It's the entropy, stupid*

Matteo Marsili Abdus Salam ICTP, Trieste Italy

arXiv.org > q-fin > arXiv:1602.07300

Quantitative Finance > Economics

When does inequality freeze an economy?

João Pedro Jerico, François P. Landes, Matteo Marsili, Isaac Pérez Castillo, Valerio Volpati USP, Sao Paulo - ICTP Trieste -

*Adapted from the phrase "It's the economy, stupid" that was key to Clinton's victory in 1992 US presidential elections.

Why does entropy matters?

Micro state s

Macro state

Collective behaviour

Why does entropy matters?

Micro state s

Chemistry $(NO_3, CO_2, H_2O, ...)$

TABLE 1. Values o	f Molecular We	ight, T _c , I	$P_c, Z_c, \omega, x,$	and Sourc	es of P-V-T	Data for	Selected Fluids
Substance	M. Wt.	$T_c(^{\circ}R)$	P _c (psia)	Zc	ω	x	Sources of P-V-T
Argon	39.95	271.8	705.4	0.290	0	0	26
Krypton	83.80	377.2	196.9	0.291	Ő	Ŏ	20
Xenon	131.30	521.6	852.4	0.290	ŏ	õ	28
Methane	16.04	343.6	673.1	0.290	0.013	ŏ	20 20 21 22
Ethane	30.07	549.9	711.5	0.285	0.099	ŏ	33 34 35
Propane	44.09	665.9	617.4	0.277	0.150	ŏ	35 36 37 38 30
Butane	58.12	765.4	550.6	0.274	0.201	ŏ	34, 35, 39, 41, 42
Fentane	72.15	845.7	489.5	0.269	0.254	Õ	34, 39
Etnylene	28.05	509.0	739.8	0.270	0.087	Õ	34, 35, 43, 44
Denzene	78.11	1012.3	714.3	0.274	0.215	0	45. 46
Nitrogen	28.02	227.1	492.6	0.291	0.040	Ō	34, 47, 48, 49
Carbon monoxide	28.01	239.7	507.6	0.294	0.046	0	43, 50, 51
Carbon dioxide	44.01	547.6	1071.3	0.274	0.420	0	34
Rydrogen sulfide	34.08	672.4	1306.5	0.268	0.100	0	52, 53, 54
Niteia orida	42.08	657.0	667.5	0.274	0.142	0.002	55
Nitrous onide	30.01	323.9	946.9	0.251	0.577	-0.045	56
Sulfur dioxide	44.02	557.4	1051.0	0.273	0.160	-0.003	57, 58
Methyl chloride	64.06	//5.2	1142.9	0.268	0.252	0.006	59, 60
Ethylene oride	50.49	/49.3	986.3	0.276	0.152	0.007	58, 61
Ammonia	44.05	842.0	1043.4	0.255	0.207	0.012	62
2 Mininomia	17.03	/30.2	1641.0	0.242	0.252	0.013	43, 63, 64

Why does entropy matters?

Micro state s

Chemistry $(NO_3, CO_2, H_2O, ...)$

TABLE 1. Values o	f Molecular We	ight, T _c , I	$P_c, Z_c, \omega, x,$	and Sourc	es of P-V-T	Data for	Selected Fluids
Substance	M. Wt.	$T_{c}(^{\circ}R)$	P _c (psia)	Zc	ω	x	Sources of P-V-T
Argon	39.95	271.8	705.4	0.290	0	0	26
Krypton	83.80	377.2	196.9	0.291	Ő	Ŏ	20
Xenon	131.30	521.6	852.4	0.290	ŏ	õ	28
Methane	16.04	343.6	673.1	0.290	0.013	ŏ	20 20 21 22
Ethane	30.07	549.9	711.5	0.285	0.099	ŏ	33 34 35
Propane	44.09	665.9	617.4	0.277	0.150	ŏ	35 36 37 38 30
Butane	58.12	765.4	550.6	0.274	0.201	ŏ	34, 35, 39, 41, 42
Fentane	72.15	845.7	489.5	0.269	0.254	Õ	34, 39
Etnylene	28.05	509.0	739.8	0.270	0.087	Õ	34, 35, 43, 44
Denzene	78.11	1012.3	714.3	0.274	0.215	0	45. 46
Nitrogen	28.02	227.1	492.6	0.291	0.040	Ō	34, 47, 48, 49
Carbon monoxide	28.01	239.7	507.6	0.294	0.046	0	43, 50, 51
Carbon dioxide	44.01	547.6	1071.3	0.274	0.420	0	34
Rydrogen sulfide	34.08	672.4	1306.5	0.268	0.100	0	52, 53, 54
Niteia orida	42.08	657.0	667.5	0.274	0.142	0.002	55
Nitrous onide	30.01	323.9	946.9	0.251	0.577	-0.045	56
Sulfur dioxide	44.02	557.4	1051.0	0.273	0.160	-0.003	57, 58
Methyl chloride	64.06	//5.2	1142.9	0.268	0.252	0.006	59, 60
Ethylene oride	50.49	/49.3	986.3	0.276	0.152	0.007	58, 61
Ammonia	44.05	842.0	1043.4	0.255	0.207	0.012	62
2 Mininomia	17.03	/30.2	1641.0	0.242	0.252	0.013	43, 63, 64

