Odd-Frequency Superconductivity in Topological Insulators and Multiband Superconductors

Annica Black-Schaffer

UPPSALA UNIVERSITET

Nordita July 25th, 2016

- Introduction to odd-frequency pairing
- Odd-frequency pairing in topological insulator-superconductor hybrid structures
 - Spin-singlet s-wave superconductor
 - Spin-triplet *p*-wave superconductor
- Odd-frequency pairing in multiband superconductors

- Introduction to odd-frequency pairing
- Odd-frequency pairing in topological insulator-superconductor hybrid structures
 - Spin-singlet s-wave superconductor
 - Spin-triplet *p*-wave superconductor
- Odd-frequency pairing in multiband superconductors

UNIVERSITET Superconducting Symmetries

The superconducting order parameter is fermionic:

$$\Delta_{\alpha\beta}(\mathbf{k}) = -\Delta_{\beta\alpha}(-\mathbf{k})$$

$$\Delta_{\alpha\beta}(\mathbf{k}) = \Delta_0 e^{i\varphi} \eta(\mathbf{k}) \chi_{\alpha\beta} \boldsymbol{\swarrow}^{\text{orbital}} \boldsymbol{\swarrow}^{\text{spin}}$$

spin-singlet s-wave or spin-triplet p-wave

The order parameter can also be odd in time/frequency: [1]

$$\Delta_{\alpha\beta}(\mathbf{k},\omega) = -\Delta_{\beta\alpha}(-\mathbf{k},-\omega)$$

odd-frequency spin-triplet s-wave

[1]: Berezinskii, JETP Lett. 20, 287 (1974)

UPPSALA UNIVERSITET Odd-frequency (ω) Pairing

BCS order parameter:
$$F(\mathbf{r}, t; \mathbf{r}', t' \to t) = \langle \psi(\mathbf{r}, t)\psi(\mathbf{r}', t' \to t) \rangle$$

vanishes for an odd-frequency component

Equal-time odd-frequency order parameter: [1,2]

$$\frac{\mathrm{d}F(\mathbf{r},t;\mathbf{r}',t')}{\mathrm{d}t}\Big|_{t\to t'}$$

Theory proposals for odd-frequency bulk superconductors exists [1,2] but only found so far at interfaces

[1]: Abrahams et al, PRB 52, 1271 (1995), [2]: Dahal et al, NJP 11, 065005 (2009)

UPPSALA S F Interface

Spin-singlet *s*-wave pairing in SC converted into odd-frequency spin-triplet *s*-wave pairing in FM

- Long-range superconducting proximity effect in the FM
- *s*-wave = robust against impurities

Bergeret et al, RMP, 77, 1321 (2005), [1]: Eschrig, Phys. Today 64, 43 (2011)

UPPSALA S N Interface

odd-frequency spin-singlet p-wave pairing

- Only high-transparency junctions
- *p*-wave = only ballistic systems

[1]: Tanaka et al, PRL 99, 037005 (2007)

r Outline

- Introduction to odd-frequency pairing
- Odd-frequency pairing in topological insulator-superconductor hybrid structures
 - Spin-singlet s-wave superconductor
 - Spin-triplet *p*-wave superconductor
- Odd-frequency pairing in multiband superconductors

UPPSALA UNIVERSITET Topological Insulator (TI)

Surface state of a topological insulator

- Dirac spectrum
- Momentum locked to spin: $\mathrm{H}\sim k\boldsymbol{\cdot}\boldsymbol{\sigma}$

UPPSALA TI – SC Hybrid Structure

UPPSALA UNIVERSITET Analytic Derivation

Order parameter for s-wave odd-frequency pairing:

$$\hat{F}_{\mathrm{TI}}(\omega_n|i=0) = \sum_{\mathbf{k}} \frac{|T|^2 \omega_n \hat{\sigma} \partial_x \hat{\Delta}|_0}{2[\omega_n^2 + \varepsilon(\mathbf{k})^2 + \Delta^2(0)](\omega_n^2 + \mathbf{k}^2)^2}$$
$$\sim |T|^2 \omega_n \sigma^z \partial_x \Delta|_0 / (E_F^2 |\omega_n|^2) \qquad \Longrightarrow \quad \partial_\tau \hat{F}_{\mathrm{TI}}(\tau|i)|_0 \sim \frac{\partial \Delta}{\partial x}$$

 \rightarrow Odd-frequency spin-triplet *s*-wave pairing:

