It's the entropy, stupid*
 Matteo Marsili
 Abdus Salam ICTP, Trieste Italy

arXiv.org > q-fin > arXiv:1602.07300

Quantitative Finance > Economics

When does inequality freeze an economy?

João Pedro Jerico, François P. Landes, Matteo Marsili, Isaac Pérez Castillo, Valerio Volpati USP, Sao Paulo - ICTP Trieste -

UNAM Mexico City - SISSA Trieste

Cornell University

Library
arXiv.org > q-fin > arXiv:1511.09203

Quantitative Finance > Economics

Complexity driven collapse of economic equilibria

Marco Bardoscia, Giacomo Livan, Matteo Marsili
LIMS London - UCL London
*Adapted from the phrase "It's the economy, stupid" that was key to Clinton's victory in1992 US presidential elections.

Why does entropy matters?

Why does entropy matters?

Why does entropy matters?

Many micro-motives for the same macro-behaviour

$$
\begin{aligned}
& \text { Typical behaviour: } \quad P\{s\}=\arg \max _{P:\{E\rangle=U} H[P] \\
& \\
& \text { (law of large numbers) }
\end{aligned}
$$

Many (large) systems for the same macro-behaviour

Heterogeneity: Typical behaviour is the same for all systems which are large enough (e.g. Wigner and heavy atom spectra, spin glasses, etc)

General Equilibrium (GE) Theory

General Equilibrium (GE) Theory

commodity space $\vec{x} \in R^{P}$

General Equilibrium (GE) Theory

commodity space $\vec{x} \in R^{P}$

Consumers $a=1, \ldots, A$
initial endowments \vec{y}_{a}
utility $U_{a}(\vec{x})$
budget $B_{a}(\vec{p})=\{\vec{x}:(\vec{x}-\vec{y}) \vec{p}=0\}$
$\Rightarrow \quad \vec{x}_{a}=\arg \max _{\vec{x} \in B_{a}(\vec{p})} U_{a}(\vec{x})$

General Equilibrium (GE) Theory

commodity space $\vec{x} \in R^{P}$

Consumers $a=1, \ldots, A$
initial endowments \vec{y}_{a}
utility $U_{a}(\vec{x})$
budget $B_{a}(\vec{p})=\{\vec{x}:(\vec{x}-\vec{y}) \vec{p}=0\}$
$\Rightarrow \quad \vec{x}_{a}=\arg \max _{\vec{x} \in B_{a}(\vec{p})} U_{a}(\vec{x})$

Firms $i=1, \ldots, N$
inputs \vec{z}_{i} outputs $\vec{w}_{i}=\vec{f}_{i}\left(\vec{z}_{i}\right)$
profit $\pi_{i}\left(\vec{z}_{i}\right)=\left(\vec{w}_{i}-\vec{z}_{i}\right) \vec{p}$
Firm i solves $\max _{\bar{z}_{i}} \pi_{i}\left(\vec{z}_{i}\right)$

General Equilibrium (GE) Theory

commodity space $\vec{x} \in R^{P}$

Consumers $a=1, \ldots, A$ initial endowments \vec{y}_{a}	Firms $i=1, \ldots, N$ utility $U_{a}(\vec{x})$ budget $B_{a}(\vec{p})=\{\vec{x}:(\vec{x}-\vec{y}) \vec{p}=0\}$
inputs \vec{z}_{i} outputs $\vec{w}_{i}=\vec{f}_{i}\left(\vec{z}_{i}\right)$ profit $\pi_{i}\left(\vec{z}_{i}\right)=\left(\vec{w}_{i}-\vec{z}_{i}\right) \vec{p}$ Firm i solves $\max _{\vec{z}_{i}} \pi_{i}\left(\vec{z}_{i}\right)$	

Market for commodity $\mu=1, \ldots, P$
fixes prices \vec{p} such that demand $=$ supply $\forall \mu$

