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Boltzmann machine

Energy(x) = �h

|
o

x� x

|
J

oo

x� h

|
u

x

u

� x

|
u

J

uu

x

u

� x

|
o

J

ou

x

u

+O(x3)

Hidden	nodes

Visible	nodes



6

Restricted Boltzmann machine
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Deep Boltzmann machine

Figure 1: We would like the raw input image to be transformed into gradually higher levels of representation,
representing more and more abstract functions of the raw input, e.g., edges, local shapes, object parts,
etc. In practice, we do not know in advance what the “right” representation should be for all these levels
of abstractions, although linguistic concepts might help guessing what the higher levels should implicitly
represent.
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E(Y, X)

E(Y, X)

Figure 1: A model measures the compatibility between observed variables X and variables to
be predicted Y using an energy function E(Y,X). For example, X could be the pixels of an
image, and Y a discrete label describing the object in the image. Given X, the model produces
the answer Y that minimizes the energy E.

1.1 Energy-Based Inference
Let us consider a model with two sets of variables, X and Y , as represented in Fig-
ure 1. Variable X could be a vector containing the pixels from an image of an object.
Variable Y could be a discrete variable that represents the possible category of the ob-
ject. For example, Y could take six possible values: animal, human figure, airplane,
truck, car, and “none of the above”. The model is viewed as an energy function which
measures the “goodness” (or badness) of each possible configuration of X and Y . The
output number can be interpreted as the degree of compatibility between the values of
X and Y . In the following, we use the convention that small energy values correspond
to highly compatible configurations of the variables, while large energy values corre-
spond to highly incompatible configurations of the variables. Functions of this type are
given different names in different technical communities; they may be called contrast
functions, value functions, or negative log-likelihood functions. In the following, we
will use the term energy function and denote it E(Y, X). A distinction should be made
between the energy function, which is minimized by the inference process, and the loss
functional (introduced in Section 2), which is minimized by the learning process.

In the most common use of a model, the inputX is given (observed from the world),
and the model produces the answer Y that is most compatible with the observed X .
More precisely, the model must produce the value Y ∗, chosen from a set Y , for which
E(Y, X) is the smallest:

Y ∗ = argminY ∈YE(Y, X). (1)

When the size of the set Y is small, we can simply compute E(Y, X) for all possible
values of Y ∈ Y and pick the smallest.

3
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R. Mantegna, Eur. Phys. J. B 11, 193 (1999) 

Stock market correlation clustering structure

Spin glass model
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Vértes PE, et al, Front. Syst. Neurosci. 5:75 (2011)

Similar:
Non-random,
small-world,
modular,
hierarchical,
fat-tailed degree 
distribution

However
financial networks:
Less robust to 
disintegration
(“too big to fail” nodes)

Financial networks vs neural networks
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T. Bury, Eur. Phys. J. B 86, 89 (2013); T. Bury, Physica A 392, 1375 (2013); H. Zeng et al, arXiv:1311.3871v1 (2013)
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Stock prices time-series

log-returns
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Binarized log-returns

N=71 stocks from the S&P 500 index
Approximately 5000 trading days for 1993-2013
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Moving window approach
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1. Asian and Russian crisis
2. Dot-com bubble
3. US stock market downturn of 2002
4. US housing bubble
5. Global financial crisis
6. European sovereign debt crisis

Effect of binarization: Average return

Amplitude is bounded

Cycles are preserved
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1. Asian and Russian crisis
2. Dot-com bubble
3. US stock market downturn of 2002
4. US housing bubble
5. Global financial crisis
6. European sovereign debt crisis

Effect of binarization: Average return (SMA, T=250)
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1. Asian and Russian crisis
2. Dot-com bubble
3. US stock market downturn of 2002
4. US housing bubble
5. Global financial crisis
6. European sovereign debt crisis

Effect of binarization: Covariance matrix C (SMA, T=250)
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Effect of binarization: Eigenvalues of C (SMA, T=250)

