cscC

Dr. Pekka Manninen
CSC - IT Center for Science
Finland

,J_lr)JJll(Jl(>1()1t>1]]]{)](i)m

1
(O
JHJ]UI()I()][J]()_,()“””]m’:)(:(;()](,l‘ 0
oy 1 1010

9.15-9.30
9.30-10.00
10.00-10.15
10.15-11.00
11.00-11.15
11.15-12.00
12.00-13.00
13.00-17.00

Introduction to application performance
Application performance analysis
Coffee break

Single-core performance considerations
Break

Improving parallel scalability

Lunch break

Lab: Performance engineering

A short summary on Thursday morning

INTRODUCTION TO APPLICATION PERFORMANCE

@ Obvious benefits
— Better throughput => more science
— Cheaper than new hardware
— Save energy, compute quota etc.
@ ..and some non-obvious ones
— Potential cross-disciplinary research

— Deeper understanding of application

v Several trends making optimization even more important

Find best-performing compilers and compiler flags
Employ tuned libraries wherever possible
Find suitable settings for environment parameters

Mind the /O
— Do not checkpoint too often
— Do not ask for the output you do not need

Theoretical peak

v "Improving application performance :

without touching the source code”

v Potential to get significant performance
improvements with little effort

Effort

v Should be revisited routinely

Compilers
— Hardware, OS, compiler and library Compiler flags
upgrades Numerical libraries
Intranode placement
— Can be automated Internode placement

Filesystem parameters

v Many different choices

— GNU, PGI, Intel, Pathscale, IBM, Cray etc.
v Compatibility

— Different proprietary intrinsics

— Different rounding rules
v Performance

— There is no universially fast compiler

— Depends on the application or even input

v Standard flags for enabling typical optimizations
— ’-0[0-4]’, sometimesalso’fast’
" For example gcc -03 oricc -fast

— The higher the level, the more aggressive optimization
»= Compilers default to some “safe” level (typically ’ -02’)
= ’ -00’ disables optimizations completely

v Typically improves performance but not always
v No standardized definition what the flags actually mean!

v Architecture-specific tuning

— Tunes all applicable parameters to the defined architecure
v Vectorization

— Exploiting the vector units of the CPU (SSE, AVX etc.)

— Improves performance in most cases
v Loop transformations

— Fusing, splitting, interchanging, unrolling etc.

— Effectiveness varies

Featwe _________Joay fmel 6w

Listing -ra -qopt-report=3 -ftree-vectorizer-
-qopt-report-phase=vec verbose=9
-qopt-report-phase=par

Diagnostic (produced by -ra) -help diagnostic

Balanced Optimization (default) -02 -03

Aggressive Optimization -03,fp3 -Ofast -Ofast -funroll-
loops

Architecture specific tuning -h cpu=<target> -XHost -march=native

Fast math -h fp3 and -h fp4 -fp-model fast=2 -ffast-math

¢

Adapting the problem to the underlying hardware

Combination of many aspects

— Effective algorithms, doing things in a more clever way
— High processor utilization

— Efficient memory use

— Parallel scalability

Important to understand interactions

— Algorithm — code — compiler — libraries — hardware

Performance is not portable

Memory hierarchy
_1 A

Q/‘o
(’
s’ ~4 £ . 0(100 kB)

0(100 B)

Q
& —
N ~10 O(1 MB) %0
N .
S %
66,0 0(10 MB)
és&
&
\{\Q'
0
N
S

0(103) ~ 100s GB's

0(105...6) TB’s

PERFORMANCE ANALYSIS

v Most basic information: total wall clock time
— Built-in timers in the program (e.g. MPI_Wtime)
— System commands (e.g. time) or batch system statistics

@ Built-in timers can provide also more fine-grained
information

— Have to be inserted by hand
— Typically no information about hardware related issues

— Information about load imbalance and communication
statistics of parallel program is difficult to obtain

v Instrumentation of code
— Adding special measurement code to binary
— Normally all routines do not need to be measured
v Measurement: running the instrumented binary
— Profile: sum of events over time
— Trace: sequence of events over time
v Analysis
— Text based analysis reports
— Visualization

v Purpose of the profiling is to find the "hot spots" of the
program
— Usually execution time, also memory

