

Karen Michaeli

Φ./

T Akazawa, et al, 2004

(a)

3

Electronic spectrum

 $J_{-} = L - S$

_k_x

Magnetic field

The two Rashba bands in the presence of a Zeeman field:

 $\vec{B} = B\hat{x}$

$$\varepsilon_k^{\pm} = \frac{k^2}{2m} \pm \alpha \sqrt{k_x^2 + (k_y + \mu_0 B/\alpha)^2}$$

Magnetic field

The two Rashba bands in the presence of a Zeeman field:

 $\vec{B} = B\hat{x}$

$$\varepsilon_k^{\pm} = \frac{k^2}{2m} \pm \alpha \sqrt{k_x^2 + (k_y + \mu_0 B/\alpha)^2}$$

Magnetic field

The two Rashba bands in the presence of a Zeeman field:

 $\vec{B} = B\hat{x}$

$$\varepsilon_{k}^{\pm} = \frac{k^{2}}{2m} \pm \alpha \sqrt{k_{x}^{2} + (k_{y} + \mu_{0}B/\alpha)^{2}}$$

$$F_{k}^{\pm} = \frac{k^{2}}{2m} \pm \alpha \sqrt{k_{x}^{2} + (k_{y} + \mu_{0}B/\alpha)^{2}}$$

$$\varepsilon_{k+q/2}^{\pm} \approx \frac{k^{2}}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} (V_{F}q \pm 2\mu_{0}B) \sin \theta$$

$$\varepsilon_{-k+q/2}^{\pm} \approx \frac{k^{2}}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} (V_{F}q \pm 2\mu_{0}B) \sin \theta$$

The FFLO state and spin-orbit

$$\varepsilon_{k+q/2}^{\pm} \approx \frac{k^2}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} (V_F q \pm 2\mu_0 B) \sin \theta$$
$$\varepsilon_{-k+q/2}^{\pm} \approx \frac{k^2}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} (V_F q \pm 2\mu_0 B) \sin \theta$$
$$q = \frac{2\mu_0 B}{v_F}$$

k_y **k**_x

The FFLO state and spin-orbit

$$\varepsilon_{k+q/2}^{\pm} \approx \frac{k^2}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} \left(V_F q \pm 2\mu_0 B \right) \sin \theta$$
$$\varepsilon_{-k+q/2}^{\pm} \approx \frac{k^2}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} \left(V_F q \pm 2\mu_0 B \right) \sin \theta$$
$$q = \frac{2\mu_0 B}{v_F}$$

Pairs of electrons in the - band are not affected by the magnetic field

Pairs of electrons in the + band feel the decoherence effect of the magnetic field

The critical field is mainly determined by the + band

k_x

The FFLO state and spin-orbit

V. Barzykin, and L. P. Gorkov, 2002.

$$\mu_0 B_c \sim \Delta_0 \left(\frac{\Delta_{so}}{\Delta_0}\right)^x$$

$$\Delta(\vec{r}) = \Delta e^{i\vec{q}\cdot\vec{r}}$$

L. P. Gor'kov, E. I. Rashba, 2001.
A. B. Shick, and W. E. Pickett, 2001.
K. V. Samokhin, 2004.
P. A. Frigeri, D. F. Agterberg, and M. Sigrist, 2004
M.Y. Kharitonov, and M. V. Feigel'man, 2005.

Disorder effects

KM, A. C. Potter, and P. A. Lee, PRL 2012

Critical magnetic field

Enhancement of T_c

Tc(H=0) = 3.612K2.1nm

Enhancement of T_c

 $\mu_0 H(T)$

H. Gardner, et al, 2011

Magnetic fluctuations

LAO/STO Magnetometry

J. A. Bert, et al, 2004

T Akazawa, et al, 2004

Superconducting order parameter:

$$\Delta(\mathbf{q}) = U \sum_{\mathbf{k}} \left[\Psi_{\mathbf{k},\uparrow} \Psi_{-\mathbf{k}+\mathbf{q},\downarrow} - \Psi_{\mathbf{k},\downarrow} \Psi_{-\mathbf{k}+\mathbf{q},\uparrow} \right] \qquad \Delta = |\Delta| \exp^{i\Phi}$$

