Chiral bands in nuclei Experimental status C. Petrache University Paris Sud and CSNSM

- Historical elements
- Main actors on the experimental side
- Experimental fingerprints
- Mass regions of interest

Chirality in triaxial nuclei

Static chirality

1997

Dynamic chirality

Frauendorf & Meng, NPA 617, 1997

C.P. et al, NPA 597, 1996

Chirality in triaxial nuclei

Theoretical paper Frauendorf, Meng, Nucl. Phys. A 617

1997

Tilted rotation of triaxial nuclei (134 Pr best candidate)

° ∩OTECUT:

Conditions are discussed when the axis of rotation lies inside or outside the principal planes of the triaxial density distribution. The planar solutions represent $\Delta I=1$ bands, whereas the aplanar solutions represent pairs of identical $\Delta I=1$ bands with the same parity. The two bands differ by the chirality of the principal axes with respect to the angular momentum vector. The transition from planar to chiral solutions is evident in both the quantal and the mean field calculations. Its physical origin is discussed.

First experimental evidence of chirality in 1996, ignoring the chiral interpretation which arrived in 1997

Experimental paper

¹³⁴Pr - C.P. et al., Nucl. Phys. A 597

Study of the $\pi h_{11/2}$ [413]5/2 – $\nu h_{11/2}$ [514]9/2 doublet bands.

The difference of 2 \hbar in the experimental alignments and the B(M1)/B(E2) values are discussed in terms of shape coexistence and coupling with the γ phonon, but no consistent interpretation could be found.

C.P. et al, PRL 96, 2006

C.P. et al, NPA 597, 1996

Crossing bands in ¹³⁴Pr

Theoretical paper Dimitrov, Frauendorf, Dönau, PRL 84

Chirality of nuclear rotation (¹³⁴Pr best candidate)

It is shown that the rotating mean field of triaxial nuclei can break the chiral symmetry. Two nearly degenerate $\Delta I=1$ rotational bands originate from the left-handed and right-handed solutions. The ¹³⁴Pr and ¹⁸⁸Ir are discussed.

Experimental papers :

N=73 ¹²⁸Cs, ¹³⁰La,¹³²Pr
Koike, Starosta, et al., PRC 63
N=75 ¹³⁰Cs, ¹³²La,¹³⁴Pr, ¹³⁶Pm
Starosta, Koike et al., PRL 86
N=75 ¹³⁶Pm Hartley et al., PRC 64
N=75 ¹³⁸Eu Hecht et al., PRC 63
N=77 ¹³⁴La Bark et al., NPA 691

Experimental papers :

- ¹³⁶Nd : candiate for chiral doublet bands

Mergel, Petrache et al., EPJA 15 –> not confirmed by lifetime measurements which show different transition rates implying two distinct configurations (Mukhopadhyay et al., PRC 78, 2008).

Level scheme of ¹³⁶Nd

E. Mergel et al. EPJ A15 (2002) 417 - 420

Eperimental papers :

- ¹²⁸⁻¹³⁴Cs : Koike, Starosta et al., PRC 67
- ¹³²Cs : Rainovski et al., PRC 68
- ¹³⁴Pr : Roberts et al., PRC 67 change of spins
- ¹⁴⁰Eu : Hecht et al., PRC 68
- ¹³⁵Nd : Zhu et al., PRL 91

Theoretical paper :

- A~130 and A~100 : Peng, Meng, Zhang, PRC 68

¹²⁸⁻¹³⁴Cs : Koike, Starosta et al., PRC 67

¹³⁵Nd: Zhu, Garg et al., PRL 91, 2003 composite chiral pair of rotational bands in ¹³⁵Nd First odd-A chiral nucleus !

0.5

19

0.6

21

Experimental papers :

- ¹⁰⁴Rh : Vaman, Koike, Starosta et al., PRL 92
- ¹⁰⁵Rh : Alcantara et al., PRC 69
- ¹⁰⁶Rh : Joshi et al., PLB 595

Theoretical papers :

- Selection rules for electromagnetic transitions Koike, Starosta, Hamamoto, PRL 98

- Critical frequency in nuclear chiral rotation Olbratowski Dobaczewski, Dudek, Plociennik, PRL 93

¹⁰⁴Rh : Vaman et al., PRL 92, 2004 First A~100 nucleus !

