Experimental work on degenerate dipole bands with INGA

RUDRAJYOTI PALIT Department of NUCLEAR AND ATOMIC Physics Tata Institute of Fundamental Research Mumbai, India

Chiral Bands in Nuclei, Nordita, Stockholm 20th – 22th April 2015

TIFR-BARC Pelletron Linac Facility

Pelletron accelerator

- $E/A \sim 3-7$ MeV, $\beta \sim 0.08-0.12$
- Heavy ions reactions upto A ~ 40

Superconducting Linac booster

- $E/A \sim 5-10$ MeV, $\beta \sim 0.10-0.16$
- Heavy ions reactions upto A ~ 80 (limited by pre-accelerator)

- Beam intensity: 0.1-10 pnA (10⁹⁻¹¹ p/s)

(limited by ion source)

Beams accelerated through Pelletron ¹H,⁴He,^{6,7}Li, ⁹Be, ^{10,11}B, ^{12,13}C, ^{16,18}O, ¹⁹F, ^{28,30}Si, ³²S, ³⁵Cl, ... Ag, ¹²⁹I

Beams accelerated through Linac ⁷Li, ^{10,11}B, ¹²C, ^{16,18}O, ¹⁹F, ^{28,30}Si, ³²S, ³⁵Cl

Phase I commissioned on September 22nd, 2002 Phase II commissioned on July 9th, 2007 LINAC dedicated to users on Nov. 28th, 2007

Critical components of LINAC booster have been designed, developed and fabricated indigenously.

The superconducting LINAC has been a major milestone in the development of accelerator technology in India.

INGA campaign

Physics Highlights Search and characterization of novel excitation Magnetic and Anti-Magnetic Rotation Degenerate dipole bands and chirality Wobbling Excitation Shell model excitation and emergence of collectivity Isomers and its application Fission fragment spectroscopy Reaction dynamics study

BARC, IUAC, IUC-KC, SINP, TIFR, VECC, IITs, Univ

Investing in the polarization measurements of gamma rays and "wide-range timing spectroscopy" proved to be a successful approach for creating our specific "niche" and complement research at large scale facilities. Experiments: ~50 (Current experimental campaign 180 days) 60 researchers including 25 PhD students; 30 publications (2012-2015) Moves between 3 accelerators (2001-2015) 120 publications; 50 PhDs

DSP based DAQ has Increased the data throughput by 10 times for INGA

tifr High Count Rate Measurements with DDAQ

R. Palit, et al. NIMA 680 (2012) 90

30

40

- Motivation
- Results from INGA on exotic rotations
 - Degenerate dipole bands & Chiral rotation
 - Wobbling rotation
 - Magnetic and Antimagnetic rotation
- Future plans with INGA

Global Calculations of Ground-State Axial Shape Asymmetry of Nuclei

Peter Möller,^{1,*} Ragnar Bengtsson,² B. Gillis Carlsson,² Peter Olivius,² and Takatoshi Ichikawa³

Rotation of Triaxial Nuclei

Chiral Rotation

S. Frauendorf, J. Meng NPA617, 131 (1997)

Wobbling Mode

Figure 1.7. Nuclear wobbling motion

Frauendorf, Doenau, PRC 89, 014322 (201) Y. Shimizu, et al. PRC 72, 014306 (2005)

FIG. 1. Rotational spectra of a triaxial rotor Hamiltonian. Horizontal rotational bands are connected by solid lines; vertical phonon bands, by dotted lines.

High spin Spectroscopy of ¹¹²In, ¹⁰⁸Ag, ¹⁰⁶Ag isotopes have been carried out with Indian National Gamma Array (INGA).

T. Trivedi, R. Palit et al., PRC 85 014327 (2012) J. Sethi, R. Palit et al., PLB 725 85 (2013) N. Rather et al., PRL 112, 202503(2014)

¹⁰⁸Ag : Experimental Details

- Reaction for level scheme: ¹⁰⁰Mo(¹¹B,3nγ)¹⁰⁸Ag
- Set up : INGA @ TIFR
 18 Compton suppressed HPGe Clover detectors
- Pixie-16 DDAQ from XIA
- Target : 100 Mo (10 mg/cm²) self supported.
- \blacktriangleright Beam : ¹¹B at 39 MeV.