General Equilibrium (GE) Theory

commodity space $\vec{x} \in R^{P}$

Consumers $a=1, \ldots, A$ initial endowments \vec{y}_{a}	Firms $i=1, \ldots, N$ utility $U_{a}(\vec{x})$ budget $B_{a}(\vec{p})=\{\vec{x}:(\vec{x}-\vec{y}) \vec{p}=0\}$
inputs \vec{z}_{i} outputs $\vec{w}_{i}=\vec{f}_{i}\left(\vec{z}_{i}\right)$ profit $\pi_{i}\left(\vec{z}_{i}\right)=\left(\vec{w}_{i}-\vec{z}_{i}\right) \vec{p}$ Firm i solves $\max _{\vec{z}_{i}} \pi_{i}\left(\vec{z}_{i}\right)$	

$\Rightarrow \quad \vec{x}_{a}=\arg \max _{\vec{x} \in B_{a}(\vec{p})} U_{a}(\vec{x})$

Market for commodity $\mu=1, \ldots, P$
i) Single period economy
ii) Markets are complete
iii) Price taking behavior
fixes prices \vec{p} such that demand $=$ supply $\forall \mu$

$$
\dot{x} \cdot \underline{x}-\dot{x}-\dot{x} \cdot \underline{x}
$$

Generic results

Generic results

- Welfare theorems:
- at equilibrium everyone is as well off as possible
- every optimal allocation can be attained

Generic results

- Welfare theorems:
- at equilibrium everyone is as well off as possible
- every optimal allocation can be attained
- Walras' law:
- every consumer spends all money
- profit of every firm is zero

How is GE used?

How is GE used?

- Get intuition: Few agents
(e.g. R. Crusoe economies, representative agent ...)

How is GE used?

- Get intuition: Few agents
(e.g. R. Crusoe economies, representative agent ...)
- Computational GE approach (calibration!!!) data (SA matrices) \rightarrow model \rightarrow prediction

How is GE used?

- Get intuition: Few agents (e.g. R. Crusoe economies, representative agent ...)
- Computational GE approach (calibration!!!) data (SA matrices) \rightarrow model \rightarrow prediction
- Here:

Typical behaviour of large random economies as a function of $\mathrm{A}, \mathrm{N}, \mathrm{P}$, distribution of endowments and efficiency of production processes

GE of random economies

(KJ Lancaster Mathematical Economics '87)

- Commodities, consumers and endowments
- Firms and technologies
- Market and prices

The universe of goods and Consumers

- C homogeneous commodities
- P primary goods: y>0
- F final goods: $y=0, x>0$
- intermediate goods: $y=0, x=0$
- waste $\mathrm{x}>0$

- One consumer $(\mathrm{A}=1)$ with separable utility function

$$
U(\boldsymbol{x})=\sum_{c \in \mathcal{F}} u\left(x^{c}\right)
$$

($\mathrm{A}>1$ not difficult)

Firms and technologies

- N linear technologies:

$$
\vec{f}_{i}\left(\vec{z}_{i}\right)=\left(\vec{z}_{i} \cdot \vec{u}_{i}\right) \vec{v}_{i}, \quad\left\|\vec{u}_{i}\right\|=1, \quad u_{i}^{\mu}, v_{i}^{\mu} \geq 0
$$

- Firms choose the scale s_{i} at which they operate

$$
\begin{array}{cll}
\max _{\vec{z}_{i}} \vec{p}\left[\vec{f}_{i}\left(\vec{z}_{i}\right)-\vec{z}_{i}\right] \Rightarrow \vec{z}_{i}^{*}=s_{i} \vec{u}_{i}, & s_{i} \geq 0 \\
w_{i}^{\mu}-z_{i}^{\mu}=s_{i} \xi_{i}^{\mu}, & \xi_{i}^{\mu}=v_{i}^{\mu}-u_{i}^{\mu} & \xi_{i}^{\mu}>0 \leftrightarrow \mu \text { output } \\
& \xi_{i}^{\mu}<0 \leftrightarrow \mu \text { input }
\end{array}
$$

- $\xi_{i}{ }^{\mu}$ random with no-land-of-Cockaigne constraint

$$
\sum_{\mu} \xi_{i}^{\mu}=-\epsilon, \quad \sum_{\mu}\left(\xi_{i}^{\mu}\right)^{2}=\Delta
$$

(\# inputs \sim \# outputs finite as $\mathrm{P} \rightarrow \infty$)

The solution:

$$
\max _{s_{i} \geq 0} U\left(\vec{y}+\sum_{i=1}^{N} s_{i} \vec{\xi}_{i}\right)
$$

