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Overview

Wednesday
9.15-9.30 Introduction to application performance

9.30-10.00 Application performance analysis

10.00-10.15 Coffee break

10.15-11.00 Single-core performance considerations

11.00-11.15 Break

11.15-12.00 Improving parallel scalability

12.00-13.00 Lunch break

13.00-17.00 Lab: Performance engineering

A short summary on Thursday morning



INTRODUCTION TO APPLICATION PERFORMANCE



Improving application performance

Obvious benefits

– Better throughput => more science

– Cheaper than new hardware 

– Save energy, compute quota etc.

..and some non-obvious ones

– Potential cross-disciplinary research

– Deeper understanding of application

Several trends making optimization even more important



Four easy steps to better application performance

Find best-performing compilers and compiler flags

Employ tuned libraries wherever possible

Find suitable settings for environment parameters

Mind the I/O

– Do not checkpoint too often

– Do not ask for the output you do not need



Optimal porting

”Improving application performance
without touching the source code”

Potential to get significant performance
improvements with little effort

Should be revisited routinely

– Hardware, OS, compiler and library
upgrades

– Can be automated
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Choosing a compiler

Many different choices

– GNU, PGI, Intel, Pathscale, IBM, Cray etc.

Compatibility

– Different proprietary intrinsics

– Different rounding rules

Performance

– There is no universially fast compiler

– Depends on the application or even input



The ”O” flags

Standard flags for enabling typical optimizations

– ’–O[0-4]’, sometimes also ’fast’

 For example gcc –O3 or icc –fast

– The higher the level, the more aggressive optimization

 Compilers default to some ”safe” level (typically ’-O2’)

 ’-O0’ disables optimizations completely

Typically improves performance but not always

No standardized definition what the flags actually mean!



Compiler optimization techniques

Architecture-specific tuning

– Tunes all applicable parameters to the defined architecure

Vectorization

– Exploiting the vector units of the CPU (SSE, AVX etc.)

– Improves performance in most cases

Loop transformations

– Fusing, splitting, interchanging, unrolling etc.

– Effectiveness varies



Compiler flag examples

Feature Cray Intel GNU

Listing -ra -qopt-report=3 
-qopt-report-phase=vec 
-qopt-report-phase=par

-ftree-vectorizer-
verbose=9

Diagnostic (produced by -ra) -help diagnostic

Balanced Optimization (default) -O2 -O3

Aggressive Optimization -O3,fp3 -Ofast -Ofast –funroll-
loops

Architecture specific tuning -h cpu=<target> -xHost -march=native

Fast math -h fp3 and -h fp4 -fp-model fast=2 -ffast-math



Code optimization

Adapting the problem to the underlying hardware

Combination of many aspects
– Effective algorithms, doing things in a more clever way

– High processor utilization

– Efficient memory use

– Parallel scalability

Important to understand interactions
– Algorithm – code – compiler – libraries – hardware

Performance is not portable



Memory hierarchy
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PERFORMANCE ANALYSIS



Application timing

Most basic information: total wall clock time

– Built-in timers in the program (e.g. MPI_Wtime)

– System commands (e.g. time) or batch system statistics

Built-in timers can provide also more fine-grained 
information

– Have to be inserted by hand

– Typically no information about hardware related issues

– Information about load imbalance and communication 
statistics of parallel program is difficult to obtain



Performance analysis tools

Instrumentation of code

– Adding special measurement code to binary

– Normally all routines do not need to be measured

Measurement: running the instrumented binary

– Profile: sum of events over time

– Trace: sequence of events over time

Analysis

– Text based analysis reports

– Visualization



Profiling

Purpose of the profiling is to find the "hot spots" of the 
program

– Usually execution time, also memory

Usually the code has to be recompiled or relinked, 
sometimes also small code changes are needed

Often several profiling runs with different techiques is 
needed

– Identify the hot spots with one approach, identify the 
reason for poor performance



Profiling: sampling

Pros

Lightweight

does not interfere the code 
execution too much

Cons

Not always accurate

Difficult to catch small 
functions

Results may vary between 
runs 

The application execution is interrupted at constant intervals and 
the program counter and call stack is examined



Profiling: tracing

Pros

Can record the program 
execution accurately and 
repeatably

Cons

More intrusive

Can produce prohibitely 
large log files

May change the 
performance behaviour of 
the program

Hooks are added to function calls (or user-defined points in 
program) and the required metric is recorder



Code optimization cycle

Instrument & run

Identify scalability 
bottlenecks

Identify single-
core issues

Optimize

Validate/debug

Measure 
scalability

Select test 
case



Step 1: Choose a test problem

The dataset used in the analysis should

– Make sense, i.e. resemble the intended use of the code

– Be large enough for getting a good view on scalability

– Complete in a reasonable time 

– For instance, with simulation codes almost a full-blown 
model but run only for a few time steps