1. Asian and Russian crisis
2. Dot-com bubble
3. US stock market downturn of 2002
4. US housing bubble
5. Global financial crisis
6. European sovereign debt crisis
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Naïve Mean Field (nMF) Thouless-Anderson-Palmer (TAP)
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Fig. 2. Historical dynamics of the first four temporal moments of the distribution of the mean market return (a). Top-bottom:
temporal mean, standard deviation, skewness and kurtosis calculated using SMA window of 250 days for the raw (sraw, blue),
standardized (sstd, green) and binary (sbin, red) returns of 71 US stocks (Table 1). 95% confidence intervals for the

moments of binarized time series distribution are calculated using bootstrapping algorithm and denoted with

a gray dashed line. A number in each panel corresponds to overall historical correlation between the time series for sstd and
sbin. Dependence of these overall correlations on the moving window size is shown in (b). Binary returns behave similar to raw
and standardized returns, however information about kurtosis is completely lost.

Fig. 3. Historical dynamics of the first four moments of the distribution of the o↵-diagonal elements of covariance (blue) and
correlation (green) matrices of raw returns, and covariance matrix of binary returns (red) calculated using SMA window of
250 days (a). Top-bottom: mean, standard deviation, skewness and kurtosis of the o↵-diagonal elements of the matrices. A
number in each panel corresponds to overall historical correlation between the time series for Qraw and C

bin. 95% confidence

intervals for the moments of distribution of Cbin
ij are calculated using bootstrapping algorithm and denoted

with a gray dashed line. Dependence of these overall correlations on the moving window size is shown in (b). Binarization
makes covariance matrix similar to the correlation matrix of raw returns.

where C⇤
ij = Cij +mimj. While Sessak and Monas-

son (SM) derived higher-order corrections to the
system parameters in a closed form using other
terms in this perturbative correlation expansion
[35]

JSM

ij = JnMF

ij + Jpair

ij � Cij

(1�m2
i )(1�m2

j)�(Cij)
2 ,

hSM

i = hpair

i

(15)

Finally, it is worth noting that there have been
also developed a few other approximate inference

schemes, such as a pseudo-maximum likelihood in-
ference using all data [36], minimum probability
flow [37] or mean field approximations for low tem-
peratures [38], however not considered in our pa-
per.

Statistical inference (learning): Approximations

Mean field expansion

Small correlation expansion
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denotes averaging over index (vector or matrix elements).
It is also possible to investigate nonlinear dependence be-
tween time series using more sophisticated statistical con-
cepts [30] or nonlinear data transformations, however only
the simplest linear case is considered in the current paper.
Series variance is autocovariance, �2

i ⌘ Cii, where � de-
notes standard deviation or volatility in finance. Usually,
SMA volatility serves as the simplest risk measure quan-
tifying stability of returns. In order to quantify deviation
from the normal distribution, it is also useful to define
higher-order moments, such as skewness

hSkew (si)i =
*✓

si � hsii
�i

◆
3

+
(6)

and kurtosis (also known as excess kurtosis)

hKurt (si)i =
D
(si � hsii)4

E

�4

i

� 3, (7)

which equal zero in the Gaussian case. Indeed, SMA filter
allows one to extract long-term trends in the market and,
for a large value of N , various moments of returns distri-
bution can be used to identify market crashes (Figs. 2 and
3). Henceforth, we will call the considered portfolio “mar-
ket” as it represents a big number of the top companies
from S&P500 index.

Since the core of our research is statistical, be-
low we provide discussion about confidence inter-
vals, e↵ective size of samples due to moving win-
dows overlapping and presence correlated variables.
Intraday (cross-)correlations are also non-random
[31? ]. Confidence intervals, calculated using boot-
strapping algorithm (sampling with replacement)
for statistical moments are depicted in Figs. 2 and
3. Discussion about confidence intervals can be
found in Ref.. . . This is important issue and will
be studied in the future works. . .