Parameters: $\mathrm{n}=\mathrm{N} / \mathrm{C}$ (industrial development)
\mathcal{E} (efficiency of technologies) $\mathrm{u}(\mathrm{x})$ (consumer's preferences)
$\mathrm{F} / \mathrm{C}=\mathrm{f}, \mathrm{P} / \mathrm{C}=\pi$ (fraction of final/primary goods)

The solution:

$$
\max _{s_{i} \geq 0} U\left(\vec{y}+\sum_{i=1}^{N} s_{i} \vec{\xi}_{i}\right)
$$

Parameters: $\mathrm{n}=\mathrm{N} / \mathrm{C}$ (industrial development)
\mathcal{E} (efficiency of technologies)
$\mathrm{u}(\mathrm{x})$ (consumer's preferences)
$\mathrm{F} / \mathrm{C}=\mathrm{f}, \mathrm{P} / \mathrm{C}=\pi$ (fraction of final/primary goods)
Note: technologies are drawn i.i.d. at random, but those which survive $\left(\mathrm{si}_{\mathrm{i}}>0\right)$ are not

Typical behaviour in the limit $\mathrm{N} \rightarrow \infty$

$$
\lim _{N \rightarrow \infty} \frac{1}{P}\left\langle\max _{\left\{s_{i} \geq 0\right\}} U\left(\boldsymbol{y}+\sum_{i=1}^{N} s_{i} \boldsymbol{\xi}_{i}\right)\right\rangle_{\boldsymbol{\xi}}=\operatorname{extr}_{\boldsymbol{\omega}} f(\boldsymbol{\omega})
$$

Order parameter:

$$
q_{a, b}=\frac{\Delta}{N} \sum_{i=1}^{N} s_{i, a} s_{i, b}=q+(Q-q) \delta_{a, b}
$$

$$
\begin{aligned}
f(Q, \gamma, \chi, \widehat{\chi}, \kappa, p) & =\frac{1}{2} n Q \widehat{\chi}-\frac{1}{2} \gamma \chi+\kappa p \\
& +\left\langle\max _{x \geq 0}\left[u(x)-\frac{1}{2 \chi}(x-y+t \sqrt{n Q}+\kappa)^{2}\right]\right\rangle_{t, y}^{+} \\
& +n\left\langle\max _{s \geq 0}\left[-\frac{1}{2} \Delta \widehat{\chi} s^{2}+s t \sqrt{\Delta\left(\gamma-p^{2}\right)}-s \eta p \sqrt{\Delta}\right]\right\rangle_{t, \Delta}
\end{aligned}
$$

Representative good problem

Phase transition

industrial development

Recipes for GDP growth

Modes of technological innovation: $\epsilon \searrow N \nearrow C \nearrow$

GDP=total value of goods produced

Paths of development: $\mathrm{N} \rightarrow \mathrm{N}+1$, C fixed technological innovation

industrial development

Paths of development: $\mathrm{C} \rightarrow \mathrm{C}+1$, N, F, P fixed outsourcing and the expansion of markets

industrial development

F		
I		
W	P	

Intuition: a constraint on production for any good

$$
y^{\mu}+\sum_{i=1}^{N} s_{i} \xi_{i}^{\mu} \geq 0
$$

Comments

- Incentive for R\&D from private sector only for $\mathrm{n}<2$
- Industrial revolution requires access to primary goods

- Industrial dynamics in the last 4 centuries (see e.g. The Vanishing Hand R.N. Langlois 2004): from vertically integrated firms ($\mathrm{n}<2$) to outsourcing ($\mathrm{n}>2$)
- e.g. Carbon emission trading is profitable for $n>2$ but not for $n<2$
- The green impact of R\&D: Waste decrease with n (and it increases when intermediate goods are introduced)

The debate on inequality

- Inequality is rising and it's back to the pre-WWI levels (Piketty-Saez 2001)
- Return on capital > GDP growth = positive feedback on inequality (Piketty 2014)
- Inequality correlates with many bad things (infant mortality, crime, social (im)mobility... Wilkinson - Pickett 2009)
- Too much inequality with respect to what?
- Inequality and the flow of stuff in an economy (i.e. liquidity)