@ Usually the code has to be recompiled or relinked,
sometimes also small code changes are needed

v Often several profiling runs with different techiques is
needed

— ldentify the hot spots with one approach, identify the
reason for poor performance

The application execution is interrupted at constant intervals and
the program counter and call stack is examined

v Lightweight ¢ Not always accurate

o does not interfere the code o Difficult to catch small
execution too much functions

v Results may vary between
runs

Hooks are added to function calls (or user-defined points in
program) and the required metric is recorder

@ Can record the program @ More intrusive
execution accurately and @ Can produce prohibitely
repeatably large log files

@ May change the
performance behaviour of
the program

Code optimization cycle

T
Select test
Instrument & run

/
Measure Identify scalability |
scalability bottlenecks
\

Identify single-
core issues

Validate/debug

Optimize

v The dataset used in the analysis should
— Make sense, i.e. resemble the intended use of the code
— Be large enough for getting a good view on scalability
— Complete in a reasonable time

— For instance, with simulation codes almost a full-blown
model but run only for a few time steps

@ Remember that initialization/finalization stages are
usually exaggerated and exclude them in the analysis

@ Run the uninstrumented
code with different core
counts and see where the
parallel scaling stops

v Often we look at strong
scaling

— Also weak scaling is
definitely of interest

600

400

200

1,8
1,6
1,4
1,2

\

=¢=\Nalltime

64

128 256 512 1024 2048

\ =¢=Speedup

64

128 256 512 1024 2048

v Obtain first a sampling profile to find which user
functions should be traced
— With a large/complex software, one should not trace them
all: it causes excessive overhead
— Tracing also e.g. MPI, 1/O and library (BLAS, FFT,...) calls
v Execute and record the first analysis with
— The core count where the scalability is still ok
— The core count where the scalability has ended
and identify the largest differences between these
profiles

Load performance tools software
module load perftools

Re-build application (keep .o files)
make clean && make

Instrument application for automatic profiling analysis

— You should get an instrumented program a.out+pat
pat build a.out

Run the instrumented application (...+pat) to get a
sampling profile

— You should get a performance file (“<sdatafile>.xf")
or multiple files in a directory <sdatadir>

Generate text report and an .apa instrumentation file
pat_report <sdatafile>.xf

— Inspect the .apa file and sampling report whether
additional instrumentation is needed

Instrument application for further analysis (a.out+apa)
pat build -0 <apafile>.apa

Re-run application (...+apa)

Generate text report and visualization file (.ap2)
pat_report -o my text report.txt <data>

View report in text and/or with Cray Apprentice2
app2 <datafile>.ap2

¢ What are the most intensive MPI operations?

v Does the MPI_Sync time increase when going to the
larger core count?

— Note that the analysis tools may report load imbalances as
“real” communication

= Put an MPI_Barrier before the suspicious routine - load
imbalance will aggregate into it

v Are messages mostly small or large?

v Signature: User routines scaling but MPI time blowing up
— Issue: Not enough to compute in a domain
= \Weak scaling could still continue
— Issue: Expensive collectives
— Issue: Communication increasing as a function of tasks

v Signature: MPI_Sync times increasing

— Issue: Load imbalance
= Tasks not having a balanced role in communication?
= Tasks not having a balanced role in computation?
= Synchronous (single-writer) I/O or stderr 1/O?

v |dentify user routines that consume significant portion of
the total time

v Collect the key hardware counters, for example

— Cache & TLB metrics (PAT_RT_PERFCTR=1, default)
— L1, L2, L3 cache metrics (PAT _RT_PERFCTR=2)
— Instruction count (PAT_RT_PERFCTR=0)

o Trace the “math” group to see if expensive operations
(exp, log, sin, cos,...) have a significant role

@ CrayPAT has mechanisms for finding “the” hotspot in one
routine (e.g. in case the routine contains several and/or
long loops)

— CrayPAT API
= Possibility to give labels to “PAT regions”
— Loop statistics (works only with Cray compiler)