Remember that initialization/finalization stages are 
usually exaggerated and exclude them in the analysis
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Step 2: Measure scalability

Run the uninstrumented 
code with different core 
counts and see where the 
parallel scaling stops

Often we look at strong 
scaling

– Also weak scaling is 
definitely of interest



Step 3: Instrument & run

Obtain first a sampling profile to find which user 
functions should be traced
– With a large/complex software, one should not trace them 

all: it causes excessive overhead
– Tracing also e.g. MPI, I/O and library (BLAS, FFT,...) calls

Execute and record the first analysis with
– The core count where the scalability is still ok
– The core count where the scalability has ended

and identify the largest differences between these 
profiles



Example with CrayPAT (1/2)

Load performance tools software
module load perftools

Re-build application (keep .o files)
make clean && make

Instrument application for automatic profiling analysis
– You should get an instrumented program a.out+pat

pat_build a.out
Run the instrumented application (...+pat) to get a 
sampling profile
– You should get a performance file (“<sdatafile>.xf”)  

or multiple files in a directory <sdatadir>

.



Example with CrayPAT (2/2)

Generate text report and an .apa instrumentation file
pat_report <sdatafile>.xf

– Inspect the .apa file and sampling report whether 
additional instrumentation is needed

Instrument application for further analysis (a.out+apa)
pat_build –O <apafile>.apa

Re-run application (...+apa)
Generate text report and visualization file (.ap2)

pat_report –o my_text_report.txt <data>

View report in text and/or with Cray Apprentice2
app2 <datafile>.ap2



Step 4: Identify scalability bottlenecks

What are the most intensive MPI operations?

Does the MPI_Sync time increase when going to the 
larger core count?
– Note that the analysis tools may report load imbalances as 

”real” communication
 Put an MPI_Barrier before the suspicious routine - load

imbalance will aggregate into it

Are messages mostly small or large?



Step 4: Identify scalability bottlenecks

Signature: User routines scaling but MPI time blowing up
– Issue: Not enough to compute in a domain

 Weak scaling could still continue

– Issue: Expensive collectives

– Issue: Communication increasing as a function of tasks

Signature: MPI_Sync times increasing
– Issue: Load imbalance

 Tasks not having a balanced role in communication?

 Tasks not having a balanced role in computation?

 Synchronous (single-writer) I/O or stderr I/O?



Step 5: Find single-core hotspots

Identify user routines that consume significant portion of 
the total time

Collect the key hardware counters, for example

– Cache & TLB metrics (PAT_RT_PERFCTR=1, default)

– L1, L2, L3 cache metrics (PAT_RT_PERFCTR=2)

– Instruction count (PAT_RT_PERFCTR=0)

Trace the “math” group to see if expensive operations 
(exp, log, sin, cos,...) have a significant role



Step 5: Find single-core hotspots

CrayPAT has mechanisms for finding “the” hotspot in one 
routine (e.g. in case the routine contains several and/or 
long loops)

– CrayPAT API

 Possibility to give labels to “PAT regions”

– Loop statistics (works only with Cray compiler)

 Compile & link with CCE using -h profile_generate

 pat_report will generate loop statistics if the flag is being 
enabled



Step 5: Find single-core hotspots

Signature: Low L1 and/or L2 cache hit ratios

– <96% for L1, <99% for L1+L2

– Issue: Bad cache alignment

Signature: Low vector instruction usage

– Issue: Non-vectorizable (hotspot) loops

Signature: Traced ”math” group featuring a significant 
portion in the profile

– Issue: Expensive math operations



Profiling: do’s and don’ts

Profile your code

Do the profiling yourself

Profile the code on the hardware you are going to run it

Profile with a representative test case

Reprofile the code after optimizations



Web resources

CrayPAT documentation
http://docs.cray.com

Scalasca 
http://www.scalasca.org/

Paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

Tau performance analysis utility
http://www.cs.uoregon.edu/Research/tau

Intel VTune Amplifier
https://software.intel.com/en-us/intel-vtune-amplifier-xe



SINGLE-CORE PERFORMANCE CONSIDERATIONS



Doesn't the compiler do everything?