As mentioned in the Introduction, to reduce the amount
of data required for our inference, we focus on a binarized
version of the returns and not on the raw data. We thus
define the binarized version of the returns as

sbini = sign (srawi ) . (8)

This procedure also mitigates the scaling problem of mul-
tiple series since it assignees the same value of stock re-
turn independently of its absolute value. Another common
technique to deal with this problem is standardization

sstdi =
srawi � hsrawi i

�i
. (9)

In this case, correlation matrix,Q (N⇥N), is a normalized
covariance matrix with the elements

Qij =
Cij

�i�j
. (10)

Standardization procedure is known to preserve market
behavior and widely used for the statistical analysis of

the financial time series [32]. E↵ects of these mappings
defined by Eqs. (8)–(10) are shown in Figs. 1–3 and will be
discussed further in Section 3 where we will compare some
simple statistical properties of the binarized return versus
the raw and standardized returns. Before this, however,
we briefly describe the inference procedure.

2.2 Equilibrium Boltzmann learning methods

We harness inference methods based on maximizing of the
model’s likelihood L(h,J | sdata). In the equilibrium case,
exact learning of the Hamiltonian [Eq. (2)] parameters im-
plies solving Eq. (3) in a self-consistent way, where correc-
tions �hi and �Jij on each learning step can be calculated
as

�hi = ⌘h (hsiidata � hsiimodel

) ,
�Jij = ⌘J (hsisjidata � hsisjimodel

) .
(11)

Here, ⌘h and ⌘J are learning rates, h·i
data

are empirical
(observed) moments and h·i

model

are the moments sam-
pled from the model using Monte Carlo (MC) methods.
The exact learning algorithm always yields optimal values
for h and J if there are no hidden nodes in the system
[33].

Being in general slow, the exact learning algorithm
might be substituted by the approximate inference meth-
ods [34] which are based on expansion of the free energy
of a system for small fluctuations around its mean value.
The first-order (näıve) approximation within the mean
field theory (nMF) gives

JnMF = A�1 �C�1,

hnMF

i = tanh�1hsii �
NP
j=1

JnMF

ij hsii, (12)

where Aij = (1� hsii2)�ij and �ij is the Kronecker delta.
Here, taking into account the diagonal element Jii (which
is usually discarded) for the calculation of corresponding
hi improves accuracy of the approximation, being known
as the diagonal-weight trick [34]. The second-order correc-
tion to nMF requires solving Thouless-Anderson-Palmer
equations (TAP)

�
C�1

�
ij
= �JTAP

ij � 2
�
JTAP

ij

�
2 hsiihsji,

hTAP

i = hnMF

i � hsii
NP
j=1

�
JTAP

ij

�
2

�
1� hsii2

�
,

(13)

where Eq. (12) should be used instead for the calculation
of the external fields if the diagonal-weight trick is used.

Another class of approximations can be derived
using expansion of the free energy in pairwise cor-
relations. The most basic Independent-pair (IP)
approximation assumes independence of every stocks
pair from the rest of the system [35]. In this case,
couplings and external fields can be found as

Jpair

ij = 1

4

ln


(1+mi+mj+C⇤

ij)(1�mi�mj+C⇤
ij)

(1�mi+mj�C⇤
ij)(1+mi�mj�C⇤

ij)

�
,

hpair

i = 1

2

ln
⇣

1+mi
1�mi

⌘
�

NP
j
Jpair

ij mj +O
�
�2

� (14)

Independent pair approximation Sessak-Monasson (SM) correction

T. Tanaka, Phys. Rev. E 58, 2302 (1998)
Y. Roudi and J. Hertz, PRL 106, 048702 (2011)

V. Sessak and R. Monasson, J. of Phys. A 42, 055001 (2009) 
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Accuracy of approximate inference
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Distribution of exact external fields and couplings

27 Jan 2010

External fields Couplings



24

α

α

Couplings structure: Scaling a subset

27 Jan 2010, T=5000, a fixed subset of 20 stocks
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Stock market clustering structure  
(maximum spanning tree)

