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Clustering and machine learning 
for many body problems 

(orignal title- not to be discussed 
 arXiv:1101.0008, 1102.1519  

Detecting structures in complex physical (classical or quantum) 
systems by multiresolution network clustering. Test cases are 
provided by general images where the results can be vividly 

seen.



Ideas applied to computer vision- arXiv:1106.5793 
A Replica Inference Approach to Unsupervised Multi-Scale Image 

Segmentation

The pictures above are challenging images to be segmented via a 
general unsupervised machine learning algorithm



Right panelts: 
results obtained via 

a statistical 
mechanical image 

recognition 
approach





Do not hesitate to ask me for more 
details if this is interests you. I will 

now turn to the very different 
current talk covering more recent 

ideas and results. 



Glassy dynamics as a quantum 
corollary of the liquid to solid 

transition

Department of Physics - Washington University in St. Louis

Zohar Nussinov



The “glass transition”problem 

ZN, “A one parameter fit for glassy dynamics as a quantum 
corollary of the liquid to solid transition”, arXiv:1510.03875 

!

N. B. Weingartner, C. Pueblo, F. S. Nogueira, K. F. Kelton, ZN, 
“A quantum theory of the glass transition suggests universality 

amongst glass formers, arXiv:1512.04565 



Possible quantum effects in standard (non supercooled) 
“classical” fluids 

ZN, F. Nogueira, M. Blodgett, K. F. Kelton,“Thermalization and 
possible quantum relaxation times in “classical” fluids”,  

arXiv:1409.1915



The “glass transition”problem 
  
!

Supercooled liquids may exhibit a phenomenal increase 
in relaxation times without any sizable thermodynamic 
signatures. If it is a “transition”, it is not of the standard 
thermodynamic type. 
!



An eigenstate approach 
suggests universality in 

glassy dynamics 

Conclusions 



Conclusions 



Conclusions 
  
Simple theoretical arguments suggest that at high 
temperatures, extrapolated transport functions may 
saturate to quantized values. 
!

Experimentally, the “ensemble average” of the 
extrapolated high temperature viscosity of 23 measured 
metallic fluids is quite close (0.6%) to a quantized value. 



Conclusions 
!

!

Possible minimal time scale fortransitions exactly equal to  
!

!

            
          No pre-factors of  “order unity”. 

h

kBT



Supercooled liquid Viscosity 

E.Rossler and H.Sillescu, 
Organic Glasses 
and Polymers, 

Materials Science  
and Technology,  

ISBN: 3527313958  
(2006).



Ubiquitous glassy dynamics 
!

Silicate, organic, metallic, …, and electronic liquids     
!

                 All disorder free liquids  
transform into a glass on sufficient supercooling. 
!

                   A universal phenomenon 



Numerous theories:
!

!

!

!

Adam-Gibbs (1965) 
Free volume (1979)  

Random First Order Transitions (1989) 
Mode Coupling (1990) 

Avoided Critical Transition (1995) 
Dynamic Facilitation (2002) 

and countless others 
!

All known forms for relaxation times contain multiple 
parameters  

!



A vexing problem:

A plethora of degenerate/nearly degenerate metastable 
states. 



Basic experimental fact:
The relaxation times rise dramatically. No agreement even  
on the function describing their increase as temperature is lowered!

A. Angell (1995)



 The VFTH fit and the ideal glass 

implies an essential singularity at  

⌘ = ⌘0 eDT0/(T�T0)

    Most prominent fit (1921,1925,1926): 

T0

Most prevalent theories suggest such a form



A quantum approach 
(microscopic details irrelevant):    

!

The system is governed by a disorder free Hamiltonian
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System spectrum:

H|�ni = En|�ni



General results from equilibrium 
statistical -mechanics:

   
!

!

Although it is impossible to solve the spectral problem, we may 
infer general properties knowing that the system forms an 

equilibrated solid at low T and an equilibrated liquid at high T



The character of the eigenstates 
as a function of energy

hO(E)imc ⌘ 1

N [E,E +�E]

X

EEnE+�E

h�n|O|�ni.