- Spatially inhomogeneous SCs

UPPSALA S N Junction in a 2D TI

Spin-triplet *s*-wave pairing: $F_t(\tau|i) = (\langle c_{i\downarrow}(\tau)c_{i\uparrow}(0) + c_{i\uparrow}(\tau)c_{i\downarrow}(0) \rangle)/2$

Spin-singlet *s*-wave pairing:

$$F_s(\tau|i) = (\langle c_{i\downarrow}(\tau)c_{i\uparrow}(0) - c_{i\uparrow}(\tau)c_{i\downarrow}(0) \rangle)/2$$

UPPSALA UNIVERSITET In-surface Supercurrent

In-surface supercurrent: $\Delta = |\Delta|e^{ikx}$

UPPSALA Gradient-Induced Odd-w Pairing

- Electric field induced sublattice staggering in silicene and stanene
- Linear **k**-dependence of the pairing in a *p*-wave superconductor:

$$\hat{F}_{\text{TI}}(\mathbf{k},\omega_n) = \frac{-4i|T|^2 \Delta_0 [\mathbf{k} \times \mathbf{d}(\mathbf{k})] \cdot \boldsymbol{\sigma} \sigma_y}{(\omega_n^2 + k^2)^2 (\omega_n^2 + E_k^2)} \omega_n$$

Odd-frequency s-wave spin-triplet pairing

Kuzmanovski and ABS (in preparation), ABS and Balatsky, PRB 87, 220506(R) (2013),

UPPSALA Odd-frequency pairing in TIs

Odd-frequency pairing in TI-SC hybrid structures

• Spin-singlet *s*-wave SC with in-plane gradient \rightarrow

Odd-frequency spin-triplet s-wave pairing

- SN junctions
- Supercurrents
- Sublattice staggering
- Spin-triplet *p*-wave SC \rightarrow

Odd-frequency spin-triplet s-wave pairing

Outline

- Introduction to odd-frequency pairing
- Odd-frequency pairing in topological insulator-superconductor hybrid structures
 - Spin-singlet s-wave superconductor
 - Spin-triplet *p*-wave superconductor
- Odd-frequency pairing in multiband superconductors

UPPSALA UNIVERSITET $Bi_2Se_3 - SC$ Hybrid Structure

ABS and Balatsky, PRB 87, 220506(R) (2013), [1]: Rosenberg and Franz, PRB 85, 195119 (2012)

UPPSALA

Superconductivity in Bi₂Se₃ UNIVERSITET

Classification of all superconducting symmetries in Bi₂Se₃

- Spin-singlet/triplet, spatial (s/d/p-wave), even/odd-frequency, even/odd orbital

\bigcap	SC		Proximity-induced superconductivity in Bi ₂ Se ₃					
Superconductor			Even	-frequency	Odd-frequency			
Γ	Basis function	J_z	Even-orbital	Odd-orbital	Even-orbital	Odd-orbital		
A_{1g}	$\psi = 1$	0	A_{1g} singlet,	-	-	A_{1g} singlet,		
D			A_{2u} triplet (m _s = ±1)	$(\pm \pm 1)$		A_{2u} triplet (m _s = ±1)		
B_{1g}	$\psi=k_x^z-k_y^z$	± 2	B_{1g} singlet,	-	-	B_{1g} singlet,		
			B_{2u} triplet (m _s = ±1)			B_{2u} triplet (m _s = ±1)		
B_{2g}	$\psi=2k_xk_y$	± 2	B_{2g} singlet,	-	-	B_{2g} singlet,		
			B_{1u} triplet (m _s = ±1)			B_{1u} triplet (m _s = ±1)		
A_{1u}	$\mathbf{d}=(k_x,k_y,0)$	0	A_{1u} triplet (m _s = ±1)	A_{1g} triplet (m _s = 0)	A_{1g} triplet (m _s = 0)	A _{1u} triplet (m _s = ± 1)		
A_{2u}	$\mathbf{d}=(k_y,-k_x,0)$	0	A_{2u} triplet (m _s = ±1),	-	-	A _{2u} triplet (m _s = ± 1),		
			A_{1g} singlet			A_{1g} singlet		
B_{1u}	$\mathbf{d}=(k_x,-k_y,0)$	± 2	B_{1u} triplet (m _s = ±1),	B_{1g} triplet (m _s = 0)	B_{1g} triplet (m _s = 0)	B_{1u} triplet (m _s = ±1),		
			B_{2g} singlet			B_{2g} singlet		
B_{2u}	$\mathbf{d}=(k_y,k_x,0)$	± 2	B_{2u} triplet (m _s = ±1),	B_{2g} triplet (m _s = 0)	B_{2g} triplet (m _s = 0)	B_{2u} triplet (m _s = ±1),		
			B_{1g} singlet		_	B_{1g} singlet		
E_{2u}^{+}	$\mathbf{d} = (0, 0, k_x + ik_y)$	1	E_{2u}^+ triplet (m _s = 0)	A_{1g} triplet (m _s = 1),	A_{1g} triplet (m _s = 1),	E_{2u}^+ triplet (m _s = 0)		
_ u				$B_{1g} + i B_{2g}$ triplet (m _s = -1)	$B_{1g}+iB_{2g}$ triplet (m _s = -1)			
E_{2u}^{-}	$\mathbf{d} = \overline{(0,0,k_x-ik_y)}$	-1	E_{2u}^- triplet (m _s = 0)	A_{1g} triplet (m _s = -1),	A_{1g} triplet (m _s = -1),	E_{2u}^{-} triplet (m _s = 0)		
				$B_{1g} - iB_{2g}$ triplet (m _s = 1)	B _{1g} - <i>i</i> B _{2g} triplet (m _s = 1)			