= Compile & link with CCE using -h profile_generate

= pat_report will generate loop statistics if the flag is being
enabled

o Signature: Low L1 and/or L2 cache hit ratios
— <96% for L1, <99% for L1+L2
— |Issue: Bad cache alignment

v Signature: Low vector instruction usage

— Issue: Non-vectorizable (hotspot) loops

v Signature: Traced “math” group featuring a significant
portion in the profile

— |Issue: Expensive math operations

Profile your code

Do the profiling yourself

Profile the code on the hardware you are going to run it
Profile with a representative test case

Reprofile the code after optimizations

CrayPAT documentation
http://docs.cray.com

Scalasca
http://www.scalasca.org/

Paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

Tau performance analysis utility
http://www.cs.uoregon.edu/Research/tau

Intel VTune Amplifier

https://software.intel.com/en-us/intel-vtune-amplifier-xe

SINGLE-CORE PERFORMANCE CONSIDERATIONS

¢ You can make a big difference to code performance
— Helping the compiler spot optimisation opportunities
— Using the insight of your application

— Removing obscure (and obsolescent) “optimizations” in
older code

= Simple code is the best, until otherwise proven
v This is a dark art: optimize on case-by-case basis

— But first, check what the compiler is already doing

v Cray compiler: ftn -rm ... or cc/CC -hlist=m ..

— Compiler generates an <source file name>.|st file that
contains annotated listing of your source code

v Intel compiler 14: ftn/cc -opt-report=3 -vec-report=6
— See ifort --help reports
— 15 has different options, see manual page

v GNU compiler 4.9: ftn/cc: -fopt-info-vec

— gcc 4.8: -ftree-vectorizer-verbose=6

v If multi-dimensional arrays are addressed in a wrong
order, it causes a lot of cache misses = bad performance

— Cis row-major, Fortran column-major

— A compiler may re-order loops automatically (see output)

real a(N,M) real a(N,M)
real sum = 0O; real sum = ©
do i=1,N » do j=1,M
do j=1,M do i=1,N
sum = sum + a(i,j) sum = sum + a(i,j)
end do end do
end do end do

v Loop blocking = Large loops are partitioned by hand such
that the data in inner loops stays in caches

— A prime example is matrix-matrix multiply coding
v Complicated optimization: optimal block size is a

machine dependent factor as there is a strong
connection to L1 and L2 cache sizes

v Some compilers do loop blocking automatically
— See the compiler output
— You can assist it using compiler pragmas/directives

double a[n][n], b[n][n], c[n][n];
for (i=0@; i<n; ++i)
for (j=0; j<n; ++j)
for (k=0; k<n; ++k)

C[i][j] += A[i][k] * B[kI[]];

Loop blocking example

)

int BS = 8; // An example blocksize
for (i=0@; i<n; i+=BS) {

int iimax = i + MIN(BS, n-i);
for (j=0; j<n; j+=BS) {
int jjmax = j + MIN(BS, n-j);
for (k=0; k<n; k+=BS) {
int kkmax = k + MIN(BS, n-k);
for (ii=i; ii<iimax; ii++)
for (3j=3; jj<jjmax; jj++)
for (kk=k; kk<kkmax; kk++)
C[ii][JJ] += A[ii][kk] * B[kk][3j];

}r}

Loop fusion: Useful when the same data is used e.g. in
two separate loops: cache-line re-use

int a[N], b[N];

int a[N], b[N];
for (i=0; i<N; ++i) {

a[i] = i; for (i=0; i<N; ++i) {
} a[i] = 1i;
b[i] = a[i] * a[i];

for (i=0; i<N; ++i) { }
b[i] = a[i] * a[i];
}

The compiler will only vectorize loops
Constant (unit) strides are best
Indirect addressing will not vectorize (efficiently)

Can vectorize across inlined functions but not if a
procedure call is not inlined

Needs to know loop tripcount (but only at runtime)
— i.e. DO WHILE style loops will not vectorize

No recursion allowed

v Does the non-vectorized loop have true dependencies?
— No: add the pragma/directive ivdep on top of the loop

— Yes: Rewrite the loop
= Convert loop scalars to vectors
= Move if statements out of the loop

v If you cannot vectorize the entire loop, consider splitting
it - so as much of the loop is vectorized as possible

v See compiler feedback on why some loops were not

127.
128.
129.
130.
131.
132.