As the system may equilibrate, the micro-canonical averages connect 
eigenstate expectation values to ensemble averages:

This constitutes a “dictionary” between measured values and 
expectation values in eigenstates.



(On average) eigenstates |�ni of an energy density

En

V
>

U(Tmelt)

V
(with U(Tmelt) the internal energy

at the melting temperature) are liquid-like

A simple corollary:



Localization at low energies:

(On average) eigenstates |�ni of an energy density

En

V
<

U(Tmelt)

V
(with U(Tmelt) the internal energy

at the melting temperature) are localized solid-like eigenstates



Supercooling as an evolution operator

[H̃(t), H] 6= 0

| i =
X

n

cn|�ni.

Regardless of the cooling protocol, we may expand the 
supercooled state in the complete eigenbasis of H: 

An equilibrated liquid in an initial state | (tinitial)i is supercooled to a final state | i at time t = tfinal

via | i = U(tfinal, tinitial)| (tinitial)i; U(tfinal, tinitial) = T e�
i
~
R tfinal
tinitial

dt0H̃(t0).



Broad probability density
As the supercooled liquid is out of equilibrium,

a broad range of energy densities must appear.

The probability density pT (E) =

X

n

|cn|2�(E � En)

may, simultaneously have its support from both

(i) low energy solid-like states (En < Umelt) and

(ii) higher energy fluid-type eigenstates (En > Umelt).



Eigenvector prob. distribution:



Thermodynamic observables

The internal energy

U(T ) = h |H| i =
Z

dE pT (E)E ⌘ hEi

      From this all thermodynamic observables (e.g., specific heats) 
may be computed 



Long time averages:

Ol.t.a. = lim
T̃ !1
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Typically, matrix elements of local operators between degenerate 
global eigenstates vanishes. Phases further cancel at long times.



Long time averages in 
supercooled state:
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Terminal velocity:
v1 =
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Experimentally, the Stokes law is used to determine the  
viscosity from the measured terminal velocity of a sphere:



Relaxation rate:
Similarly, if off-diagonal terms vanish due to phase cancellations then 

regardless of the strength of a time dependent perturbation, the 
relaxation rate 
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Equilibrium relaxation rate:

r(T 0
) = r(Tmelt)
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Prediction for the viscosity:

rhydro
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The viscosity may be computed form the terminal velocity or  
relaxation rate to obtain an identical form:



Average of probability dist.:

U(T ) = h |H| i =
Z

dE pT (E)E ⌘ hEi

The distribution (assumed normal) has an average

!

The width of the Gaussian for the energy density has units of 
energy. The natural energy density parameter in the problem for a 
system at a temperature T is (CT). Width must tend to zero at low T.



Prediction for the viscosity:

!

!

!

!

!

!

!

!

!

This simple form is expected to break down when  
  the specific heat is no longer T independent (and thus the simple 

widths of the effective Gaussians in the energy density will not  
translate simply into temperature). By fiat, our simple single 

    parameter form cannot capture details changes in  
the specific heat.
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Comparison to experiment:



Data collapse:
The single parameter form predicts a data collapse (with that para.)

Raw  
viscosity 

data



Conclusions 



Viable physical content of width 
  
The single parameter in our minimalist form was the 
Gaussian width for the energy density. Across all liquids 
examined, this width scales as T*(5%-10%). This relative 
value is nearly identical to the difference in the cohesive 
energies between locally preferred structures and global 
minima. 
!



Conclusions 
!

The glass “transition” is a consequence of a mobility edge for the  
eigenstates of the clean system. 
!

No transition at the VFTH temperature. Using the micro-canonical 
ensemble, we see that the eigenstates of the Hamiltonian have a 
singularity only near the melting energy. 
!

Predictions: The probability density determines both dynamical 
response and thermodynamic observables. These  
may be computed for various applied external fields. 



Planck’s const at very high T

Classsicaly,      is introduced as a “fudge” factor

Z = h�DN

Z
dDNx dDNp exp(��H)

h



A possible deeper origin:
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Entropy and dynamics:
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Transition state theory:

Eyring, Polanyi, Wigner, Kramers, … 
!

!