¹⁰⁴Rh : Joshi et al., PLB 595, 2004

Experimental papers :

¹⁰⁰Tc : Joshi et al., EPJA 24
 ¹⁰⁶Ag : Joshi et al., JPG 31
 ¹⁰⁴Rh,¹³⁰Cs,¹³⁴Pr : Koike et al., JPG 31

Experimental papers :

- ¹³⁴Pr transition probabilities : Tonev et al., PRL 96
 ¹³⁴Pr quadrupole moments : Petrache et al., PRL 96
 ¹²⁸Cs transition probabilities : Grodner et al., PRL 97
- ¹²⁶Cs : Wang et al., PRC 74
 ¹⁰³Rh : Timar et al., PRCR 73
- $..\Gamma] \Lambda \Xi] \Pi E E OMEM] \Xi O:$

multiple chiral doublets in ¹⁰⁶Rh : Meng et al., PRC 73
 Skyrme-Hartree-Fock : Olbratowski, Dobczewski, Dudek, PRC 73

Analysis of interaction between the bands in the crossing region of ¹³⁴Pr

Even spins

Analysis of interaction between the bands in the crossing region of ¹³⁴Pr

$$|y\rangle = \alpha_I |1\rangle + \sqrt{1 - \alpha_I^2} |2\rangle$$

$$|ny\rangle = \sqrt{1 - \alpha_I^2} |1\rangle - \alpha_I |2\rangle,$$

$$\frac{2V}{\Delta E_I} = \sin[2\sin^{-1}(\alpha_I)].$$

$$\frac{B[E2, I^{ny} \to (I-2)^y]}{B[E2, I^{ny} \to (I-2)^{ny}]} = \left(\frac{Q_{0,1}\alpha_{I-2}\sqrt{1-\alpha_I^2} - Q_{0,2}\alpha_I\sqrt{1-\alpha_{I-2}^2}}{Q_{0,1}\sqrt{1-\alpha_{I-2}^2}\sqrt{1-\alpha_I^2} + Q_{0,2}\alpha_I\alpha_{I-2}}\right)^2$$

$$\frac{B[E2, I^y \to (I-2)^{ny}]}{B[E2, I^y \to (I-2)^y]} = \left(\frac{Q_{0,1}\alpha_I\sqrt{1-\alpha_{I-2}^2} - Q_{0,2}\alpha_{I-2}\sqrt{1-\alpha_I^2}}{Q_{0,1}\alpha_I\alpha_{I-2} + Q_{0,2}\sqrt{1-\alpha_I^2}\sqrt{1-\alpha_{I-2}^2}}\right)^2$$

Risk of Misinterpretation of Nearly Degenerate Pair Bands as Chiral Partners in Nuclei

C. M. Petrache,¹ G. B. Hagemann,² I. Hamamoto,^{3,2} and K. Starosta⁴

Plot of the ratio Q₁/Q₂ of unperturbed quadrupole moments vs the interaction strength |V| in the crossing region

Experimental and calculated absolute B(E2) & B(M1) for the transitions in ¹³⁴Pr Tonev et al., PRL 96 (2006)

¹²⁸Cs – transition probabilities : Grodner et al., PRL 97

2007

Experimental papers :

- ¹⁰⁵Ag : Timar et al., PRC 76
 ¹⁰⁶Ag : Joshi et al., PRL 98
 - ¹³⁴Pr: Tonev et al., PRC 76 lifetimes, IBFFM
 - ¹³⁵Nd : Mukhopahyay et al., PRL 99 TAC+RPA calculations

Theoretical papers :

 PRM calculations : Zhang, Qi, Wang, Meng, PRC 75

2008

Experimental papers :

- ^{103,104}Rh : Suzuki et al., PRCR 78 lifetimes
- ¹³⁶Nd : Mukhopahyay et al., PRC 78 lifetimes \rightarrow no chiral doublets
- ¹⁹⁸TI : Lawrie et al., PRCR 78 region of oblate nuclei γ ~44°

Theoretical papers :

-IBFFM calculations Brant et al., PRC 78 - RMF calculations for multiple chiral doublets in Rh isotopes Peng et al., PRC 77

Experimental papers :

^{108,110,112}Rh : Luo et al., PLB 670 chiral vibrations, TAC+RPA

Theoretical papers :

- IBFM calculations for ¹³⁵Nd, ¹³⁷Nd Brant, Petrache, PRC 79
- IVBM calculations for ¹²⁶Pr, ¹³⁴Pr, ¹³²La
 - Ganev et al., PRC 79
- CPHC calculations : Droste et al., EPJA 42
- PRM calculations for ¹³⁵Nd : Qi et al., PLB 675
- B(M1) staggering : Qi et al., PRCR 79
- multiple chiral doublets in ¹⁰⁶Rh
 - Yao et al., PRC 79