Many micro-motives for the same macro-behaviour

Micro state s

Chemistry $(NO_3, CO_2, H_2O, ...)$

(law of large numbers)

Many (large) systems for the same macro-behaviour

Micro state s

Heterogeneity: Typical behaviour is the same for all systems which are large enough (e.g. Wigner and heavy atom spectra, spin glasses, etc)

Collective behaviour

Consumers buy goods to maximize utility

Firms transform input goods into output goods to optimize profit

Markets fix prices so that demand matches supply

commodity space $\vec{x} \in R^P$

commodity space $\vec{x} \in R^P$

Consumers a = 1, ..., Ainitial endowments \vec{y}_a utility $U_a(\vec{x})$ budget $B_a(\vec{p}) = \{\vec{x} : (\vec{x} - \vec{y})\vec{p} = 0\}$ $\Rightarrow \vec{x}_a = \arg \max_{\vec{x} \in B_a(\vec{p})} U_a(\vec{x})$

commodity space $\vec{x} \in R^P$

Consumers a = 1, ..., Ainitial endowments \vec{y}_a utility $U_a(\vec{x})$ budget $B_a(\vec{p}) = \{\vec{x} : (\vec{x} - \vec{y}) \vec{p} = 0\}$ $\Rightarrow \vec{x}_a = \arg \max_{\vec{x} \in B_a(\vec{p})} U_a(\vec{x})$ Firms i = 1,...,Ninputs \vec{z}_i outputs $\vec{w}_i = \vec{f}_i(\vec{z}_i)$ profit $\pi_i(\vec{z}_i) = (\vec{w}_i - \vec{z}_i)\vec{p}$ Firm i solves $\max_{\vec{z}_i} \pi_i(\vec{z}_i)$

commodity space $\vec{x} \in R^P$

Consumers a = 1, ..., Ainitial endowments \vec{y}_a utility $U_a(\vec{x})$ budget $B_a(\vec{p}) = \{\vec{x} : (\vec{x} - \vec{y})\vec{p} = 0\}$ $\Rightarrow \vec{x}_a = \arg \max_{\vec{x} \in B_a(\vec{p})} U_a(\vec{x})$

Firms i = 1,...,Ninputs \vec{z}_i outputs $\vec{w}_i = \vec{f}_i(\vec{z}_i)$ profit $\pi_i(\vec{z}_i) = (\vec{w}_i - \vec{z}_i)\vec{p}$ Firm i solves $\max_{\vec{z}_i} \pi_i(\vec{z}_i)$

Market for commodity $\mu = 1, ..., P$

fixes prices \vec{p} such that demand = supply $\forall \mu$

$$_{a} + \sum_{i=1}^{N} \vec{w}_{i} = \sum_{a=1}^{A} \vec{y}_{a} + \sum_{i=1}^{N} \vec{z}_{i}$$

commodity space $\vec{x} \in R^P$

Consumers a = 1, ..., Ainitial endowments \vec{y}_a utility $U_a(\vec{x})$ budget $B_a(\vec{p}) = \{\vec{x} : (\vec{x} - \vec{y}) \vec{p} = 0\}$ $\Rightarrow \vec{x}_a = \arg \max_{\vec{x} \in B_a(\vec{p})} U_a(\vec{x})$

i) Single period economyii) Markets are completeiii) Price taking behavior

Firms i = 1,...,Ninputs \vec{z}_i outputs $\vec{w}_i = \vec{f}_i(\vec{z}_i)$ profit $\pi_i(\vec{z}_i) = (\vec{w}_i - \vec{z}_i)\vec{p}$ Firm i solves $\max_{\vec{z}_i} \pi_i(\vec{z}_i)$