Magnetization:

$$\vec{M}(\mathbf{q}) = \mu_B \sum_{\mathbf{k}} \Psi_{\mathbf{k},\alpha}^{\dagger} \vec{\sigma}_{\alpha,\beta} \Psi_{\mathbf{k}+\mathbf{q},\beta}$$

$$F = \sum_{\vec{j},\hat{\nu}} -\rho_s \cos\left(\Phi_{\vec{j}+\hat{\nu}} - \Phi_{\vec{j}}\right) + \frac{\kappa}{2}(\hat{z} \times \hat{\nu}) \cdot \left(\mathbf{H}_{\mathrm{T}\vec{j}} + \mathbf{H}_{\mathrm{T}\vec{j}+\hat{\nu}}\right) \sin\left(\Phi_{\vec{j}+\hat{\nu}} - \Phi_{\vec{j}}\right)$$

$$+UM_{\vec{j}}^2 - \frac{\chi_s}{2}H_{\mathrm{T}\perp,\vec{j}}^2$$

L. P. Gor'kov and E. I. Rashba, 2001

Current and magnetization

V.M. Edelstein, 1995

$$\vec{J} = -e\rho_s \left[\vec{\nabla}\Phi(\mathbf{r}) - 2e\vec{A}(\mathbf{r})\right] - e\kappa \left[\vec{H}_T \times \hat{z}\right]$$

$$ec{M} = rac{\kappa \chi}{\chi_s} \hat{z} imes \left[ec{
abla} \Phi(\mathbf{r}) - 2eec{A}(\mathbf{r})
ight] + \chi ec{H}_{ext}$$
 $\chi = rac{\chi_s}{1 - \chi_s U/g^2 \mu_B^2}$

The superconducting current carries magnetization

Current and magnetization

V.M. Edelstein, 1995

$$\vec{J} = -e\rho_s \left[\vec{\nabla} \Phi(\mathbf{r}) - 2e\vec{A}(\mathbf{r}) \right] - e\kappa \left[\vec{H}_T \times \hat{z} \right]$$

$$\vec{M} = \frac{\kappa \chi}{\chi_s} \hat{z} \times \left[\vec{\nabla} \Phi(\mathbf{r}) - 2e\vec{A}(\mathbf{r}) \right] + \chi \vec{H}_{ext}$$

$$\chi = \frac{\chi_s}{1 - \chi_s U/g^2 \mu_B^2}$$

S.-K. Yip, 2005 M. K. Kashyap and D. F. Agterberg, 2013

$$F = \sum_{\vec{j},\hat{\nu}} -\rho_s \cos\left(\Phi_{\vec{j}+\hat{\nu}} - \Phi_{\vec{j}}\right) + \frac{\kappa}{2}(\hat{z} \times \hat{\nu}) \cdot \left(\mathbf{H}_{\mathrm{T}\vec{j}} + \mathbf{H}_{\mathrm{T}\vec{j}+\hat{\nu}}\right) \sin\left(\Phi_{\vec{j}+\hat{\nu}} - \Phi_{\vec{j}}\right)$$

$$+UM_{\vec{j}}^2 - \frac{\chi_s}{2}H_{\mathrm{T}\perp,\vec{j}}^2$$

$$\begin{split} F &= -\sum_{\vec{j},\hat{\nu}} \rho_s \cos\left(\Phi_{\vec{j}+\hat{\nu}} - \Phi_{\vec{j}}\right) \\ &- \frac{\zeta}{4} \sum_{\vec{j},\hat{\nu}} \left[\sin\left(\Phi_{\vec{j}+\hat{\nu}} - \Phi_{\vec{j}}\right) + \sin\left(\Phi_{\vec{j}} - \Phi_{j-\hat{\nu}}\right)\right]^2 \end{split}$$

$$\zeta = \frac{U\kappa^2/(g\mu_B)^2}{1-2\chi_\perp U/g^2\mu_B^2}$$

$$F = -\sum_{\vec{j},\hat{\nu}} \rho_s \cos\left(\Phi_{\vec{j}+\hat{\nu}} - \Phi_{\vec{j}}\right)$$
$$-\frac{\zeta}{4} \sum_{\vec{j},\hat{\nu}} \left[\sin\left(\Phi_{\vec{j}+\hat{\nu}} - \Phi_{\vec{j}}\right) + \sin\left(\Phi_{\vec{j}} - \Phi_{j-\hat{\nu}}\right)\right]^2$$

$$\zeta = \frac{U\kappa^2/(g\mu_B)^2}{1-2\chi_\perp U/g^2\mu_B^2}$$

$$\vec{S}_{\vec{i}} = \begin{pmatrix} \cos \Phi_{\vec{i}} \\ \sin \Phi_{\vec{i}} \end{pmatrix}$$