ABS and Balatsky, PRB 87, 220506(R) (2013)

UPPSALA UNIVERSITET Frequency and Interband Index

Complete reciprocity between oddness in frequency and orbital index

Superconductor			Even	-frequency	Odd-frequency			
Г	Basis function	$ J_z $	Even-orbital	Odd-orbital	Even-orbital	Odd-orbital		
A _{1g}	$\psi = 1$	0	A_{1g} singlet,	-	-	A_{1g} singlet,		
			A_{2u} triplet (m _s = ±1)			A_{2u} triplet (m _s = ±1)		
B _{1g}	$\psi=k_x^2-k_y^2$	± 2	B_{1g} singlet,			B_{1g} singlet,		
	U U		B_{2u} triplet (m _s = ±1)			B_{2u} triplet (m _s = ±1)		
B _{2g}	$\psi=2k_xk_y$	± 2	B_{2g} singlet,	-	-	B_{2g} singlet,		
			B_{1u} triplet (m _s = ±1)			B_{1u} triplet (m _s = ±1)		
A _{1u}	$\mathbf{d}=(k_x,k_y,0)$	0	A_{1u} triplet (m _s = ±1)	A_{1g} triplet (m _s = 0)	A_{1g} triplet (m _s = 0)	A_{1u} triplet (m _s = ±1)		
A _{2u}	$\mathbf{d}=(k_y,-k_x,0)$	0	A_{2u} triplet (m _s = ±1),	-	-	A_{2u} triplet (m _s = ±1),		
			A_{1g} singlet			A_{1g} singlet		
B _{1u}	$\mathbf{d}=(k_x,-k_y,0)$	$ \pm 2 $	B_{1u} triplet (m _s = ±1),	B_{1g} triplet (m _s = 0)	B_{1g} triplet (m _s = 0)	B_{1u} triplet (m _s = ±1),		
			B_{2g} singlet			B_{2g} singlet		
B _{2u}	$\mathbf{d}=(k_y,k_x,0)$	$ \pm 2 $	B_{2u} triplet (m _s = ±1),	B_{2g} triplet (m _s = 0)	B_{2g} triplet (m _s = 0)	B_{2u} triplet (m _s = ±1),		
			B_{1g} singlet			B_{1g} singlet		
E_{2u}^{+}	$\mathbf{d} = (0, 0, k_x + ik_y)$	1	E_{2u}^+ triplet (m _s = 0)	A_{1g} triplet (m _s = 1),	A_{1g} triplet (m _s = 1),	E_{2u}^+ triplet (m _s = 0)		
24			24	$B_{1g} + i B_{2g}$ triplet (m _s = -1)	$B_{1g} + i B_{2g}$ triplet (m _s = -1)	24		
E_{2u}^{-}	$\mathbf{d} = (0, 0, k_x - ik_y)$	-1	E_{2u}^{-} triplet (m _s = 0)	A_{1g} triplet (m _s = -1),	A_{1g} triplet (m _s = -1),	E_{2u}^- triplet (m _s = 0)		
24			2u - (, , , , , , , , , , , , , , , , , ,	24				

Generic property for multiband superconductors

ABS and Balatsky, PRB 87, 220506(R) (2013)

UNIVERSITET Multiband Superconductors

- S: Spin (spin-singlet: S = 0 or spin-triplet: S = 1)
- P: Spatial parity (even: *s*-,*d*-wave or odd: *p*-,*f*-wave)
- T: Time (even or odd-frequency)
- O: Orbital/band parity