Clustering degree using industry sectors

Healthcare (red), Consumer Goods (blue), Basic Materials (green), Financial (cyan), Industrial Goods (purple), 
Services (yellow), Technology (orange), Conglomerate (magenta) and Utilities (dark blue)

Correlations Couplings
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Fig. 9. Histograms of the external fields and couplings inferred
using the exact learning algorithm for 27 Jan 2010 for three
di↵erent moving window sizes. Red curve denotes Gaussian
fit. For small moving window sizes, the bulk of couplings is
distributed normally, while a positive heavy tail dominates for
bigger sizes of moving window.

metric based on finding clusters of the maximum size

Q
mst

=
1

N

MX

m=1

max
k

Nm,k. (17)

Intuitively, when Q
mst

is small it reflects the fact that
stocks do not tend to group basing on industry sectors.
Its minimum value corresponding to M/N is defined by
the situation where the biggest cluster for each sector has
only one stock, i.e.Km equals to the total number of stocks
in the sector m. The maximum value of Q

mst

is 1, which
corresponds to the perfect industry clustering structure
when there is only one cluster for each industry sector
(Km = 1). This clustering measure shows interesting de-
pendence on the size of moving window (Fig. 13), suggest-
ing an increasing degree of sectoral connectedness of the
stock market for bigger time windows as inferred by the
Ising model. Also, the degree of connectedness increases
with the increase of non-Gaussian features (skewness and
kurtosis) of couplings distribution.

To further investigate network structure and
clustering degree of J, we perform the cluster-
ing analysis based on two di↵erent filtering proce-
dures: a subset of Jij and a subset of eigenmodes
of J corresponding to di↵erent eigenvalues �i tak-
ing into consideration. With this aim, we choose
thresholds J th and �th and construct MST only
using Jij 7 J th or �i 7 �th. Figure 14(a) shows
that the biggest drop/increase of Q

mst

occurs only
when top 5% of couplings are excluded/included
for MST construction. Thus, one might conclude
that distribution of couplings can be viewed as a
nontrivial heavy tail dressed with Gaussian bulk
noise. In a similar way, it is also sensitive to dis-
carding/considering the biggest eigenvalues. Re-
markably, their distribution is closer to the Gaus-
sian instead of Weigner law [39]. Finally, it is also
worth noting that intraday internal structure of
couplings is neither stable (quenched) nor com-

Fig. 12. Minimum spanning tree for the covariance matrix
(a) and corresponding exact couplings (b) for 27 Jan 2010 cal-
culated using SMA window T = 4000 trading days. Similar
industry-related clustering structure is observed in both cases.
The considered sectors are Healthcare (red), Consumer Goods
(blue), Basic Materials (green), Financial (cyan), Industrial
Goods (purple), Services (yellow), Technology (orange), Con-
glomerate (magenta) and Utilities (dark blue). The graphs are
visualized using the NetworkX Python package [42].

Fig. 13. Quality (industry sector clustering degree) of mini-
mum spanning tree, Qmst, depending on moving window size
for exact and TAP couplings, and covariance matrix (27 Jan
2010). Gray dashed and dotted lines denote mean and 99.7%
confidence interval respectively for the quality of MST built on
randomly shu✏ed time series. Quality of MST for couplings in-
creases with deviation of their distribution from the Gaussian,
which is characterized by skewness and kurtosis.

pletely random (annealed), preserving an industry-
related clustering structure with the diameter be-
ing smaller during crashes (figures are not shown).
These non-trivial features of a coupling matrix will
be studied in more detail in the future works.

comparison to the previous studies that market
structure contains in even in the trading volumes,
correlation matrices. However we show that...

3.5 Scaling of inferred parameters

In order to study extensive properties of the system, we in-
vestigate scaling properties of the parameter distributions
with number of stocks, which are usually characterized by
the scaling exponent N↵. We estimate its value for each
distribution moment as the average over scaling exponents
for randomly selected subsets of stocks of di↵erent size.

