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Condensed matter 
physics in 21 century: 
the age of spin-orbit

✓ spintronics 
✓ topological insulators, Majorana fermions 
✓ Kitaev’s non-abelian spin liquid/toric code

The key issue: spin-orbit + e-e interaction



• Spin-orbit + interaction: surprises in 1d 
!

• Kohn-Luttinger (KL) mechanism in 2d 
‣ magnetized gas 

!
• KL in the presence of spin-orbit

Outline



Toy d=1 problem

• Eigenvalues

• Eigenstates

spinors

k > 0:	

counterclock-wise	

rotation of spins

k < 0:	

clock-wise rotation 	

of spins

µ

χ+ and χ− : orthogonal at the same k	

but not at the same energy

1 2

B=0: spin-orbit  
can be gauged away

Important: fully 
broken spin symmetry



Cooper scattering (inter-band Josephson coupling)

• Cooper channel: spin non-conserving inter-subband pair tunneling	

possible due to Spin-Orbit only

E-e interaction adds a new process:



SDW instability

• Easy limit: EF >> gµB >> αkF

Free charge:

Interacting spin: + Cooper process

Kc < 1

Ks > 1 relevant!

• Strong-coupling limit: minimal energy @

Thus θs is frozen, hence φs fluctuates wildly - remember [φ,θ]=iδ(x-y).

• 2kF component of spin operators:

but

Ising order in the spin sector!



Spin chain with uniform DM term
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•Rotate right (left) current by γ (−γ) 

•Backscattering is modified
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•Magnetic field can now be absorbed

•Transverse to field (t) components oscillate

So that

•The final Hamiltonian

Cooper term



Phase diagram of Heisenberg+uniform DM chain
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Lesson:!
ordered phases below 
this line are stabilized 

by spin-orbit+Zeeman field 
+ e-e interaction 
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It is the purpose of this note to point out a
new mechanism which provides an instability
against Cooper-pair formation. We find that
a weakly interacting system of fermions can-
not remain normal down to the absolute zero
of temperature, no matter what the form of
the interaction. This mechanism has nothing
to do with the conventional electron-phonon
attractive interaction in metals, or the long-
range attractive van der Waals forces in He'.
It is present even in the case of purely repul-
sive forces between the particles, and is due
to the sharpness of the Fermi surface for the
normal system.
To understand what is involved, we first take

an over-simplified view of the effect. It has
long been known' that if a charge is placed in
a metal, the screening is such that there re-
mains a long-range oscillatory potential of
the form cos(2kFr+ q)/r~ (kF is the Fermi mo
mentum). This leads to a long-range interac-
tion between charges. Formally, the source
of this long-range force is the singularity of

the dielectric constant as a function of the mo-
mentum transfer q, when q=2kF. ' This sin-
gularity in the Fourier transform of the inter-
action gives rise to a long-ranged oscillatory
force in ordinary space. All that is necessary
for this effect is a sharp Fermi surface; a
rounding of the Fermi surface due to (say)
finite temperature or impurities will give rise
to an interaction which drops off exponential-
ly at very large distances.
It is plausible to suppose that, similarly,

the effective interaction between the fermions
themselves will have a long-range oscillatory
part. By taking advantage of the attractive
regions, Cooper pairs can form thus giving
rise to superconductivity.
To investigate this possibility more system-

atically we consider the following model: an
isotropic system of spin- —,

' fermions with weak
short-range forces between them. The crite-
rion we use for the onset of superconductivity
is that the scattering amplitude for pairs of
quasiparticles of equal and opposite momenta
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Kohn-Luttinger mechanism: Superconductivity from repulsion

Ueff

r

Ueff(r) ∼
cos(2kF r)

(2kF r)3

Attraction from Friedel oscillations



More recent history
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Diagrams to U2 order:

Hamiltonian
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Zeeman field produces superconductivity

• Spin-up electrons experience effective attraction mediated by spin-down electrons 
!

• Spin-down electrons remain in the normal state 
!

• “One-sided” superconductivity

q � 2kf,#
q  2kf,"

Ueff
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FIG. 1: Geometry of the system. We align the spin quanti-
zation axis along magnetic field H.

netic field orientations. Calculation of the electronic spe-
cific heat in section III B is followed by the discussion of
our results in section IV. Complementary discussion of
the finite center-of-mass momentum pairing is presented
in the Appendix.