2009

Experimental papers :

^{108,110,112}Rh : Luo et al., PLB 670 chiral vibrations, TAC+RPA

Theoretical papers :

- IBFM calculations for ¹³⁵Nd, ¹³⁷Nd Brant, Petrache, PRC 79
- IVBM calculations for ¹²⁶Pr, ¹³⁴Pr, ¹³²La
 - Ganev et al., PRC 79
- CPHC calculations : Droste et al., EPJA 42
- PRM calculations for ¹³⁵Nd : Qi et al., PLB 675
- B(M1) staggering : Qi et al., PRCR 79
- multiple chiral doublets in ¹⁰⁶Rh
 - Yao et al., PRC 79

2009

2010

Experimental papers :

- ¹⁹⁸TI : Lawrie et al., EPJA 45

 $..\Gamma J \Lambda \Xi J \Pi E E E M J E O:$

- PRM calculations
Lawrie, Shirinda, PLB 689
- multiple chiral doublets with CMI and VMI Chen et al., PRC 82

2011

Experimental papers :

- ¹²⁶Cs : Grodner et al., PLB 703 chiral transition rules
 - ⁸⁰Br : Wang et al., PLB 703 chiral vibration
- ¹³⁴Pr : Timar et al., PRC 84 new chiral candidate

- RMF calculations in ¹⁰⁵Rh
Li, Zhang, Meng, PRC 83
- chiral vibrations in A=135
Almehed, Dönau, Frauendorf, PRC 83

¹²⁸La

2012

Experimental papers :

- ¹³⁸Nd : Petrache et al., PRC 86
 ¹²⁸La : Ma et al., PRC 85
- $..\Gamma J \land \Xi J \Pi E E E M = M = M = M$
- TPSM calculations for ¹²⁸Cs
 Bhat, Sheikh, Palit, PLB 707
 chirality in real nuclei
 Shirinda, Lawrie, EPJA 48

¹³⁸Nd – 21 bands at medium spins !

044321 (2012)

Potential energy curves

2013

Experimental papers :

- ¹³³Ce : Ayageankaa et al., PRL 110 multiple chiral bands
- ¹³²La : Kuti et al., PRC 87
- ¹⁹⁴TI: Masiteng et al., PLB 719

 $..\Gamma J \Lambda \Xi J \Pi E E O MEM J E O:$

multi-chiral-pair bands
Hamamoto, PRC 88
collective Hamiltonian for chiral modes
Chen et al., PRC 87
risk of chiral interpretation in ^{103,105,106,107}Ag
Ma et al., PRC 88
multiple chiral doublet bands in ¹⁰⁷Ag
Qi et al., PRC 88

¹³³Ce : Ayageankaa, Garg, Frauendorf et al., PRL 110, 2013 multiple pairs of chiral doublet bands (M_χD)

2014

Experimental papers :

- ¹⁰³Rh : Kuti et al., PRL 113 multiple chiral bands 1 excited chiral doublet !
- ¹⁰⁶Ag : Rather et al., PRL 112
 ¹⁰⁶Ag : Lieder et al., PRL 112

- ¹⁰²Rh : Tonev et al., PRL 112 lifetimes → chiral vibrations

- collective Hamiltonian for chiral modes Chen et al., PRC 87

¹⁰⁶Ag : Lieder et al., PRL 112, 2014 Resolution of chiral conundrum in ¹⁰⁶Ag

¹⁰³Rh : Kuti et al., PRL 113, 2014 multiple chiral doublet bands with identical configuration 1 excited chiral doublet ! (MχD)

 $\pi(1g_{9/2})^{-1} \otimes \nu(1h_{11/2})^2$

¹⁰⁶Ag : Lieder et al., PRL 112, 2014 Resolution of chiral conundrum in ¹⁰⁶Ag

Conclusions

20 years of intense life, 100 articles (30 letters and Rapid Comm.)!

Regions of chirality : 80, 100, 130, 180, 200

Experimental fingerprints :

- almost constant energy difference between partners
- similar intraband transitions probabilities
- similar single-particle alignments
- attenuated energy staggering
- B(M1) staggering (why only in Cs nuclei?)
- present in odd-odd, odd-A and even-even nuclei (¹³⁶Nd,¹³⁸Nd?)

Theoretical fingerprints :

- similar expectation values of the squared angular momenta
- similar spin aligned along two perpendicular axes
- near maximal triaxiality
- only above a critical rotational frequency
- degeneracy over a limited spin range