You can make a big difference to code performance

– Helping the compiler spot optimisation opportunities

– Using the insight of your application

– Removing obscure (and obsolescent) “optimizations” in 
older code

 Simple code is the best, until otherwise proven

This is a dark art: optimize on case-by-case basis

– But first, check what the compiler is already doing



Compiler feedback/output

Cray compiler: ftn –rm …   or    cc/CC –hlist=m …

– Compiler generates an <source file name>.lst file that 
contains annotated listing of your source code

Intel compiler 14: ftn/cc -opt-report=3 -vec-report=6

– See ifort --help reports

– 15 has different options, see manual page

GNU compiler 4.9: ftn/cc: -fopt-info-vec

– gcc 4.8: -ftree-vectorizer-verbose=6



Issue: Bad cache alignment 

If multi-dimensional arrays are addressed in a wrong 
order, it causes a lot of cache misses = bad performance

– C is row-major, Fortran column-major

– A compiler may re-order loops automatically (see output)

real a(N,M) 
real sum = 0;

do i=1,N 
do j=1,M
sum = sum + a(i,j)

end do
end do

real a(N,M)
real sum = 0

do j=1,M 
do i=1,N
sum = sum + a(i,j)

end do
end do



Issue: Bad cache alignment

Loop blocking = Large loops are partitioned by hand such 
that the data in inner loops stays in caches

– A prime example is matrix-matrix multiply coding

Complicated optimization: optimal block size is a 
machine dependent factor as there is a strong 
connection to L1 and L2 cache sizes

Some compilers do loop blocking automatically

– See the compiler output

– You can assist it using compiler pragmas/directives



Issue: Bad cache alignment

int BS = 8; // An example blocksize
for (i=0; i<n; i+=BS) {

int iimax = i + MIN(BS, n-i);
for (j=0; j<n; j+=BS) {

int jjmax = j + MIN(BS, n-j);
for (k=0; k<n; k+=BS) {

int kkmax = k + MIN(BS, n-k);
for (ii=i; ii<iimax; ii++)

for (jj=j; jj<jjmax; jj++)
for (kk=k; kk<kkmax; kk++)

C[ii][jj] += A[ii][kk] * B[kk][jj];
} } }

double a[n][n], b[n][n], c[n][n];
for (i=0; i<n; ++i)

for (j=0; j<n; ++j) 
for (k=0; k<n; ++k)

C[i][j] += A[i][k] * B[k][j];

Loop blocking example



Issue: Bad cache alignment

Loop fusion: Useful when the same data is used e.g. in 
two separate loops: cache-line re-use

int a[N], b[N];

for (i=0; i<N; ++i) {
a[i] = i;

}

for (i=0; i<N; ++i) {
b[i] = a[i] * a[i];

}

int a[N], b[N];

for (i=0; i<N; ++i) {
a[i] = i;
b[i] = a[i] * a[i];

}



Issue: Non-vectorizable loops

The compiler will only vectorize loops

Constant (unit) strides are best

Indirect addressing will not vectorize (efficiently)

Can vectorize across inlined functions but not if a 
procedure call is not inlined

Needs to know loop tripcount (but only at runtime)

– i.e. DO WHILE style loops will not vectorize

No recursion allowed



Issue: Non-vectorizable loops

Does the non-vectorized loop have true dependencies?

– No: add the pragma/directive ivdep on top of the loop

– Yes: Rewrite the loop

 Convert loop scalars to vectors

 Move if statements out of the loop

If you cannot vectorize the entire loop, consider splitting 
it - so as much of the loop is vectorized as possible



Issue: Non-vectorizable loops

See compiler feedback on why some loops were not 
vectorized

– CCE: -hlist=a

– Intel: -vec-report=6

– GNU: -fopt-info-vec

127.  + 1------< for (i = 1; i < nx + 1; i++)
128.  + 1 r2---<   for (j = 1; j < ny + 1; j++) {
129.  + 1 r2 new[i][j] = old[i][j] + a * dt *
130.    1 r2 ((old[i+1][j] - 2.0 * old[i][j] + old[i-1][j]) / dx2 +
131.    1 r2 (old[i][j+1] - 2.0 * old[i][j] + old[i][j-1]) / dy2);
132.    1 r2-->>   }

CC-6290 CC: VECTOR File = ex7_heat.c, Line = 127

A loop was not vectorized because a recurrence was 

found between "old" and "new" at line 129.

CC-6308 CC: VECTOR File = ex7_heat.c, Line = 128

A loop was not vectorized because the loop 

initialization would be too costly.

CC-6005 CC: SCALAR File = ex7_heat.c, Line = 128

A loop was unrolled 2 times.

Runtime: 8.55 s



Issue: Non-vectorized loops

127.  + 1-------< for (i = 1; i < nx + 1; i++)
128.    1           #pragma ivdep
129.    1 Vr2---<   for (j = 1; j < ny + 1; j++) {
130.  + 1 Vr2         new[i][j] = old[i][j] + a * dt *
131.    1 Vr2            ((old[i+1][j] - 2.0 * old[i][j] + old[i-1][j]) / dx2 +
132.    1 Vr2             (old[i][j+1] - 2.0 * old[i][j] + old[i][j-1]) / dy2);
133.    1 Vr2-->>   }

CC-6294 CC: VECTOR File = ex7_heat.c, Line = 127

A loop was not vectorized because a better candidate was found at line 129.