As Fig. 15 (top row) shows, external fields distribu-
tion does not possess any particular scaling law, except

S. Borysov et al, Eur. Phys. J. B (2015) 88: 321 
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Clustering degree: Filtering biggest / smallest couplings

27 Jan 2010

S. Borysov et al, Eur. Phys. J. B (2015) 88: 321 
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Clustering degree: Filtering biggest / smallest  
coupling matrix eigenmodes

27 Jan 2010

S. Borysov et al, Eur. Phys. J. B (2015) 88: 321 
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Distribution of external fields and couplings 
(historical dynamics)

CouplingsExternal fields

T=250

S. Borysov et al, Eur. Phys. J. B (2015) 88: 321 

T=250
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External and internal biases
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Fig. 14. Exact couplings (a) and their eigenvalues (b) distri-
butions (27 Jan 2010) for two SMA windows T = 1000 and
T = 5000 trading days, and quality (industry sector cluster-
ing degree) of minimum spanning tree, Qmst, depending on
the positive (blue solid line) and negative (black dashed line)
cuto↵s, Jth and �th, of the couplings used for MST construc-
tion. Red curve denotes Gaussian fit. Discarding both biggest
couplings and eigenvalues significantly a↵ects quality of MST.
Negative couplings abd small eigenvalues do not contribute to
the market clustering structure.

the mean, which has ↵ close to �0.75. The other moments
scale similar to the corresponding moments of the exter-
nal fields inferred on randomly shu✏ed time series. Scaling
properties of couplings distribution depends on the size of
moving window (Fig. 15, bottom row). When T is small,
couplings behave similar to the ones inferred on randomly
shu✏ed returns. However, scaling of the mean and stan-
dard deviation becomes closer to the properties of the nor-
mal distribution with growth of T . This dependence might
be related to the presence of finite-size e↵ects, when use
of a small number of historical values is not enough to
estimate true correlations on the market. These results

are similar to the scaling properties obtained in
Ref. [22], however their SMA window dependence
is noticed for the first time.

There are two extreme ways in which a change in the
distribution of the couplings can arise as one increases
the size of the observed system. One is that the structure
between the previous stocks entirely changes by adding
new stocks. Alternatively, the couplings could only change
their absolute magnitude, while they maintain their mag-
nitude relative to one another. To better understand where
in this spectrum our financial market exists, we performed
analysis similar to Ref. [19]: We chose a random subset of
20 stocks and analyzed couplings between them for dif-
ferent total number of stocks taken into account for the
inference (including the original 20). Figure 16 shows that
the biggest/smallest values of Jij remain the same with
growth of N and their scaling becomes closer to the nor-
mal distribution for bigger time windows. This behavior
also suggests that important features of market connec-
tivity are preserved with the number of stocks.

3.6 External and internal influence

Considering the two terms in the system’s Hamiltonian
[Eq. (2)], it is also possible to define internal and external
influences in the market. For this purpose, external fields
can be interpreted as the influence of external factors,
hext ⌘ h, while couplings define internal bias, hint = hs|iJ
(in the MF sense) [22]. In this case, external contribution
corresponds to the individual stocks biases which come
from outside the market, while internal one is solely de-
fined in terms of internal market interactions. Similarly,
one can also define two energy terms as H = Eext +Eint,
where Eext,int = � �

hext,int
�| hsi. Figure 17 shows that

both energies have almost the same order of magnitude
over the historical period considered, while near the ma-
jor crashes Eext is more than 10 times bigger than Eint.
The ratio between the mean biases also possesses interest-
ing historical dynamics. Being in principle strongly corre-

lated with the mean return (0.9 for h
ext

and 0.99 for h
int

)
discrepancies between them might be used as a leading
indicator of financial instabilities. Away from the periods
of crisis, the ratio is almost stable, while divergent behav-
ior is observed before the US market crashes (two bottom
panels in Fig. 17). Possible explanation of the observed
behavior from a financial point of view is still an open
question.

