Detecting structures in complex physical (classical or quantum)
systems by multiresolution network clustering. Test cases are
provided by general images where the results can be vividly

seen.



Ideas applied to computer vision- arXiv:1106.5793
A Replica Inference Approach to Unsupervised Multi-Scale Image

The pictures above are challenging images to be segmented via a
general unsupervised machine learning algorithm



Right panelts:
results obtained via
a statistical
mechanical image
recognition
approach
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Glassy dynamics as a quantum
corollary of the liquid fo solid
fransition

Zohar Nussinov

Department of Physics - Washington University in St. Louis




The “glass transition” problem

IN. “A one parameter fit for glassy dynamics as a quantum
corollary of the liquid to solid transition”, arXiv:1510.03875

N. B. Weingartner, C. Pueblo, F. S. Nogueira, K. F. Kelton, ZN,

“A quantum theory of the glass transition suggests universality
amongst glass formers, arXiv:1512.04565




Possible quantum effects in standard (non supercooled)

“classical” fluids

IN F. Nogueira, M. Blodgett, K. F. Kelton, “Thermalization and

possible quantum relaxation times in “classical” fluids”,
arXiv:1409.1915




The “glass transition”problem

Supercooled liquids may exhibit a phenomenal increase
in relaxation times without any sizable thermodynamic
signatures. If it is a “transition”, it is not of the standard

thermodynamic type.




L___Condusions ]

An eigenstate approach
suggests universality in
glassy dynamics
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Conclusions

Simple theoretical arguments suggest that at high
temperatures, exirapolated transport functions may
saturate to quantized values.

Experimentally, the “ensemble average” of the
extrapolated high temperature viscosity of 23 measured

metallic fluids is quite close (0.6%) fo a quantized vulue.;&
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Conclusions

Possible minimal time scale fortransitions exactly equal to

il
kT

No pre-factors of “order unity”.
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Ubiquitous glassy dynamics

Silicate, organic, metallic, ..., and electronic liquids

All disorder free liquids
transform into a glass on sufficient supercooling.

A universal phenomenon




Adam-Gibbs (1965)
Free volume (1979)

Random First Order Transitions (1989)
Mode Coupling (1990)
Avoided Critical Transition (1995)
Dynamic Facilitation (2002)
and countless others

All known forms for relaxation times contain multiple

parameters B8

™




A vexing problem:

A plethora of degenerate/nearly degenerate metastable
stafes.
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The VFTH fit and the ideal glass l

Most prominent fit (1921,1925,1926):
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A quantum approach
(microscopic details irrelevant):

The system is governed by a disorder free Humil’roniun

t J
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Delocalized D.eloFaIiz.ed Delocalized

—  Liquid-Like — Liquid-Like — Liquid-Like

Eigenstates Eigenstates Eigenstates
VFEmelt 3 fimelt 7 ) Emelt

Localized Loc‘:aliz‘ed Localized

L Solid-Like —  Solid-Like Solid-Like

Eigenstates Eigenstates

Eigenstates

v

T ~ 0 > T ~~ Tmelt
pr(E) pT(E) pr(E)
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General results from equilibrium
statistical -mechanics:

Although it is impossible to solve the speciral problem, we may
infer general properties knowing that the system forms an
equilibrated solid at low T and an equilibrated liquid af high T




The character of the eigenstates
as a function of enerqy

As the system may equilibrate, the micro-canonical averages connect
eigenstate expectation values to ensemble averages:

| m M l.
L ——

This constitutes a “dictionary” between measured values and

A~ expectation values in eigenstates. o




A simple corollary:

D.elo§a|i;ed Delocalized Delocalized
Liquid-Like _— Liquid-Like _—_— Liquid-Like
Eigenstates S Eigenstates - Eigenstates

Localized —_— Localized Stz
Solid-Like Solid-Like S
: _— : — Solid-Like
Eigenstates Eigenstates ;
Eigenstates




Localization at low energies:

(On average) eigenstates |¢,,) of an energy density

& < U(Tmelt)
vV V

at the melting temperature) are localized solid-like eigenstates

(with U (T),e1¢) the internal energy




Supercooling as an evolution operator

An equilibrated liquid in an initial state |1 (finitiar)) is supercooled to a final state [1) at time ¢ = ¢ ¢4,

] e tfinal AEAR D
M |¢> T U(tfinala tinitial)|¢(tinitial)>; U(tfinal, tinz’tial) — Te ® ftim-“-al dt"H(t )

[H(t), H] # 0

Regardless of the cooling protocol, we may expand the
supercooled state in the complete eigenbasis of H:




Broad probability density

As the supercooled liquid is out of equilibrium,

a broad range of energy densities must appear.

The probability density pr(FE) = Z |y | B

may, simultaneously have its support from both
(i) low energy solid-like states (F, < Uper¢) and
(ii) higher energy fluid-type eigenstates (F, > Upneit)-

e,
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Thermodynamic observables
||

U(T) = (| H) = / IE pr(E)E = (E)

From this all thermodynamic observables (e.g., specific heats)
may be computed




Long fime averages:

Orra = lm = [ at ()0

]_ tfinal+7- ‘ !
= lim =)  chom(dn|Oldm) / dt' o(Bn—Bm)t' /R

lilmitig T n,m tfinal
Typically, matrix elements of local operators between degenerate
global eigenstates vanishes. Phases further cancel af long fimes.