II. MODEL AND HAMILTONIAN

A. Hamiltonian

The geometry of the system we consider is shown in
Figure 1. We let the 2DEG lie in the xy plane, with
the magnetic field H inclined by a polar angle � relative
to the ẑ axis with azimuthal angle � = 0. The non-
interacting part of the Hamiltonian H

0

describes elec-
trons with parabolic dispersion k2/(2m) subject to the
external Zeeman field �gµ

B

H · ���/2, where g is the g-
factor and µ

B

is Bohr magneton, and the spin-orbit in-
teraction of Rashba type ↵

R

k⇥��� · ẑ = ↵
R

(k
x

�y �k
y

�x).
We set ~ = c = 1 throughout the paper.

In order to conveniently treat SOC in perturbation the-
ory, we choose to align the spin quantization axis parallel
to the magnetic field. This is done with the help of a
unitary rotation about the ŷ axis, R

y

= exp[�i��y/2],
which transforms H
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and e� = (�z sin � + �x cos �) x̂ + �yŷ +
(�z cos � � �x sin �) ẑ represents the rotated spin ���. The
Zeeman coupling strength is given by h = eg|H|/2m.
We neglect the e↵ect of the external field on the orbital
motion of the electrons, an approximation which is jus-
tified if the g-factor is su�ciently large or if the orbital
coupling term is absent. This is the case in systems
of cold neutral atoms, which have been the subject of
several recent experimental studies of SOC21–23.

The electrons repel each other via the short-ranged
(contact) interaction H

I

=
R
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terms of electron spin densities n̂
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(r). Therefore the full
Hamiltonian for our system in momentum space is
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where the primed sum is subject to the momentum con-
servation k

1

+ k
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= k
3

+ k
4

.

B. Schrie↵er-Wol↵ transformation

In this Section we describe the single particle spec-
trum of Hamiltonian (3), and construct a canonical
(Schrie↵er-Wol↵) transformation, which brings the inter-
action Hamiltonian into a form convenient for mean-field
analysis.
The Hamiltonian (3), for general values of ↵

R

, h and
U , is extremely complicated, and is amenable only to
numerical treatments. In what follows we make several
physically-motivated simplifying assumptions, which re-
strict the generality of the obtained results, but make the
problem analytically solvable. Throughout, we assume
the spin-orbit interaction to be weak compared to the
Zeeman coupling, allowing us to treat the ratio ↵

R

k
f

/h
perturbatively. The particle-particle interaction, U , is
assumed to be weak, mU ⌧ 1. As far as quantities
of higher order of smallness are concerned, we will keep
terms of order O(mU↵2
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/h2) while discarding those of

order O(m2U2↵
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/h), which is permissible for not too
small Rashba SOC, ↵

R
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f

� mUh. The utility of these
approximations will become clear in what follows.
We begin with the single-particle part of the Hamil-

tonian, H
0

. The problem of finding the spectrum and
eigenstates of H

0

can be easily solved exactly; however,
for our purposes we specialize to the case of weak SOC
from the outset.
To diagonalize H

0

, we perform a unitary transforma-
tion from the operators ck� to band operators ak�, where
the index � 2 {1, 2} labels the two bands, with 1 denoting
the larger (majority) band and 2 the smaller (minority)
ones. To the required order in ↵
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, the transformation to
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where �k is the azimuthal angle of k.

General set-up: arbitrary H but Zeeman energy >> Spin-orbit energy  

quantization axis along  
the magnetic field
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FIG. 1: Geometry of the system. We align the spin quanti-
zation axis along magnetic field H.
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to the ẑ axis with azimuthal angle � = 0. The non-
interacting part of the Hamiltonian H

0

describes elec-
trons with parabolic dispersion k2/(2m) subject to the
external Zeeman field �gµ

B

H · ���/2, where g is the g-
factor and µ

B

is Bohr magneton, and the spin-orbit in-
teraction of Rashba type ↵

R

k⇥��� · ẑ = ↵
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(�z cos � � �x sin �) ẑ represents the rotated spin ���. The
Zeeman coupling strength is given by h = eg|H|/2m.
We neglect the e↵ect of the external field on the orbital
motion of the electrons, an approximation which is jus-
tified if the g-factor is su�ciently large or if the orbital
coupling term is absent. This is the case in systems
of cold neutral atoms, which have been the subject of
several recent experimental studies of SOC21–23.

The electrons repel each other via the short-ranged
(contact) interaction H

I

=
R
d2r Un̂"(r)n̂#(r) written in

terms of electron spin densities n̂
�

(r). Therefore the full
Hamiltonian for our system in momentum space is

H = H
0

+H
I

,

H
0

=
X

k��0

E
��

0(k)c†k�ck�0

H
I

=
U

V

X0

k
1

k
2

k
3

k
4

c†k
1

"c
†
k
2

#ck3

#ck
4

"

(3)

where the primed sum is subject to the momentum con-
servation k

1

+ k
2

= k
3

+ k
4

.