4 Conclusion

We have investigated various aspects of application of the
pairwise interaction model to financial time series. The
model, being parametrized by external fields and cou-
plings, is used for the approximation of the joint equi-
librium distribution of stock returns. Since the considered
learning algorithms require use of binary variables, the
logarithmic returns are binarized using the sign function.
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Fig. 14. Exact couplings (a) and their eigenvalues (b) distri-
butions (27 Jan 2010) for two SMA windows T = 1000 and
T = 5000 trading days, and quality (industry sector cluster-
ing degree) of minimum spanning tree, Qmst, depending on
the positive (blue solid line) and negative (black dashed line)
cuto↵s, Jth and �th, of the couplings used for MST construc-
tion. Red curve denotes Gaussian fit. Discarding both biggest
couplings and eigenvalues significantly a↵ects quality of MST.
Negative couplings abd small eigenvalues do not contribute to
the market clustering structure.
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nal fields inferred on randomly shu✏ed time series. Scaling
properties of couplings distribution depends on the size of
moving window (Fig. 15, bottom row). When T is small,
couplings behave similar to the ones inferred on randomly
shu✏ed returns. However, scaling of the mean and stan-
dard deviation becomes closer to the properties of the nor-
mal distribution with growth of T . This dependence might
be related to the presence of finite-size e↵ects, when use
of a small number of historical values is not enough to
estimate true correlations on the market. These results

are similar to the scaling properties obtained in
Ref. [22], however their SMA window dependence
is noticed for the first time.

There are two extreme ways in which a change in the
distribution of the couplings can arise as one increases
the size of the observed system. One is that the structure
between the previous stocks entirely changes by adding
new stocks. Alternatively, the couplings could only change
their absolute magnitude, while they maintain their mag-
nitude relative to one another. To better understand where
in this spectrum our financial market exists, we performed
analysis similar to Ref. [19]: We chose a random subset of
20 stocks and analyzed couplings between them for dif-
ferent total number of stocks taken into account for the
inference (including the original 20). Figure 16 shows that
the biggest/smallest values of Jij remain the same with
growth of N and their scaling becomes closer to the nor-
mal distribution for bigger time windows. This behavior
also suggests that important features of market connec-
tivity are preserved with the number of stocks.

3.6 External and internal influence

Considering the two terms in the system’s Hamiltonian
[Eq. (2)], it is also possible to define internal and external
influences in the market. For this purpose, external fields
can be interpreted as the influence of external factors,
hext ⌘ h, while couplings define internal bias, hint = hs|iJ
(in the MF sense) [22]. In this case, external contribution
corresponds to the individual stocks biases which come
from outside the market, while internal one is solely de-
fined in terms of internal market interactions. Similarly,
one can also define two energy terms as H = Eext +Eint,
where Eext,int = � �

hext,int
�| hsi. Figure 17 shows that

both energies have almost the same order of magnitude
over the historical period considered, while near the ma-
jor crashes Eext is more than 10 times bigger than Eint.
The ratio between the mean biases also possesses interest-
ing historical dynamics. Being in principle strongly corre-

lated with the mean return (0.9 for h
ext

and 0.99 for h
int

)
discrepancies between them might be used as a leading
indicator of financial instabilities. Away from the periods
of crisis, the ratio is almost stable, while divergent behav-
ior is observed before the US market crashes (two bottom
panels in Fig. 17). Possible explanation of the observed
behavior from a financial point of view is still an open
question.

