafast time-delay X-ray 
hologram, with 300 fs delay  
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132 m long undulator 

The Linac Coherent Light Source has been in operation 
since 2009 

X-ray energies from 
500 eV to 10 keV 



Bragg diffraction is a good indicator of structural integrity  
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Hard X-ray experiments at LCLS show high-resolution 
diffraction  

3.0 Å resolution 

Photosystem I 
9.3 keV 
Single shot pattern  
~1 mJ (5 × 1011 photons) 
40 fs 
2 × 1017 W/cm2 
25 GW X-ray pulse 

crystals prepared 
by Petra Fromme 



Crystal diffraction is sensitive to atomic displacements 
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displacement of 
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Hard X-ray experiments at LCLS show high-resolution 
diffraction  

crystals by Petra 
Fromme 

3.0 Å resolution 

Photosystem I 
9.3 keV 
Single shot pattern  
~1 mJ (5 × 1011 photons) 
40 fs 
2 × 1017 W/cm2 
25 GW X-ray pulse 








Intensities are merged into a “3D powder” pattern 



2.1 Å resolution structure of polyhedrin obtained from 
single Granulovirus particles 

C. Gati, CFEL, with Peter Metcalf, University of 
Auckland and Johannes Jehle, Julius Kuehn Institute 

2 μm 

Virus body 
8,000 unit cells,  
a,b,c = 100Å 
Volume of crystalline part:  

0.008 μm3 
 
Dose: 2 GGy 

Structure solved to 2.1 Å, by 
averaging over 100,000 patterns.   
Single-shot resolution about 4 Å 

Unit cell consists of 24 
interlocking polyhedrin 
molecules.  Evolution 
optimised the crystal 



4QX0,4QX2, 
4QX1, 4QX3 

There are now 44 FEL depositions in the protein 
databank 
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A crystal only gives Bragg diffraction when it is a crystal!  
Selecting Bragg peaks filters the data 
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Barty et al. Nature Photon 6, 35–40 (2012) 

Photosystem I, 2 keV, 6 GGy 



At fast timescales the ionisation gates the diffraction 
rather than nuclear motion 
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Higher dose rates (i.e. higher X-ray intensities) should 
give larger Bragg signals 
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We propose to use the fluence dependence of heavier 
element scattering factors for phasing 
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Difference electron density between high and low 
fluences reveals the positions of sulfur atoms 

Difference map: High intensity 
minus low intensity 
 
High intensity: ~20 GGy dose 
Low intensity: ~2 GGy dose 
 
Sample: Cathepsin B (Lars 
Redecke) 
 
Analysis: Lorenzo Galli 
(CFEL) & Max Nanao (ESRF) 



The Gd electron density is reduced at high fluence 

Red mesh: anomalous map at 5σ.   
Thomas Barends 

High fluence: 1013 ph/μm2   (10 GGy) 

Low fluence: 2⨉1011 ph/μm2 (200 MGy) 
 
Difference: ~4 electrons in Gd (and surroundings) 

Lorenzo Galli & 
Thomas Barends 

see also Barends et al 
Nature 505 (2014) 



Atomic-resolution diffraction from single particles 
should be possible with 1014 ph/μm2 

34 

28 nm 

1014 ph/μm2   
60 GGy 
6000 MGy/fs ⨉ 10 fs 
 
RMS displacement: 0.5Å 
half electrons ionized 3 Å resolution 



Solution scattering gives single-molecule diffraction, but 
orientationally averaged 



Aligned molecules yield a single-molecule pattern 



How well aligned do you need? 

w 
d 20 Å 

photosystem II 



Needle-like objects align in the jet 

6000 fps 

50 μm 

Gas focused jet: John Spence, Uwe Weierstall,  
      Dan Deponte ASU 






Adding DNA “kite tails” may align arbitrarily-shaped 
molecules 

6 keV photon energy 
1012 ph/μm2 
(1 GGy) 

simulated single shot 

simulated 
1000 shots, 
axially 
aligned 

Lourdu Xavier Paulraj (CFEL) 
Ned Seeman (NYU) 



Even bad crystals should attain the required level of 
alignment 

Extended Data Figure 2 | Background corrected 
diffraction pattern of a photosystem II microcrystal  Kuptiz et al, Nature 513, 261 (2014) 
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Phasing diffraction of periodic structures is challenging 
because of the information deficit 

Current phasing methods for crystal diffraction: 
•  Molecular replacement 
•  Anomalous diffraction 
•  Isomorphic replacement (and things like RIP) 
•  Direct methods (atomic resolution) 
•  Density modification 

David Sayre 
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