Spin-Orbit Coupling and Nematicity in Iron-Based Superconductors

Sergey Borisenko IFW-Dresden

Iron-based superconductors

Synchrotron-based 3D-ARPES

δE ~ meV δk_x ~ BZ/1000 δk_y ~ BZ/1000 δk_z ~ BZ/10

Synchrotron-based 3D-ARPES

SVB et al. Nature Phys. 2016

δE ~ meV δk_x ~ BZ/1000 δk_y ~ BZ/1000 δk_z ~ BZ/10

first DFT, then exotic ...

Electronic structure of IBS (~10 eV scale)

Evtushinsky et al. arXiv:1409.1537

Iron pnictides – strongly correlated systems

Electron scattering rate in ordinary and strongly interacting systems

Evtushinsky et al. submitted

KFe₂As₂- still far from "mottness"

well-defined quasiparticles

SVB et al. Nat. Phys. 2016

DFT results with k_z-dispersion

Blue/red shifts in LiFeAs

0.5-

k_y (1/Å)

A zoo of Fermi surfaces

Center of the BZ (hole pockets)

Co-SmFeAsO

Charnukha et al. Sci. Rep. 15

Importance of the singularities for high T_c

Charnukha et al. Sci. Rep. 15

SVB et al. Nat. Phys. 2016

Spin-orbit splitting in LiFeAs and in all other IBS

SVB et al. Nat. Phys. 2016

FeSe: orbital dependent renormalization

 \bigotimes

Maletz et al. PRB 14

RAPID COMMUNICATIONS

Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor

K. Nakayama,¹ Y. Miyata,¹ G. N. Phan,¹ T. Sato,¹ Y. Tanabe,¹ T. Urata,¹ K. Tanigaki,^{1,2} and T. Takahashi^{1,2} ¹Department of Physics, Tohoku University, Sendai 980-8578, Japan ²WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan (Received 4 April 2014; published 5 December 2014)

We have performed high-resolution angle-resolved photoemission spectroscopy on an FeSe superconductor ($T_c \sim 8$ K), which exhibits a tetragonal-to-orthorhombic structural transition at $T_s \sim 90$ K. At low temperature, we found splitting of the energy bands as large as 50 meV at the *M* point in the Brillouin zone, likely caused by the formation of electronically driven nematic spece. This band splitting persists up

PHYSICAL REVIEW B 91, 155106 (2015)

S

Emergence of the nematic electronic state in FeSe

M. D. Watson,¹ T. K. Kim,² A. A. Haghighirad,¹ N. R. Davies,¹ A. McCollam,³ A. Narayanan,¹ S. F. Blake,¹ Y. L. Chen,¹ S. Ghannadzadeh,³ A. J. Schofield,⁴ M. Hoesch,² C. Meingast,³ T. Wolf,² and A. I. Coldea^{1,*}
 ¹Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OXI 3PU, United Kingdom
 ²Diamond Light Source, Harvell Campus, Didcot, OXI1 0DE, United Kingdom
 ³High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands
 ⁴School of Physics and Astronomy, University of Birningham, Edghaston, Birningham B15 2TT, United Kingdom
 ⁵Institute for Solid State Physics, Karlsruhe Institute of Technology, Germany (Received 11 February 2015; versed manuscript received 10 March 2015; published 7 April 2015; corrected 6 May 2015)

We present a comprehensive study of the evolution of the nematic electronic structure of FeSe using highresolution angle-resolved photoemission spectroscopy (ARPES), quantum oscillations in the normal state, and elastoresistance measurements. Our high-resolution ARPES allows us to track the Fermi surface deformation from fourfold to twofold symmetry across the structural transition at ~87 K, which is stabilized as a result of the dramatic splitting of bands associated with d_{zz} and d_{yz} character in the presence of strong electronic interactions.

in the Fermi surface across the transition. The large band splitting of \sim 50 meV at the *M* point at 10 K [Fig. 2(e)] indicates the lifting of of d_{xz} and d_{yz} degeneracy in FeSe.

Simultaneous emergence of superconductivity, inter-pocket scattering and

nematic fluctuation in potassium-coated FeSe superconductor

Z. R. Ye^{1, †}, C. F. Zhang^{2, 3, †}, H. L. Ning¹, W. Li^{2, 3}, L. Chen¹, T. Jia^{2, 3}, M. Hashimoto⁴, D. H.

Lu⁴, Z.-X. Shen^{2, 3}, and Y. Zhang^{1, 5, *}

electron doping level by counting the Fermi surface volume. The nematic transition

temperature (T_{nom}) is calculated from the energy splitting between the β_1 and β_2 bands (Δ_{nom}) .

The Δ_{nem}/k_BT_{nem} is 6.22 as determined by the Δ_{nem} and T_{nem} in undoped FeSe single crystal.

Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe

T. Shimojima,^{1,*} Y. Suzuki,¹ T. Sonobe,¹ A. Nakamura,¹ M. Sakano,¹ J. Omachi,² K. Yoshioka,³ M. Kuwata-Gonokami,^{2,3} K. Ono,⁴ H. Kumigashira,⁴ A. E. Böhmer,⁵ F. Hardy,⁵ T. Wolf,⁵ C. Meingast,⁵ H. v. Löhneysen,^{5,6} H. Ikeda,⁷ and K. Ishizaka¹ Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, 13-8656, Japan ²Photon Science Center, The University of Tokyo, 7-3-1 Hungo, Bunkvo-ku, Tokyo 113-8656, Japan

³Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0030, Japan

⁴KEK, Photon Factory, Tsukuba, Ibaraki 305-0801, Japan
⁵Institut für Festkörperphysik, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

¹Institut für restkorperpriyste, Karlsruhe Institute of Technology, 76/28 Karlsruhe, Germany ⁶Physikalisches Institut, Karlsruhe Institute of Technology, 76/28 Karlsruhe, Germany ⁷Department of Physics, Kyoto University, Kyoto 606-8502, Japan (Received 4 July 2014; revised manuscript received 11 September 2014; published 29 September 2014)

We study superconducting FeSe ($T_c = 9 \text{ K}$) exhibiting the tetragonal-orthorhombic structural transition ($T_c \sim 90 \text{ K}$) without any antiferromagnetic ordering, by utilizing angle-resolved photoemission spectroscopy. In the detwinned orthorhombic state, the energy position of the d_{yz} orbital band at the Brillouin zone corner is 50 meV higher than that of d_{xz} , indicating the orbital order similar to the NaFeAs and BaFe_As_2 families.

PHYSICAL REVIEW B 91, 214503 (2015)

Observation of two distinct d_{xz}/d_{yz} band splittings in FeSe

P. Zhang,¹ T. Qian,¹ P. Richard,^{1,2,*} X. P. Wang,^{3,2,1} H. Miao,¹ B. Q. Lv,¹ B. B. Fu,¹ T. Wolf,⁴ C. Meingast,⁴ X. X. Wu,¹ Z. Q. Wang,^{5,1} J. P. Hu,^{1,2,†} and H. Ding^{1,2,‡}

¹Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ²Collaborative Innovation Center of Quantum Matter, Beijing, China

³ State Key Laboratory for Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China

⁴Institut für Festkörperphysik, Karlsruhe Institute for Technology, Karlsruhe 76021, Germany ⁵Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA (Received 16 March 2015; revised manuscript received 17 May 2015; published 4 June 2015)

We report the temperature evolution of the detailed electronic band structure in FeSe single crystals measured by angle-resolved photoemission spectroscopy (ARPES), including the degeneracy removal of the d_{xz} and d_{yz} orbitals at the Γ/Z and M points, and the orbital-selective hybridization between the d_{xy} and $d_{xz/yz}$ orbitals. The temperature dependences of the splittings at the Γ/Z and M points are different, indicating that they are controlled by different order parameters. The splitting at the M point is closely related to the structural transition and is attributed to orbital ordering defined on Fe-Fe bonds with a *d*-wave form in the reciprocal space that breaks

The splitting at M is about 60 meV with temperature increasing and

arXiv:1603.05219

Highly anisotropic and two-fold symmetric superconducting gap in nematically ordered FeSe_{0.93}

H. C. Xu,¹ X. H. Niu,¹ D. F. Xu,¹ J. Jiang,¹ Q. Yao,¹ M. Abdel-Hafiez,^{2,3} D. A. Chareev,⁴ A. N. Vasiliev,⁵ R. Peng,^{1,*} and D. L. Feng^{1,†}

¹State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433, People's Republic of China ²Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China ³Faculty of science, Physics department, Favoum University, 63514-Favoum, Egypt

along Z-A₁, clearly indicating the splitting of 50 meV between bands ε and ε' due to the nematic order [14]

FeSe: comparison with a=b calculations

Fedorov et al. arXiv:1606.03022

FeSe: comparison with a=b calculations

Our interpretation

Their interpretation

FeSe: comparison with a≠b calculations

Fedorov et al. arXiv:1606.03022

FeSe: temperature dependence of M-point EDC

Fedorov et al. arXiv:1606.03022

FeSe: electronic structure in the center of BZ

FeSe: back to DFT Fermi surfaces with temperature

100 K

FeSe: back to DFT Fermi surfaces with temperature

Pomeranchuk instability?

FeSe: spin-orbit splitting and nematicity quantitatively

 $25^2 = 20^2 + 15^2$

From "double-OK" model to reality (conclusions)

Renormalization by a factor ~3 on 10 eV scale

Blue/red shifts scale of 0.1 eV

Oribital-dependent renormalization by up to another factor 3 on the scale of 1 eV **Physics: ?**

Physics: J

Orthorhombic distorsion 10-15 meV

Physics: electronic nematicity

Spin-orbit splitting up to 20 meV

T-dependence Scale 10 meV

Physics: s+- Pomeranchuk ?

Physics: (l,s)

Theory test

Thanks to

Experiments	Alexander Fedorov, Yevhen Kushnirenko, Erik Haubold (IFW-Dresden) Timur Kim (Diamond Light Source)
Theory	Alexander Yaresko (MPI-FKF Stuttgart) FeSe
Single crystals	Thomas Wolf (KIT)
Experiments	Danil Evtushinsky, Zhonghao Liu, Alex Charnukha, Setti Thirupathaiah (IFW-Dresden)
Single crystals	Igor Morozov (IFW-Dresden) Chengtian Lin (MPI-FKF Stuttgart) Alexander Vasiliev, Seung-Ho Baek (IFW-Dresden) Nikolai Zhigadlo, Bertram Batlogg (ETH Zurich) Shanta Saha, Rongwei Hu, Johnpierre Paglione (University of Maryland) Pengchen Dai (Rice University)
Discussions, ideas	Andrey Chubukov (U Minnesota), Alexander Kordyuk (IMP-Kiev) Moritz Hoesch (Diamond), Sabine Wurmehl, Bernd Büchner (IFW-Dresden)