- > Reaction for lifetime : ${}^{94}Zr({}^{18}O, p3n\gamma) {}^{108}Ag$
- Detector set-up : INGA at TIFR with 21 Compton suppressed HPGe Clover detectors
- Pixie-16 DDAQ from XIA
- Target : 94 Zr (0.9 mg/cm²) backed with 10 mg/cm² 197 Au.
- $\blacktriangleright \quad \text{Beam}: {}^{18}\text{O at 72 MeV}.$

¹⁰⁸Ag : Level Scheme

¹⁰⁰Mo(¹¹B,3nγ)¹⁰⁸Ag @ 39 MeV

With 5 HPGe single
 crystal detectors and 8
 NaI detectors as
 multiplicity filters

□ 7 X 10⁷ events: 2-fold

Espinoza-Quinones *et al.*, Phys. Rev. C **52**, 104(1995 12

Twin Bands of ¹⁰⁸Ag

Partial Level Scheme and double gated

J. Sethi et al., Phys. Lett. B 725, 85 (2013 13

Triaxial Projected Shell Model

1. The quasi particle states are generated by triaxial Nilsson+ BCS Hamiltonian.

$$\hat{H} = \hat{H}_0 - \frac{1}{2}\chi \sum_{\mu} \hat{Q}^{\dagger}_{\mu}\hat{Q}_{\mu} - G_M \hat{P}^{\dagger}\hat{P} - G_Q \sum_{\mu} \hat{P}^{\dagger}_{\mu}\hat{P}_{\mu}$$

- 2. Angular momentum projected basis are obtained from the intrinsic Nilsson states.
- 3. The projected angular momentum basis states are used to diagonalize the Shell model Hamiltonian.

Recent work:

J.A. Sheikh, G.H. Bhat, R. Palit, Z. Naik, Y. Sun, Nucl. Phys. A 824 (2009) 58.
J. A. Sheikh, G. H. Bhat, Y. Sun, R. Palit, Phys. Lett, B 688, 305 (2010).
G.H. Bhat, J.A. Sheikh, R. Palit, Phys. Lett, B 707, 237 (2012).
G.H. Bhat, J.A. Sheikh, W.A. Dar, S. Jehangir, R. Palit, P. Ganai, Phys. Lett, B 738, 218 (2014).

Structure of 10⁺ states in gamma-soft ¹³⁴Ce

 ^{134}Ce

Band crossing in ¹³⁴Ce

- The γ- bands built on the qpconfigurations modify theband crossing features.
- Two-qp γ-band with K=3 is
 shown to be energetically
 favored for some spin states
 and form 1st excited state.
- Two I^π = 10⁺ states in ¹³⁴Ce originate from the same two quasi-neutron configurations and both these states should have negative g-factors.

Nucl Phys A 824, 58(2009) & Phys. Rev C 77, 034313 (2008).

J. Sethi^a, R. Palit^{a,*}, S. Saha^a, T. Trivedi^a, G.H. Bhat^b, J.A. Sheikh^b, P. Datta^c, J.J. Carroll^d, S. Chattopadhyay^e, R. Donthi^a, U. Garg^f, S. Jadhav^a, H.C. Jain^a, S. Karamian^g, S. Kumar^h, M.S. Litz^d, D. Mehtaⁱ, B.S. Naidu^a, Z. Naik^j, S. Sihotraⁱ, P.M. Walker^k

Comparison of energy of measured levels with calculation

Degenerate bands reproduced with triaxial deformations $\epsilon_2=0.265$ and $\epsilon'=0.09$

Comparison of ratio of transition strengths

Degenerate dipole bands in ¹⁰⁶Ag

Comparison with systematics suggested yrast band has triaxial shape, while partner band possesses properties which can be explained by axial shape.

P. Joshi et al., PRL 98 102501(2007)

Exploring the Origin of Nearly Degenerate Doublet Bands in ¹⁰⁶Ag

N. Rather,¹ P. Datta,^{2,*} S. Chattopadhyay,¹ S. Rajbanshi,¹ A. Goswami,¹ G. H. Bhat,³ J. A. Sheikh,³ S. Roy,⁴ R. Palit,⁴ S. Pal,⁴ S. Saha,⁴ J. Sethi,⁴ S. Biswas,⁴ P. Singh,⁴ and H. C. Jain⁴

R. Palit,⁴ S. Pal,⁴ S. Saha,⁴ J. Sethi,⁴ S. Biswas,⁴ P. Singh,⁴ and H. C. Jain⁴ ¹Saha Institute of Nuclear Physics, Kolkata 700064, India ²Ananda Mohan College, Kolkata 700009, India ³Department of Physics, University of Kashmir, Srinagar 190006, India ⁴Tata Institute of Fundamental Research, Mumbai 400005, India (Received 28 October 2013; revised manuscript received 16 April 2014; published 20 May 2014)

The lifetimes of the excited levels for the two nearly degenerate bands of 106 Ag have been measured using the Doppler-shift attenuation method. The deduced B(E2) and B(M1) rates in the two bands are found to be similar, except around the band crossing spin, while their moments of inertia are quite different. This is a novel observation for a nearly degenerate doublet band.