Phase diagram

 $F = -\rho_s \sum_{\vec{i},\hat{\mu}} \left\{ \vec{S}_i \cdot \vec{S}_{i+\hat{\mu}} + \frac{\zeta}{\rho_s} \left[\vec{S}_{\vec{i}+\hat{\mu}} \times \vec{S}_{\vec{i}} + \vec{S}_{\vec{i}} \times \vec{S}_{\vec{i}-\hat{\mu}} \right]^2 \right\}$ T/T_{c0} $\Phi_{\vec{j}} - \Phi_{\vec{j}+\hat{\nu}} = \cos^{-1}(\rho_2/2\zeta)$ uniform s.c phase chiral s.c phase 0.5

Phase diagram

 $F = -\rho_s \sum_{\vec{i},\hat{\mu}} \left\{ \vec{S}_i \cdot \vec{S}_{i+\hat{\mu}} + \frac{\zeta}{\rho_s} \left[\vec{S}_{\vec{i}+\hat{\mu}} \times \vec{S}_{\vec{i}} + \vec{S}_{\vec{i}} \times \vec{S}_{\vec{i}-\hat{\mu}} \right]^2 \right\}$ T/T_{c0} $\Phi_{\vec{j}} - \Phi_{\vec{j}+\hat{\nu}} = \cos^{-1}(\rho_2/2\zeta)$ Disordered phase uniform s.c phase chiral s.c phase 0.5

Phase diagram

Magnetic field

$$\begin{split} F &= -\rho_s \sum_{\vec{i},\hat{\mu}} \left\{ \vec{S}_i \cdot \vec{S}_{i+\hat{\mu}} + \frac{\zeta}{\rho_s} \Big[\vec{S}_{\vec{i}+\hat{\mu}} \times \vec{S}_{\vec{i}} + \vec{S}_{\vec{i}} \times \vec{S}_{\vec{i}-\hat{\mu}} \Big]^2 \right\} \\ &+ \frac{\kappa}{4} \sum_{\vec{i},\hat{\mu}} \hat{z} \cdot \left(\hat{\mu} \times \vec{H}_{ext} \right) \vec{S}_{\vec{i}+\hat{\mu}} \times \vec{S}_{\vec{i}} \end{split}$$

$$\rho_s \to \sqrt{\rho_s^2 + (\kappa H)^2/16}$$

Helical phase for all values of ζ

Magnetic field

 $\kappa {\rm H}/4\rho_s$

 $\mathrm{H/H}_{c}$

 H/H_c

 $\kappa {\rm H}/4 \rho_s$

 $\mathrm{H/H}_{c}$

 $\kappa H/4\rho_s$

 $\mathrm{H/H}_{c}$

$$\Phi_{\vec{j}} = \Phi_{\vec{j}+N\hat{x}} + 2\pi n$$

$$\Phi_{\vec{j}+\hat{x}} - \Phi_{\vec{j}} = 2\pi n/2$$

$$F_{\rm ring} = -\rho_s \cos\left(\frac{2\pi n}{N}\right) - \zeta \sin^2\left(\frac{2\pi n}{N}\right)$$

H 0.2

-0.1

Η

 $\zeta/
ho_s^{_{0.5}}$

0.25

0.25

$$\Phi_{\vec{j}} = \Phi_{\vec{j}+N\hat{x}} + 2\pi n$$

H 0.2

-0.1

 $\zeta/
ho_s^{_{0.5}}$

0.25

0.25

Η

$$\Phi_{\vec{j}} = \Phi_{\vec{j}+N\hat{x}} + 2\pi n$$

Stable finite momentum pairing

Peculiar s.c phasemagnetization relation

superconductivity

spin - orbit