Market for commodity $\mu = 1, ..., P$

fixes prices \vec{p} such that demand = supply $\forall \mu$

$$_{a} + \sum_{i=1}^{N} \vec{w}_{i} = \sum_{a=1}^{A} \vec{y}_{a} + \sum_{i=1}^{N} \vec{z}_{i}$$

Generic results

Generic results

Welfare theorems: - at equilibrium everyone is as well off as possible - every optimal allocation can be attained

Generic results

- Welfare theorems:

 - every optimal allocation can be attained

- Walras' law:
 - every consumer spends all money
 - profit of every firm is zero

- at equilibrium everyone is as well off as possible

• Get intuition: Few agents

(e.g. R. Crusoe economies, representative agent ...)

- Get intuition: Few agents
- Computational GE approach (calibration!!!) data (SA matrices) \rightarrow model \rightarrow prediction

(e.g. R. Crusoe economies, representative agent ...)

- Get intuition: Few agents
- Computational GE approach (calibration!!!) data (SA matrices) \rightarrow model \rightarrow prediction
- Here:
 - and efficiency of production processes

(e.g. R. Crusoe economies, representative agent ...)

Typical behaviour of large random economies as a function of A, N, P, distribution of endowments

GE of random economies

• Commodities, consumers and endowments

- Firms and technologies
- Market and prices

(KJ Lancaster Mathematical Economics '87)

The universe of goods and Consumers

- C homogeneous commodities
 - P primary goods: y > 0
 - F final goods: y=0, x>0
 - intermediate goods: y=0, x=0
 - waste x > 0
- One consumer (A=1) with separable utility function •

$$U(\boldsymbol{x}) = \sum_{c \in \mathcal{F}} u(x^c)$$

(A>1 not difficult)

Firms and technologies

• N linear technologies:

$$\vec{f}_i(\vec{z}_i) = (\vec{z}_i \cdot \vec{u}_i) \, \vec{v}_i,$$

• Firms choose the scale s_i at which they operate $\max_{\vec{z}_i} \vec{p} \left[\vec{f}_i(\vec{z}_i) - \vec{z}_i \right] \Rightarrow$ $w_i^{\mu} - z_i^{\mu} = s_i \xi_i^{\mu},$

 $\sum \xi_i^{\mu} = -\epsilon, \qquad \sum \left(\xi_i^{\mu}\right)^2 = \Delta$

 μ

$$\mu$$

$$||\vec{u}_i|| = 1, \qquad u_i^{\mu}, v_i^{\mu} \ge 0$$

$$\begin{aligned} \vec{z}_i^* &= s_i \vec{u}_i, \qquad s_i \ge 0 \\ \xi_i^\mu &= v_i^\mu - u_i^\mu \qquad \xi_i^\mu > 0 \quad \leftrightarrow \quad \mu \text{ output} \\ \xi_i^\mu &< 0 \quad \leftrightarrow \quad \mu \text{ input} \end{aligned}$$

• ξ_i^{μ} random with no-land-of-Cockaigne constraint

(# inputs ~ # outputs finite as $P \rightarrow \infty$)

The solution:

Parameters: n=N/C (industrial development) **E** (efficiency of technologies) u(x) (consumer's preferences)

 $\max_{s_i \ge 0} U \left(\vec{y} + \sum_{i=1}^N s_i \vec{\xi}_i \right)$

F/C=f, P/C= π (fraction of final/primary goods)

The solution:

Parameters: n=N/C (industrial development) **E** (efficiency of technologies) u(x) (consumer's preferences)

> Note: technologies are drawn i.i.d. at random, but those which survive $(s_i > 0)$ are not

 $\max_{s_i \ge 0} U \left(\vec{y} + \sum_{i=1}^{N} s_i \vec{\xi}_i \right)$

F/C=f, $P/C=\pi$ (fraction of final/primary goods)

Typical behaviour in the limit $N \rightarrow \infty$

 $\lim_{N\to\infty}\frac{1}{P}\left(\max_{\{s_i\geq 0\}} U\left(\boldsymbol{y}+\right.\right.\right)$