Historically, nearly always worked out for “soft” simple harmonic 
potentials (or none at all- “particle in a box” describing translations)



Transition state theory:
A simple generalization to arbitrary potentials 1

Eescape

Efinal

Einitial

FIG. 1. (A cartoon of the transition process from an initial state lying anywhere within the basin on the left to a f inal state on the right. For

the transition to occur the energy has to exceed a threshold escape energy.

r(T ) =
X

En>Eescape

(2⌫n) Probn(T ) ⇥(pn),



Transition state theory:
A simple generalization to arbitrary potentials

1

Eescape

Efinal

Einitial

FIG. 1. (A cartoon of the transition process from an initial state lying anywhere within the basin on the left to a f inal state on the right. For

the transition to occur the energy has to exceed a threshold escape energy.
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Transition state theory:
A simple generalization to arbitrary potentials

1

Eescape

Efinal

Einitial

FIG. 1. (A cartoon of the transition process from an initial state lying anywhere within the basin on the left to a f inal state on the right. For

the transition to occur the energy has to exceed a threshold escape energy.
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Transition state theory:
A simple generalization to arbitrary potentials

1

Eescape

Efinal

Einitial

FIG. 1. (A cartoon of the transition process from an initial state lying anywhere within the basin on the left to a f inal state on the right. For

the transition to occur the energy has to exceed a threshold escape energy.

r(T ) =
kBT

h

Z
D� exp(���E�)



Transition state theory:
A simple generalization to arbitrary potentials

1

Eescape

Efinal

Einitial

FIG. 1. (A cartoon of the transition process from an initial state lying anywhere within the basin on the left to a f inal state on the right. For

the transition to occur the energy has to exceed a threshold escape energy.

r(T ) ⇠ kBT

h
asymptotically, at high T

True in any number of  
spatial dimensions  

(as the sum over all path  
probabilities = 1 )



Kinetic theory of viscosity:
A simple generalization of usual kinetic theory
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Kinetic theory of viscosity:
A simple generalization of usual kinetic theory

⇣
n =

Z
d3U g(~U)

⌘ By the equipartition theorem,  
the last equality is valid for  

any potential

⌘ = m⌧

Z
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= m⌧nhU2
z i = nkBT ⌧



Kinetic theory of viscosity:
Simplest usual kinetic theory- ideal gas

Replacing hU2
z i by 1

3 (`/⌧)
2
leads to ⌘ ⇡ ⇢`v/3.

⌘ = m⌧

Z
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z g
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Eyring theory of viscosity:
Motion as a chemical reaction of “holes” in a 

liquid.

⌘
single�exponent a

= A
a

nh exp(�E
a

).

The constant Aa is set by the ratio of various lengths

If all lengths are equal to each other (and further set equal to the inter-particle distance) then Aa=1.



Kinetic theory of viscosity:
Simple extension

As ⌧ ⇠ h
kBT at very high T ,

limT!1⌘ = nh.

Emergent quantization at extrapolated high 
temperatures



Kinetic theory of viscosity:
Our trivial extension of kinetic theory to the 

 high T quantum limit

E↵ectively, A = 1 in Eyring’s theory

No need to assume that multiple lengths

are identical nor posit “holes” in a liquid.



Conclusions 
  
Simple theoretical arguments suggest that at high 
temperatures, general extrapolated transport functions 
may saturate to quantized values. 
!

Experimentally, the “ensemble average” of the 
extrapolated high temperature viscosity of 23 measured 
metallic fluids is quite close (0.6%) to the quantized 



Conclusions 
!

!

Possible minimal time scale for microscopic transitions that is 
exactly equal to  
!

!

            
          No pre-factors of  “order unity”. 

h

kBT



Viscosity experiments:

Modulations of a liquid droplet.  
The viscosity is measured from the dynamics.



Viscosity experiments:

The fraction of liquids in the ensemble of 23 liquids studied, i.e., the probability   
Prob(s<S), as a function of the extrapolated high temperature viscosity assuming the  

single exponent form with s = (A- 1) (black square symbols associated with the 23 data points).  
The red curve corresponds to the cumulative function associated with the normal distribution,

1

2
[1 + Erf(S � hsi)/(�s

p
2)]