B. Schrie↵er-Wol↵ transformation

In this Section we describe the single particle spec-
trum of Hamiltonian (3), and construct a canonical
(Schrie↵er-Wol↵) transformation, which brings the inter-
action Hamiltonian into a form convenient for mean-field
analysis.
The Hamiltonian (3), for general values of ↵

R

, h and
U , is extremely complicated, and is amenable only to
numerical treatments. In what follows we make several
physically-motivated simplifying assumptions, which re-
strict the generality of the obtained results, but make the
problem analytically solvable. Throughout, we assume
the spin-orbit interaction to be weak compared to the
Zeeman coupling, allowing us to treat the ratio ↵

R

k
f

/h
perturbatively. The particle-particle interaction, U , is
assumed to be weak, mU ⌧ 1. As far as quantities
of higher order of smallness are concerned, we will keep
terms of order O(mU↵2

R

k2
f

/h2) while discarding those of

order O(m2U2↵
R

k
f

/h), which is permissible for not too
small Rashba SOC, ↵

R

k
f

� mUh. The utility of these
approximations will become clear in what follows.
We begin with the single-particle part of the Hamil-

tonian, H
0

. The problem of finding the spectrum and
eigenstates of H

0

can be easily solved exactly; however,
for our purposes we specialize to the case of weak SOC
from the outset.
To diagonalize H

0

, we perform a unitary transforma-
tion from the operators ck� to band operators ak�, where
the index � 2 {1, 2} labels the two bands, with 1 denoting
the larger (majority) band and 2 the smaller (minority)
ones. To the required order in ↵

R

, the transformation to
band operators is given by

ck" =


1� ↵2

R

k2

8h2

(cos2 �k + sin2 �k cos
2 �)

�
ak1

� ↵
R

k

2h
(i cos�k + sin�k cos �)ak2,

ck# = �↵
R

k

2h
(i cos�k � sin�k cos �)ak1

+


1� ↵2

R

k2

8h2

(cos2 �k + sin2 �k cos
2 �)

�
ak2,

(4)
where �k is the azimuthal angle of k.

⇣ = ±1chirality



2. Project the interaction into band basis

Kohn 
Luttinger 

term

keep U2, U↵2
R

drop U3, U2↵R



J < 0
R2 > 0

R1 > 0Π < 0

Repuslion
Josephson exchange

RepulsionKL process

λ = 1

λ = 2

O(Uα2

R
)O(U2)

O(Uα2

R
) O(Uα2

R
)

2. Project the interaction into band basis 
(via  Schrieffer-Wolff transformation)



Mean-field

order parameter
dispersion

Two solutions of self-consistent equations





• “Decoupled” phase has lower energy 
• “Coupled” phase suffers exponentially from intra-band 

repulsion R1,2



Pairing symmetry

“coupled” “decoupled”
chirality of the order  

parameter 
matches that of the band

chirality of the order  
parameter 

is opposite to that  
of the band



Experimental probe: angle-sensitive specific heat

from the node of the order parameter

2

�

z
H

2DEG
x

y

FIG. 1: Geometry of the system. We align the spin quanti-
zation axis along magnetic field H.

netic field orientations. Calculation of the electronic spe-
cific heat in section III B is followed by the discussion of
our results in section IV. Complementary discussion of
the finite center-of-mass momentum pairing is presented
in the Appendix.

II. MODEL AND HAMILTONIAN

A. Hamiltonian

The geometry of the system we consider is shown in
Figure 1. We let the 2DEG lie in the xy plane, with
the magnetic field H inclined by a polar angle � relative
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Unexpected bonus: finite-momentum pairing

Can be seen from 2-particle problem:

c.f. D. F. Agterberg and  
R. P. Kaur, 2007



Conclusions

d=1: spin-orbit stabilized phases 
d=2: spin-orbit only relieves degeneracy



Previous studies: no mag. field

turning negative. In Fig.6 we show the Θ dependence of

the couplings for the g(jz)− -channel which has the high-
est Tc. The general trend is that Tc increases with Θ,
and the channel in which pairing instability occurs fol-
lows a decreasing arithmetic sequence with step 2. At
small value of Θ, Tc is small and jz is very high; while
as Θ increases, Tc increases and jz decreases. An excep-
tion happens at an intermediate range of Θ, starting with
Θ ∼ 0.005, where we find the sequence jz = 6, 4, 6, 2, the
last value of which continues to Θ → ∞, and a dome-like
behavior in Tc appears at Θ ∼ 0.1 in channel jz = 4.
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FIG. 6: The effective coupling appearing in the expression for
Tc ≈ Ae−1/|geff | as a function of Θ = 1

2mα2
R/EF . ν2D = m

2π .
The dashed line at 0.0187 is the Θ → ∞ asymptote.

