Multiple chirality in ¹⁰³Rh and possible chiral cases in region A~130

I. Kuti, J. Timár, D. Sohler

Chiral Bands in Nuclei – Nordita, Stockholm, 20-22 April 2015

Nuclear chirality

Fingerprints of chirality – ideal case

Ideal case (three perpendicular vectors):

- maximally triaxial nuclear shape (γ =30)
- π and ν in high-J particle and hole states

- degenerate $\Delta I=1$ bands with the same parity
- similar transition probabilities (B(M1), B(E2))
- small odd-spin even-spin energy staggering
- B(M1) staggering?

Chiral fingerprints in real nuclei – motivation

No simple set of fingerprints!

Study of nuclei with controversial chiral fingerprints should cover their whole band structure, not only the chiral candidate band-pairs.

Chiral fingerprints in real nuclei – motivation

Study of nuclei with controversial chiral fingerprints should cover their whole band structure, not only the chiral candidate band-pairs.

A≈100 mass region: Expected multiple chirality

A≈130 mass region: Chiral candidate band pairs with different B(E2) values

th. calc.: Frauendorf et al.

M χ D bands in ¹⁰⁵Rh are expected:

PHYSICAL REVIEW C 83, 037301 (2011)		
Multiple chiral doublet candidate nucleus ¹⁰⁵ Rh in a relativistic mean-field approach		
Jian Li (李剑) and S. Q. Zhang (张双全)		
School of Physics, State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China		
J. Meng (孟杰) [*]		
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China,		
School of Physics, State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China and		
Department of Physics, University of Stellenbosch, Stellenbosch, South Africa		
(Received 7 January 2011; published 10 March 2011)		

th. calc.: Meng et al.

Timár et al., Phys. Rev. C 73, 011301(R) (2006)

GAMMASPHERE experiment (K. Starosta)

⁹⁶Zr(¹¹B,5n)¹⁰³Rh

fusion-evaporation reaction

- 40MeV beam energy
- ~9x10⁸ quadruple- and higher-fold events
- strongest reaction channel: ¹⁰³Rh

th. calc.: J. Meng et al.

Kuti et al., Phys. Rev. Lett. 113, 032501 (2014)

Petrache et al., Nucl. Phys. A 597, 106 (1996)

Chirality in A≈130 mass region ¹³⁴Pr

GAMMASPHERE experiment (K. Starosta)

- 99 HPGe detectors
- ¹¹⁶Cd(²³Na,5n)¹³⁴Pr

fusion-evaporation reaction

- 115MeV beam energy
- ~7x10⁹ triple coincidence events

4930

Chirality in A≈130 mass region ¹³⁴Pr

Chirality in A≈130 mass region ¹³²La

GAMMASPHERE experiment (K. Starosta)

- 99 HPGe detectors
- 116 Cd(23 Na, α 3n) reaction
- 115MeV beam energy

EUROBALL IV experiment

- 16 clusters, 26 clovers, 30 tapered
- ¹⁰⁰Md(³⁶Sn,p3n) reaction
- 160MeV beam energy

Chirality in A≈130 mass region

Different configuration: Chiral scenario ruled out for Band 3 Similarities with $^{134}\text{Pr:}$ Possible third $\pi h_{11/2}\nu h_{11/2}$ band

High statistics experiments needed!

Summary

<u>A≈100 mass region:</u> ¹⁰³Rh

Two observed doublet bands with an identical configuration of $\pi g_{9/2}vh_{11/2}g_{7/2}$. A≈130 mass region: ¹³²La and ¹³⁴Pr

New candidate band; chirality in these nuclei is not yet answered.

Outlook

 ^{104}Rh

¹³²La ¹³⁴Pr ¹²⁸Cs

Thank you for your attention!

Chiral Bands in Nuclei – Nordita, Stockholm, 20-22 April 2015

Mult.	DCO	Pol.
$M1(\Delta I=1)$	~1 ~2	-
$E1(\Delta I=0)$	~1	+
E1(Δ I=0) E2	~2 ~2	- +
 Energy		Pol
575 keV 865 keV	2.14(28) 2.08(19)	-0.4(3) -0.5(2)

Chiral Bands in Nuclei – Nordita, Stockholm, 20-22 April 2015