Comparison of energy of levels for odd-odd isotopes

Degenerate bands in odd-odd Ag isotopes are from different configuration contrary to Odd-odd Rh isotopes.

NPA 933, 123 (2015).

Microscopic study of chiral rotation in odd-odd A \sim 100 nuclei

W.A. Dar¹, J.A. Sheikh^{1,2}, G.H. Bhat¹, R. Palit³ and S. Frauendorf⁴

Experimental Details

- $\geq \text{Reaction} : {}^{100}\text{Mo}({}^{18}\text{O}, p3n\gamma)$ ${}^{112}\text{In}$
- Detector set-up : INGA at IUAC with 18 Compton
 suppressed HPGe Clover detectors
- Target : ¹⁰⁰Mo (2.7 mg/cm²) with Pb backing (12 mg/cm²) thick.
- > Beam : 18 O at 80 MeV.

Lifetime measurement in ¹¹²In

T. Trivedi, *et al.*, Phys. Rev. C 85 $(2012)^{2}$

Comparison of B(M1) values with TAC

TAC configuration: $\pi g_{9/2} \bigotimes v((h_{11/2})^2 d_{5/2}/g_{7/2})$

1. Regular sequences of M1 transitions

2. Weak or absent E2 transitions

3. B(M1) decreases with angular momentum

T. Trivedi, et al., Phys. Rev. C 85 (2012) 26

tifr *Physics Highlights of INGA Collaboration*

Wobbling mode in odd-A triaxial nuclei

- Induces a sequences of rotational bands.
- Inter-band transitions are $\Delta I=1 E2$ in nature

Frauendorf, Doenau, PRC 89, 014322 (2014)

Polarization measurement @ INGA to Establish Wobbling mode in A~130

Spectroscopy was performed at Gammasphere.

Search for wobbling mode in A~130 region at low spin

•The polarization measurements confirm $\Delta I=1$ E2 nature of the •connecting transitions.

S. Frauendorf Rev. Mod Phys 73, 463(2001) R. M. Clark and A. O. Macchiavelli, Annu. Rev. NP Sci., 2000, 50(1)

Unlike MR, AMR: a rare phenomenon.

¹⁰⁵Cd, ¹⁰⁶Cd, ¹⁰⁷Cd, ¹⁰⁸Cd, ¹¹⁰Cd ¹⁰⁴Pd, ¹¹²In

A ~110 and 130

P. Datta et al., PRC 71 041305 (R) (2005)
D. Choudhury et al., PRC82 061308(R) (2010)
S. Roy et al., PLB 694 324 (2011)
D. Choudhury et al., P.RC 87, 034304 (2013)
N. Badhan et al., PRC 80, 061202 (D)(2014)

N. Rather et al., PRC 89, 061303 (R)(2014)

Microscopic Description of Anti Magnetic Rotation in ¹⁰⁵Cd

1st evidence of AMR to be operative in an odd-A nucleus

D. Choudhury, et al. PRC82, 061308 (R)(2010) P.W. Zhao, et al., PRL 107, 122501 (2011)

INGA Simulation

- A full INGA simulation has been performed for studying various properties of the array:
 - Photo-peak efficiency
 - Add-back factor

Target position

- RSAM analysis for $T_{1/2}$

Recoil position

Beam direction

Sudipta et al.,

80 element CsI(Tl) detector array and LaBr3(Ce) detector array to

be coupled to INGA

Enhance the solid angle to 40%; Gamma multiplicity filter; Need innovative design for BGO shields, collimators; R&D effort; Ancillary detector;

Need for upgrade of Clover detector resources. Proposal for complete array in 3 accelerator facilities in near future.

Summary

- Structure of degenerate dipole bands in ¹⁰⁸Ag and nearby nuclei.
- MR in ¹¹²In indicates axially symmetric shape contrary to predictions.
- Wobbling in A~130 at low spin.
- Coexistence of AMR and MR in ¹⁰⁷Cd.

INGA coupled to a DDAQ and other ancillary detectors will provide opportunities to probe various exotic modes of nuclear rotation and excitation.

INGA will remain a competitive facility for nuclear structure investigation with stable beams.

Investing in the polarization measurements of gamma rays and "wide-range timing spectroscopy" proved to be a successful approach for creating our specific "niche" and complement research at large scale facilities

Thank You

INGA Collaboration meeting at TIFR Hosted by IUAC, UGC-CSR-DAE-KC and TIFR 9th – 11th March 2013