4 Conclusion

We have investigated various aspects of application of the
pairwise interaction model to financial time series. The
model, being parametrized by external fields and cou-
plings, is used for the approximation of the joint equi-
librium distribution of stock returns. Since the considered
learning algorithms require use of binary variables, the
logarithmic returns are binarized using the sign function.
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Fig. 14. Exact couplings (a) and their eigenvalues (b) distri-
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T = 5000 trading days, and quality (industry sector cluster-
ing degree) of minimum spanning tree, Qmst, depending on
the positive (blue solid line) and negative (black dashed line)
cuto↵s, Jth and �th, of the couplings used for MST construc-
tion. Red curve denotes Gaussian fit. Discarding both biggest
couplings and eigenvalues significantly a↵ects quality of MST.
Negative couplings abd small eigenvalues do not contribute to
the market clustering structure.

the mean, which has ↵ close to �0.75. The other moments
scale similar to the corresponding moments of the exter-
nal fields inferred on randomly shu✏ed time series. Scaling
properties of couplings distribution depends on the size of
moving window (Fig. 15, bottom row). When T is small,
couplings behave similar to the ones inferred on randomly
shu✏ed returns. However, scaling of the mean and stan-
dard deviation becomes closer to the properties of the nor-
mal distribution with growth of T . This dependence might
be related to the presence of finite-size e↵ects, when use
of a small number of historical values is not enough to
estimate true correlations on the market. These results

are similar to the scaling properties obtained in
Ref. [22], however their SMA window dependence
is noticed for the first time.

There are two extreme ways in which a change in the
distribution of the couplings can arise as one increases
the size of the observed system. One is that the structure
between the previous stocks entirely changes by adding
new stocks. Alternatively, the couplings could only change
their absolute magnitude, while they maintain their mag-
nitude relative to one another. To better understand where
in this spectrum our financial market exists, we performed
analysis similar to Ref. [19]: We chose a random subset of
20 stocks and analyzed couplings between them for dif-
ferent total number of stocks taken into account for the
inference (including the original 20). Figure 16 shows that
the biggest/smallest values of Jij remain the same with
growth of N and their scaling becomes closer to the nor-
mal distribution for bigger time windows. This behavior
also suggests that important features of market connec-
tivity are preserved with the number of stocks.

3.6 External and internal influence

Considering the two terms in the system’s Hamiltonian
[Eq. (2)], it is also possible to define internal and external
influences in the market. For this purpose, external fields
can be interpreted as the influence of external factors,
hext ⌘ h, while couplings define internal bias, hint = hs|iJ
(in the MF sense) [22]. In this case, external contribution
corresponds to the individual stocks biases which come
from outside the market, while internal one is solely de-
fined in terms of internal market interactions. Similarly,
one can also define two energy terms as H = Eext +Eint,
where Eext,int = � �

hext,int
�| hsi. Figure 17 shows that

both energies have almost the same order of magnitude
over the historical period considered, while near the ma-
jor crashes Eext is more than 10 times bigger than Eint.
The ratio between the mean biases also possesses interest-
ing historical dynamics. Being in principle strongly corre-

lated with the mean return (0.9 for h
ext

and 0.99 for h
int

)
discrepancies between them might be used as a leading
indicator of financial instabilities. Away from the periods
of crisis, the ratio is almost stable, while divergent behav-
ior is observed before the US market crashes (two bottom
panels in Fig. 17). Possible explanation of the observed
behavior from a financial point of view is still an open
question.

4 Conclusion

We have investigated various aspects of application of the
pairwise interaction model to financial time series. The
model, being parametrized by external fields and cou-
plings, is used for the approximation of the joint equi-
librium distribution of stock returns. Since the considered
learning algorithms require use of binary variables, the
logarithmic returns are binarized using the sign function.
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1. The model statistically captures historical market behaviour. 
2. Binarization preserves main market statistical characteristics. 
3. Approximation methods in general work well. Both mean field approximations work 

well for external fields inference and bulk of couplings, while a higher-order small-
correlations expansions (SM) can correctly infer the strongest couplings. 

4. Distribution of couplings is a mixture of two distributions: Gaussian bulk and heavy 
tail responsible for the market clustering structure. 

5. Changes in external fields and couplings might be used as a leading indicator of 
financial instabilities 

6. Study different models (BM with hidden nodes, deep belief networks),  
non-equilibrium distributions and factors influencing distribution of parameters,  
p(h, J | x)
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