Long fime averages in
supercooled state:




Terminal velocity:

Experimentally, the Stokes law is used to defermine the

viscosity from the measured terminal velocity of a sphere:

2 Psphere — Pfluid 2
UOO — R
0 n 9 S,

A'H
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Relaxation rate:

Similarly, it oft-diagonal terms vanish due fo phase cancellations then
regardless of the strength of a time dependent perturbation, the
relaxation rafe

11 dt Z |<¢m|Upert Z |Cn|2dt Z | ¢m|Upert |¢n>|




Equilibrium relaxation rate:
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Average of probability dist..

The distribution (assumed normal) has an average

U(T) = (0| H]) = / IE pr(E)E = (E)

The width of the Gaussian for the energy density has units of
energy. The natural energy density parameter in the problem for a
system at a temperature T is (CT). Width must tend to zero at low T.

A'H

v




Prediction for the viscosity:

a1l (T) ~ n(Tf:;;elt) il Ts.c. (Tmelt) il Ns.c. (Tmelt)
fEmelt pT(E,) dE/ e,rfc( mO'l;\/iE>)) erfC(Tmelg—T))

This simple form is expected to break down when
the specific heat is no longer T independent (and thus the simple
widths of the effective Gaussians in the energy density will not

translate simply into temperature). By fiat, our simple single
parameter form cannot capture details changes in
the specific heat.
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Fragile Strong

® BS2
® Diopside
®LS2
® OTP

Ln[n(T)/n(T;")]

® Salol
® Anorthite
® Borate

® Sodium Borate
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Viable physical confent of width

The single parameter in our minimalist form was the
Gaussian width for the energy density. Across all liquids
examined, this width scales as T"(5%-10%). This relative
value is nearly identical to the difference in the cohesive
energies between locally preferred structures and global
minima.




Conclusions

The glass “transition” is a consequence of a mobility edge for the
eigenstates of the clean system.

No transition at the VFTH temperature. Using the micro-canonical
ensemble, we see that the eigenstates of the Hamiltonian have a
sinqularity only near the melting enerqy.

Predictions: The probability density determines both dynamical
response and thermodynamic observables. These
may be computed for various apnlied external fields.




Planck’s const at very high T




A possible deeper origin:
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Entropy and dynamics:
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Transition state theory:

l Eyring, Polanyi, Wigner, Kramers, ... |

Historically, nearly always worked out for “soft” simple harmonic
potentials (or none at all- “particle in a box” describing translations)




Transition state theory:

l A simple generalization fo a

thitrary potentials |




Transition state theory:

l A simple generalization to arbitrary potentials |

Htransztzon 1

H if Linitial I X final and

bektbaitiiiitiil:= = 00, otherwise.

The transition rate is set by Tr{P p (v/L) P} where

_________________________ P = P P, with P, = Ml ) (x| and Py =) " [p)(p|
it Tinitial STSE Final p>0

il <n%lass.> 11 e_/B(En_ﬁconfig.)’ eXp(ﬁ,&config.) 11 1/Z
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Transition state theory:

A simple generalization to arbitrary potentials




Transition state theory:

A simple generalization to arbitrary potentials




Transition state theory:

itrary potentials I

asymptotically, at high T

l A simple generalization to arb

I
iUl

True in any number of
spatial dimensions
(as the sum over all path
probabilities = 1 )




Kinetic theory of viscosity:

l A simple generalization of usual kinetic theory I




Kinetic theory of viscosity:

l A simple generalization of usual kinetic theory I

n = mT/dBU UZg
mmn{U2) = nkpTT

(n L / d3U g(ﬁ)) By the equipartition theorem,

the last equality is valid for
any pofential
R

™




Kinetic theory of viscosity:

l Simplest usual kinetic theory- ideal gas I

n = mT/dSU UZg

= mn(U2) = nkgT'T

Replacing (UZ2) by %(¢/7)? leads to n = plv/3.




Eyring theory of viscosity:

Motion as a chemical reaction of “holes” in a
liquid.
e T ——

1110 [T}
111
x."‘l‘ I i
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i 1l il

The constant A, is set by the ratio of various lengths

If all lengths are equal to each other (and further set equal to the inter-particle distance) then A,=1.




Kinetic theory of viscosity:

| Simple extension l

As T~ kBLT at very high T,

Emergent quantization at extrapolated high
temperatures




Kinetic theory of viscosity:

Our trivial extension of kinetic theory to the
high T quantum limit
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Conclusions

Simple theoretical arguments suggest that at high
temperatures, general exirapolated transport functions
may saturate to quantized values.

Experimentally, the “ensemble average” of the
extrapolated high temperature viscosity of 23 measured
metulllc ﬂU|ds is quite close (0.6%) fo the quantized
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Conclusions

Possible minimal time scale for microscopic transitions that is
exactly equalto

kT

No pre-factors of “order unity”.




Modulations of a liquid droplet.
The viscosity is measured from the dynamics.