Order parameter: $q_{a,b} = \frac{\Delta}{N}$

$$\begin{split} f(Q,\gamma,\chi,\widehat{\chi},\kappa,p) &= \frac{1}{2} n Q \widehat{\chi} - \frac{1}{2} \gamma \chi + \kappa p \\ &+ \left\langle \max_{x \geq 0} \left[u(x) - \frac{1}{2\chi} \left(x - y + t \sqrt{nQ} + \kappa \right)^2 \right] \right\rangle_{t,y} + \\ &+ n \left\langle \max_{s \geq 0} \left[-\frac{1}{2} \Delta \widehat{\chi} s^2 + st \sqrt{\Delta(\gamma - p^2)} - s\eta p \sqrt{\Delta} \right] \right\rangle_{t,\Delta} \end{split}$$

$$\left. \sum_{i=1}^{N} s_i \boldsymbol{\xi}_i \right)
ight
angle_{\boldsymbol{\xi}} = \operatorname{extr}_{\boldsymbol{\omega}} f(\boldsymbol{\omega})$$

$$\frac{1}{N}\sum_{i=1}^{N} s_{i,a}s_{i,b} = q + (Q-q)\delta_{a,b}$$

Representative good problem

Representative firm problem

Phase transition

 ϕ

industrial development

Recipes for GDP growthModes of technological innovation: $\epsilon \searrow$ $N \nearrow$ $C \nearrow$

GDP=total value of goods produced

Paths of development: $N \rightarrow N+1$, C fixed technological innovation

industrial development

Paths of development: $C \rightarrow C+1$, N, F, P fixed outsourcing and the expansion of markets

industrial development

Intuition: a constraint on production for any good

 $y^{\mu} + \sum_{i=1}^{N} s_i \xi_i^{\mu} \ge 0$

Comments

- Incentive for R&D from private sector only for n < 2
- Industrial revolution requires access to primary goods
- to outsourcing (n>2)
- The green impact of R&D: Waste decrease with n (and it increases when intermediate goods are introduced)

• Industrial dynamics in the last 4 centuries (see e.g. The Vanishing Hand R.N. Langlois 2004): from vertically integrated firms (n < 2)

• e.g. Carbon emission trading is profitable for n>2 but not for n<2

The debate on inequality Inequality is rising and it's back to the pre-WWI levels

- (Piketty-Saez 2001)
- Return on capital > GDP growth = positive feedback on inequality (Piketty 2014)
- Inequality correlates with many bad things (infant mortality, crime, social (im)mobility... Wilkinson - Pickett 2009)
- Too much inequality with respect to what?
- Inequality and the flow of stuff in an economy (i.e. liquidity)

The data: inequality and liquidity

0

Data Saez-Zucman (2013) $p_{>}(w) = P\{W > w\} \sim w^{-\beta}$ $W_{>} = \int^{\infty} dp_{>}(w)w \sim p_{>}^{1-1/\beta}$

Fed. Res. Bank St Luis (FRED) Money with zero maturity (broadest definition of money)

The data: inequality and liquidity

A simple model

- Nagents, M goods Agent i=1,...,N has wealth w_i drawn i.i.d. from p(w)~w^{-\beta-1} Object o=1,...,M has price π_o
- Feasible assignments A: $\sum \pi_o < w_i$ $o \in i$
- Start from a feasible assignment Repeat
- Dynamics converges to the maximal entropy state P(A)=P(A') for all feasible A, A'

Pick an object o and an agent i at random: i buys o if he has cash> π_0

- Nagents, M goods Agent i=1,...,N has wealth wi drawn i Object o=1,...,M has price π_o
- Feasible assignments A;
- Repeat
- Dynamics converges to the maximal entropy state P(A)=P(A') for all feasible A, A'

One type of good $\pi_0=1$

 $N = 10^3, M = 2 \cdot 10^5, \beta = 1.8$

Ten types of goods

Cash flows to the top

Theory:

 $c^{(k)} \simeq \left[\beta^k - \left(\frac{\beta - \beta^{k+1}}{1 - \beta}\right) \frac{\Pi}{KC}\right]^{\frac{1}{1 - \beta}}$ $p_k^{(\mathrm{suc})} = \frac{M_k}{N\lambda_k} \simeq \frac{\Pi}{KC} \frac{\mathbb{E}[c]}{c^{(k)}}.$

Model: Inequality -> liquidity

- Incentives? Utilities? Preferential trading?
- Endogenous price dynamics?
- Consumption, investment and credit?
- Quantitative Easing for the people?