VeCtorized CC-6290 CC: VECTOR File = ex7_heat.c, Line = 127
A loop was not vectorized because a recurrence was
— CCE - hlist:a found between "old" and "new" at line 129.
CC-6308 CC: VECTOR File = ex7_heat.c, Line = 128
— |nte|: -vecC- r‘epo r‘t=6 A loop was not vectorized because the loop
initialization would be too costly.
— GNU: —fopt—info—vec CC-6005 CC: SCALAR File = ex7_heat.c, Line = 128
A loop was unrolled 2 times.

+ 1------ <
+ 1 r2---<
+ 1 r2

1 r2

1 r2

1 r2-->>

(1 =1; 1< nx + 1; i++) .
(3 =1; 3 <ny + 1; j++) { Runtime: 8.55 s
new[i][j] = old[i][j] + a * dt *
((old[i+1][j] - 2.0 * old[i][j] + old[i-1][F]) / dx2 +
(old[i][j+1] - 2.0 * old[i][j] + old[i][j-1]) / dy2);

Tell the compiler that old and new

127. + l--=---- < (1 =151« W do not overla
128. 1 #pragma ivdep P

129. 1 Vr2---< (J =1; j<ny +1; j++) {

130. + 1 Vr2 new[i][j] = old[i][j] + a * dt *

131. 1 Vr2 ((old[i+1][]j] - 2.0 * old[i][3j] + old[i-1][]]) / dx2 +
132. 1 Vr2 (old[i][j+1] - 2.0 * old[i][j] + old[i][j-1]) / dy2);
133. 1 Vr2-->> }

CC-6294 CC: VECTOR File = ex7_heat.c, Line = 127

A loop was not vectorized because a better candidate was found at line 129.
CC-6005 CC: SCALAR File = ex7_heat.c, Line =129 :

A loop was unrolled 2 times. Runtime: 6.55 s
CC-6204 CC: VECTOR File = ex7_heat.c, Line =129

A loop was vectorized.

v Cost of different scalar FP operations is roughly as
follows:

~1 cycle: +, *
~20 cycles: /, sqrt()
~100-300 cycles: sin, cos, exp, log, ...

¢ Note that there is also instruction latency and issues
related to the pipelining

v Loop hoisting: try to get the expensive operations out of
innermost loops
¢ Minimize the use of sin, cos, exp, log, pow, ...
— Consider precomputing values to lookup table
— Use identities, e.g.
" pow(x,2.5) = x*x*sqrt(x)
= sin(x)*cos(x) = 0.5*sin(2*x)
— Or use vectorized versions (through library calls)
@ Consider replacing division (a/b) with multiplication by
reciprocal (a*(1/b))

v Some key numerical routines have de-facto standardized
interfaces

— BLAS, LAPACK, ScaLAPACK
— FFT (nearly)

v There are multiple implementations of interfaces
— Both commercial and open-source

— The so-called “reference” implementations are useful for
checking correctness but have poor performance

v Cornerstone of performance for many upper-level
libraries and applications

v Many optimized implementations
— OpenBLAS, MKL, LibSci, ACML, ATLAS etc.

v Some compilers support translating intrinsic operations
(matmul etc.) into calls to a BLAS library
— Cray: -O pattern, enabled by -03
— Intel Fortran: -opt-matmul
— GNU Fortran: -fexternal-blas

v Do the performance analysis!
— Then you know what to look for
v Utilize the compiler diagnostics

— Vectorization

v Try to utilize the caches efficiently

IMPROVING PARALLEL SCALABILITY

v Signature: user routines scaling but MPI time blowing up
— |Issue: Not enough to compute in a domain
= \Weak scaling could still continue
— Issue: Expensive (all-to-all) collectives
— Issue: Communication increasing as a function of tasks

v Signature: MPIl_Sync times increasing
— Issue: Load imbalance
= Tasks not having a balanced role in communication?
= Tasks not having a balanced role in computation?
= Synchronous (single-writer) I/O or stderr |/O?

v |dentify the cause

— How to fix I/O related imbalance will be addressed later

v Unfortunately algorithmic, decomposition and data
structure revisions are needed to fix load balance issues

— Dynamic load balancing schemas
— MPMD style programming

— There may be still something we can try without code re-
design

v Consider hybridization (mixing OpenMP with MPI)

— Reduces the number of MPI tasks - less pressure for load
balance

— May be doable with very little effort
= Just plug omp parallel do’s/for’s to the most intensive loops

— However, in many cases large portions of the code has to
be hybridized to outperform flat MPI

v Changing rank placement

— So easy to experiment with that it should be tested with
every application!