$\mathrm{S}=0$	P	Т	0	S = 1	P	Т	0
even - ω	+	\bigcirc	\oplus	even- ω		+	+
even - ω	_	+	—	even- ω	+	+	_
odd- ω	+	Θ	Θ	odd- ω	+	—	+
odd- ω	_		+	odd- ω			

Spin-singlet *s*-wave: TO = 1

ABS and Balatsky, PRB 88, 104514 (2013)

UNIVERSITET Two-Band SC with Band Hybridization

Bands (orbitals) a & b with finite interband hybridization/scattering Γ :

$$\begin{split} H &= \sum_{k\sigma} \epsilon_{k1} a_{k\sigma}^{\dagger} a_{k\sigma} + \epsilon_{k2} b_{k\sigma}^{\dagger} b_{k\sigma} + \sum_{k\sigma} \Gamma(k) a_{k\sigma}^{\dagger} b_{k\sigma} + \text{H.c.} \\ &+ \sum_{k} \Delta_{1}(k) a_{k\uparrow}^{\dagger} a_{-k\downarrow}^{\dagger} + \Delta_{2}(k) b_{k\uparrow}^{\dagger} b_{-k\downarrow}^{\dagger} + \text{H.c.} \end{split}$$

ABS and Balatsky, PRB 88, 104514 (2013), Komendova, Balatsky, and ABS, PRB 92, 094517 (2015)

UPPSALA Interband Pairing

Perturbation theory to infinite order in Γ : (using a geometric series)

Odd-interband: $F_{12}^{\text{odd}}(\mathbf{k}, i\omega) = \frac{F_{12} - F_{21}}{2} = i\omega\Gamma(\Delta_1 - \Delta_2)/D$ Even-interband: $F_{12}^{\text{even}}(\mathbf{k}, i\omega) = \frac{F_{12} + F_{21}}{2} = \Gamma(\Delta_1\epsilon_{k2} + \Delta_2\epsilon_{k1})/D$

$$\begin{pmatrix} D = (\omega^2 + E_1^2)(\omega^2 + E_2^2) - \Gamma^2 [2(\epsilon_1 \epsilon_2 - \omega^2) - \Delta_2^* \Delta_1 - \Delta_1^* \Delta_2] + \Gamma^4 \\ E_j^2 = E_{kj}^2 = \epsilon_{kj}^2 + |\Delta_j|^2 \end{pmatrix}$$

Interband pairing: $\Gamma \neq 0$

Odd-frequency, odd-interband pairing: $\Gamma \neq 0$, $\Delta_1 \neq \Delta_2$

Komendova, Balatsky, and ABS, PRB 92, 094517 (2015)

UNIVERSITET Interband Frequency Dependence

Odd-frequency, odd-interband pairing: $\Gamma \neq 0$, $\Delta_1 \neq \Delta_2$

Komendova, Balatsky, and ABS, PRB 92, 094517 (2015)

UPPSALA UNIVERSITET DOS for Two-Band Superconductor

Additional gaps with coherence peaks at high energies Only appears with odd-frequency pairing Komendova, Balatsky, and ABS, PRB 92, 094517 (2015)

Hybridization gaps

- High-energy gaps with pronounced coherence peaks
- Only appears for finite odd-frequency pairing

Komendova, Balatsky, and ABS, PRB 92, 094517 (2015)

UPPSALA UNIVERSITET Multiband Superconductors

Odd-frequency pairing in multiband superconductors

- Odd-frequency, odd-interband pairing if there exist interband pairing
 - Finite interband hybridization (+ non-identical intraband pairing)
 - Hybridization gaps only if odd-frequency pairing is present
 - TI-SC hybrid structures
 - Iron-based superconductors, heavy fermion superconductors, Sr₂RuO₄, MgB₂, ...

UPPSALA Summary

- Odd-frequency pairing in TI-SC hybrid structures
 - Spin-singlet s-wave SC with in-plane gradient →
 Odd-frequency spin-triplet s-wave pairing
 - Spin-triplet *p*-wave SC \rightarrow

Odd-frequency spin-triplet s-wave pairing

- Odd-frequency pairing in multiband superconductors
 - Odd-frequency, odd-interband pairing if there is interband pairing
 - Gives hybridization gaps

UPPSALA UNIVERSITET Acknowledgements

Collaborators: Alexander Balatsky (LANL/Nordita) Jacob Linder (NTNU)

In Uppsala: Lucia Komendova Dushko Kuzmanovski Kristofer Björnson Fariborz Parhizgar (IPM)

Funding:

Vetenskapsrådet

Swedish Foundation for Strategic Research

The Carl Trygger Foundation