Note

BloombergView

The Chilling Math of Inequality

Home » Opinion

法 Salt Lake City 66 ° Traffic / Ski Report Stories from last 36 hours

Buchanan: A chilling mathematical model of inequality

By Mark Buchanan Bloomberg View First Published Mar 15 2016 04:03PM
 Last Updated Mar 16 2016 02:48 pm

DEEP FREEZE. PHOTOGRAPHER: SCOTT OLSON/GETTY IMAGES

The Chilling Math of Inequality

260 NARCH 15, 2016 6:00 AM EST

By Mark Buchanan

Few days of blog folly

The Salt Lake Tribune

WWW.SLTRIB.COM

MAY 29, 2016

out the blog

gan

BLOG **Global Fixed Income**

Andrew Norelli Macro Strategies

Oh Great, Now This – Part II

Posted on April 7, 2016

I'm starting to see a lot more references in research to the economist Vilfredo Pareto. He's noteworthy for a great number of things, but his 2016 resurgence seems to be due mainly to his (still) accurate mathematical description, in 1909, of the way wealth and income are distributed in society. This topic is of course once again a hot button Portfolio Manager, U.S. political issue, but also as central banks endeavor to counteract structurally slowing growth, the impact of wealth and income inequality on economic performance is also now a focus. By varving a

The Washington Post

The Washington Post with Bloomberg

BloombergView

The Chilling Math of Inequality

Home » Opinion

DEEP FREEZE. PHOTOGRAPHER: SCOTT OLSON/GETTY IMAGES

法 Salt Lake City 66 ° Traffic / Ski Report Stories from last 36 hours

Buchanan: A chilling mathematical model of inequality

By Mark Buchanan Bloomberg View First Published Mar 15 2016 04:03PM
 Last Updated Mar 16 2016 02:48 pm

The Chilling Math of Inequality

Their study makes use of some fairly abstruse mathematics coming from physics, developed ashington Post precisely for messy network problems of this kind

Few days of blog folly

The Salt Lake Tribune

WWW.SLTRIB.COM

MAY 29, 2016

gan

out the blog

BLOG **Global Fixed Income**

Search by Select category

Andrew Norelli Macro Strategies Oh Great, Now This – Part II

Posted on April 7, 2016

I'm starting to see a lot more references in research to the economist Vilfredo Pareto. He's noteworthy for a great number of things, but his 2016 resurgence seems to be due mainly to his (still) accurate mathematical description, in 1909, of the way wealth and income are distributed in society. This topic is of course once again a hot button Portfolio Manager, U.S. political issue, but also as central banks endeavor to counteract structurally slowing growth, the impact of wealth and income inequality on economic performance is also now a focus. By varving a

BloombergView

The Chilling Math of Inequality

Home » Opinion

DEEP FREEZE. PHOTOGRAPHER: SCOTT OLSON/GETTY IMAGES

* Salt Lake City 66 ° Traffic / Ski Report Stories from last 36 hours

Buchanan: A chilling r of inequality

By Mark Buchanan Bloomberg View First Published Mar 15 2016 04:03PM Last Updated Mar 16 2016

The Chilling Math of Inequality

Their study makes use of some fairly abstruse mathematics coming from physics, developed precisely for messy network problems of this kind

Few days of blog folly

I

PuttPutt 1 day ago

Funny how this current crop of "experts" seems to be so proud of themselves for "discovering" things my father's generation used to say all the time. In this case, "the rich get richer and the poor get poorer" comes to mind. The problem with the concept of "inject(ing) money into the system at the lower end" is that it follows the slippery slope of politicians and political parties using the power of "injecting" to buy votes from minority groups. The abject failure of the war on poverty to impact the level of poverty throughout the past 60 years should be more than enough evidence that is not an effective strategy.

A better solution might be simply to let the real "middle class" people who earn money keep it for their own use rather than send it to the government for redistribution.

Collapse Replies (1) Reply

> clkwkornge 1 day ago Bingo. PuttPutt, you are totally correct, but most people don't want to believe it.

One further reason why entropy matters Entropy = measure of information Risk vs transparency