— CrayPAT is able to make suggestions for optimal rank
placement: pat_report -0 mpi rank order
datafile.xf

" This output can then be copied or written into a file named

MPICH_RANK_ORDER and used with
MPICH RANK REORDER METHOD=3

v Use non-blocking operations and try to overlap
communication with other work

v Bandwidth and latency depend on the used protocol
— Eager or rendezvous
= Latency and bandwidth higher in rendezvous

— Rendezvous messages usually do not allow for overlap of
computation and communication, even when using non-
blocking communication routines

— The platform will select the protocol basing on the
message size, these limits can be adjusted

@ One way to improve performance is to send more
messages using the eager protocol

— This can be done by raising the value of the eager
threshold, consult the MPI man pages

— E.g. on Cray by setting environment variable
export MPICH GNI MAX EAGER MSG SIZE=X

v Post MPI_Irecv calls before the MPI_Isend calls to avoid
unnecessary buffer copies and buffer overflows

v Reducing MPI tasks by hybridizing with OpenMP is likely
to help

v See if you can live with the basic version of a routine
instead of a vector version (MPI_Alltoallv etc)

— May be faster even if some tasks would be receiving
dummy data

@ In case of sparse Alltoallv’s, point-to-point or one-sided
communication may outperform the collective operation

v Use non-blocking collectives (MPI_lalltoall,...)

— Allow for overlapping collectives with other operations, e.g.
computation, I/O or other
communication s

20'0 m

/ \
/ \

Al e g\ Y

8 16 32 64 128 256 512 1024 2048 4096

— May be faster
than the blocking
corresponds even without
the overlap

=
S
o

Ul
o

o
o

Proportional gain from overlap
[%]
[EY
o
o

— Replacement is trivial

S
o

Message size [B]

MPI_lalltoall, 1024 cores Cray XC30

o Parallelize your 1/0 |

— MPI1/0O, 1/0 libraries (HDF5, NetCDF), hand-written

schemas,...

— Without parallelization, I/O will be a scalability bottleneck
in every application

o Try to hide

1/0O (asynchronous I/0)

1/O

o

o

o

E Nion

1/O

v Tune filesystem (Lustre) parameters
— Lustre stripe counts & sizes, see “man Ifs”

— Rule of thumb:

= #files > # OSTs => Set stripe_count=1
You will reduce the lustre contention and OST file locking this
way and gain performance

= f#files==1 => Set stripe_count=#0STs
Assuming you have more than 1 1/0O client

= #files<#OSTs => Select stripe_count so that you use all OSTs

v 32 MB per OST (32 MB -5 GB) and 32 MB Transfer Size

— Unable to take advantage of file system parallelism

120
100
80
60
40
20

— Access to multiple disks adds overhead which hurts

performance

1 MB Stripe

32 MB Stripe @

1

2

4 16 32 64 128 160

v A particular code both reads and writes a 377 GB HDF5
file, runs on 6000 cores on Cray XE6

— Total I/O volume (reads and writes) is 850 GB
@ Original stripe settings: count =4, size=1M

— 1800 s run time (~ 30 minutes)
v New stripe settings: count=-1, size=1M

— 625 s run time (~ 10 minutes)

v Possible approaches for alleviating typical scalability
bottlenecks

— Find the optimal decomposition & rank placement

— Use non-blocking communication operations for p2p and
collective communication both

— Hybridize (=mix MPI+OpenMP) the code to improve load
balance and alleviate bottleneck collectives

— All file I/O needs to be parallel, I/0O performance is
sensitive to the platform setup