The data: inequality and liquidity

Data Saez-Zucman (2013)

$$
\begin{aligned}
& p_{>}(w)=P\{W>w\} \sim w^{-\beta} \\
& W_{>}=\int_{x}^{\infty} d p_{>}(w) w \sim p_{>}^{1-1 / \beta}
\end{aligned}
$$

Fed. Res. Bank St Luis (FRED) Money with zero maturity (broadest definition of money)

The data: inequality and liquidity

A simple model

- N agents, M goods Agent $i=1, \ldots, N$ has wealth w_{i} drawn i.i.d. from $p(w) \sim w^{-\beta-1}$ Object $0=1, \ldots, \mathrm{M}$ has price π_{\circ}

- Feasible assignments $\mathrm{A}: \sum_{o \in i} \pi_{o}<w_{i}$
- Start from a feasible assignment Pick an object o and an agent i at random: i buys o if he has cash>mo Repeat
- Dynamics converges to the maximal entropy state $P(A)=P\left(A^{\prime}\right)$ for all feasible A, A^{\prime}

A simple model

- N agents, M goods Agent $\mathrm{i}=1, \ldots, \mathrm{~N}$ has wealth w_{i} drawn is dín $\mathrm{p}(\mathrm{w}) \sim \mathrm{w}^{-\beta-1}$ Object $\mathrm{o}=1, \ldots, \mathrm{M}$ has price π_{\circ}
- Feasible assignments $\mathrm{A}^{2}>\sin ^{2}$
- Start from a feasible ausignment
 Repeat
- Dynamics converges to the maximal entropy state $P(A)=P\left(A^{\prime}\right)$ for all feasible A, A^{\prime}

One type of good $\pi_{0}=1$

$$
N=10^{3}, M=2 \cdot 10^{5}, \beta=1.8
$$

Ten types of goods

Cash flows to the top

Theory:

$$
\begin{aligned}
c^{(k)} & \simeq\left[\beta^{k}-\left(\frac{\beta-\beta^{k+1}}{1-\beta}\right) \frac{\Pi}{K C}\right]^{\frac{1}{1-\beta}} \\
p_{k}^{(\mathrm{suc})} & =\frac{M_{k}}{N \lambda_{k}} \simeq \frac{\Pi}{K C} \frac{\mathbb{E}[c]}{c^{(k)}} .
\end{aligned}
$$

Note

- Model: Inequality -> liquidity
- Incentives? Utilities? Preferential trading?
- Endogenous price dynamics?
- Consumption, investment and credit?
- Quantitative Easing for the people?

Few days of blog folly

The Salt fate ribune

Stories from last 36 hours

WWW.SLTRIB.COM
MAY 29, 2016

Buchanan: A chilling mathematical model of inequality
 By Mark Buchanan Bloomberg View

Last Updated Mar 162016 02:48 pm

BLOG
The Chilling Math of
Inequality

- 260 O MARCH 15, 2016 6:00 AM EST

Oh Great, Now This - Part I

Few days of blog folly

The Salt fate ribune

Buchanan: A chilling mathematical model of inequality
 By Mark Buchanan Bloomberg View
 First Published Mar 152016 04:03PM

The Chilling Math of
Inequality
Their study makes use of some fairly abstruse mathematics coming from physics, developed precisely for messy network problems of this kind

BLOG
Global Fixed Income

Few days of blog folly

The Chilling Math of Inequality

> Their study makes use of some fairly abstruse mathematics coming from physics, developed precisely for messy network problems of this kind

PuttPutt 1 day ago
Funny how this current crop of "experts" seems to be so proud of themselves for "discovering" things my father's generation used to say all the time. In this case, "the rich get richer and the poor get poorer" comes to mind. The problem with the concept of "inject(ing) money into the system at the lower end" is that it follows the slippery slope of politicians and political parties using the power of "injecting" to buy votes from minority groups. The abject failure of the war on poverty to impact the level of poverty throughout the past 60 years should be more than enough evidence that is not an effective strategy.
A better solution might be simply to let the real "middle class" people who earn money keep it for their own use rather than send it to the government for redistribution.
clkwkornge 1 day ago
Bingo. PuttPutt, you are totally correct, but most people don't want to believe it.

Thanks

One further reason why entropy matters Entropy = measure of information Risk vs transparency