VIII. UNCONVENTIONAL
SUPERCONDUCTING STATES

A. Time-reversal symmetry breaking

Now we need to determine which linear combination of
the two possible±jz states has the lowest (most negative)
condensation energy below Tc. Adopting the arguments
of Anderson and Morel that when the most attractive
coupling is in jz channel, the error in the ground state en-
ergy involved in neglecting other channels is very small12,
we study this problem below Tc within mean-field theory.
The details are presented in Appendix A. We replace the
full angular dependence of the original pairing potential
with just its projection on the most dominant jz channel,
an approximation which we expect to hold away from the
boundaries separating ground states with different angu-
lar momentum. The self-consistent mean-field equations
are derived, and then solved both at T = 0 and near Tc.
We find either a solution which breaks TRS and fully
gaps the Fermi surfaces, i.e. only one of the two ±jz
pairing components is finite, or a solution with equal ad-
mixture of ±jz and with gap nodes. Comparing their
condensation energies we find that the TRS breaking so-
lution is lower by a factor of 1.5 just below Tc and by

e/2 ≈ 1.36 at T = 0. For values of Θ ! 0.005, the gap on
the large Fermi surface is much larger than the gap on

the small one due to the smallness of ratio V (jz)
+− /V (jz)

++ .
For smaller value of Θ the two gaps may be comparable.

B. Pairing symmetry

Since the pairing occurs between fermions with the
same helicity, singlets and triplets are mixed. Under time
reversal operation, the creation and annihilation oper-
ators transform as K̂akλ = −iλeiθka−kλ and K̂a†kλ =

iλe−iθka†−kλ. Therefore, the operator iλe−iθka†kλa
†
−kλ

creates a Cooper pair, of which the angular wave function
is

1

2
iλei(jz−1)θk(| ↑⟩+ iλeiθk | ↓⟩)(| ↑⟩ − iλeiθk | ↓⟩)

=
1

2
iλ
[

ei(jz−1)θk | ↑↑⟩+ ei(jz+1)θk | ↓↓⟩

−iλeijzθk(| ↑↓⟩ − | ↓↑⟩)
]

. (82)

When Fourier transformed to real space, θk is replaced
by θr, the polar angle in the center of mass coordinate
system of the Cooper pair. Therefore, the Cooper pair
is a coherent superposition of a quarter of spin-up triplet
with orbital angular momentum ℓ = jz − 1, a quarter of
spin-down triplet with ℓ = jz+1 and a half of singlet with
ℓ = jz . Because jz is an even number, the wave function
is antisymmetric under the exchange of the two fermions.
As seen in Fig.6, for large Θ, we have jz = 2, which
means that the Cooper pair is a mixture of px+ ipy spin-
up triplet, dx2−y2 + idxy singlet and fx3−3xy2 + if3x2y−y3

spin-down triplet.
As mentioned in the introduction, a three-component

vector D⃗λ is defined in such a way that the gap function
on helicity-λ Fermi surface is (D⃗λ · Σ⃗)(iσy), where Σ⃗ =
(σx,σy , 1). Comparing this with Eq.(82), we find

D⃗λ = ∆λiλe
ijzθk(sin θk,− cos θk,−λ), (83)

where∆λ is the pairing amplitude on the helicity-λ Fermi
surface. We plot D⃗± (without the phase factor) around
the two Fermi surfaces which, as shown in Appendix A,
are fully gapped, schematically in Fig.1. The dispersion
is given in Eq.(A14).
The pairing symmetry can also be seen from the mean

field Hamiltonian, which is derived in Eq.(A8). It can
be written as H = 1

2

∑

k Φ
†
kh0(k)Φk, where, if we let

ak+ = ak, ak− = bk, then Φk = (ak, bk, a
†
−k, b

†
−k)

T , and

h0(k) =

⎛

⎜

⎝

ξk+ 0 2∆a 0
0 ξk− 0 2∆b

2∆∗
a 0 −ξk+ 0

0 2∆∗
b 0 −ξk−

⎞

⎟

⎠
. (84)

In the above expression, ∆j is defined as

∆j =
∑

s=±
∆jse

i(sjz−1)θk (85)

11

Luyang Wang, Oskar Vafek 
Physica C 497, pp. 6-18 (2014) 