CC-6005 CC: SCALAR File = ex7_heat.c, Line = 129

A loop was unrolled 2 times.

CC-6204 CC: VECTOR File = ex7_heat.c, Line = 129

A loop was vectorized.

Tell the compiler that old and new 
do not overlap

Runtime: 6.55 s



Issue: Expensive operations

Cost of different scalar FP operations is roughly as 
follows:

~1 cycle: +, *

~20 cycles: /, sqrt()

~100-300 cycles: sin, cos, exp, log, ...

Note that there is also instruction latency and issues 
related to the pipelining



Issue: Expensive operations

Loop hoisting: try to get the expensive operations out of 
innermost loops

Minimize the use of sin, cos, exp, log, pow, ...
– Consider precomputing values to lookup table

– Use identities, e.g.
 pow(x,2.5) = x*x*sqrt(x)

 sin(x)*cos(x) = 0.5*sin(2*x)

– Or use vectorized versions (through library calls)

Consider replacing division (a/b) with multiplication by 
reciprocal (a*(1/b))



Numerical libraries

Some key numerical routines have de-facto standardized
interfaces

– BLAS, LAPACK, ScaLAPACK

– FFT (nearly)

There are multiple implementations of interfaces

– Both commercial and open-source

– The so-called ”reference” implementations are useful for 
checking correctness but have poor performance



Optimized BLAS

Cornerstone of performance for many upper-level
libraries and applications

Many optimized implementations

– OpenBLAS, MKL, LibSci, ACML, ATLAS etc. 

Some compilers support translating intrinsic operations 
(matmul etc.) into calls to a BLAS library

– Cray: -O pattern, enabled by -O3

– Intel Fortran: -opt-matmul

– GNU Fortran: -fexternal-blas



Summary

Do the performance analysis!

– Then you know what to look for

Utilize the compiler diagnostics

– Vectorization

Try to utilize the caches efficiently



IMPROVING PARALLEL SCALABILITY



Scalability bottlenecks

Signature: user routines scaling but MPI time blowing up
– Issue: Not enough to compute in a domain

 Weak scaling could still continue

– Issue: Expensive (all-to-all) collectives
– Issue: Communication increasing as a function of tasks

Signature: MPI_Sync times increasing
– Issue: Load imbalance

 Tasks not having a balanced role in communication?
 Tasks not having a balanced role in computation?
 Synchronous (single-writer) I/O or stderr I/O?



Issue: Load imbalances

Identify the cause

– How to fix I/O related imbalance will be addressed later

Unfortunately algorithmic, decomposition and data 
structure revisions are needed to fix load balance issues

– Dynamic load balancing schemas

– MPMD style programming

– There may be still something we can try without code re-
design



Issue: Load imbalances

Consider hybridization (mixing OpenMP with MPI)

– Reduces the number of MPI tasks - less pressure for load 
balance

– May be doable with very little effort

 Just plug omp parallel do’s/for’s to the most intensive loops

– However, in many cases large portions of the code has to 
be hybridized to outperform flat MPI



Issue: Load imbalances

Changing rank placement

– So easy to experiment with that it should be tested with 
every application!

– CrayPAT is able to make suggestions for optimal rank 
placement: pat_report -O mpi_rank_order
datafile.xf

 This output can then be copied or written into a file named 
MPICH_RANK_ORDER and used with
MPICH_RANK_REORDER_METHOD=3



Issue: Point-to-point communication consuming 
time

Use non-blocking operations and try to overlap 
communication with other work

Bandwidth and latency depend on the used protocol

– Eager or rendezvous

 Latency and bandwidth higher in rendezvous

– Rendezvous messages usually do not allow for overlap of 
computation and communication, even when using non-
blocking communication routines

– The platform will select the protocol basing on the 
message size, these limits can be adjusted



Issue: Point-to-point communication consuming 
time

One way to improve performance is to send more 
messages using the eager protocol

– This can be done by raising the value of the eager 
threshold, consult the MPI man pages

– E.g. on Cray by setting environment variable
export MPICH_GNI_MAX_EAGER_MSG_SIZE=X

Post MPI_Irecv calls before the MPI_Isend calls to avoid 
unnecessary buffer copies and buffer overflows



Issue: Expensive collectives

Reducing MPI tasks by hybridizing with OpenMP is likely 
to help

See if you can live with the basic version of a routine 
instead of a vector version (MPI_Alltoallv etc)

– May be faster even if some tasks would be receiving 
dummy data

In case of sparse Alltoallv’s, point-to-point or one-sided
communication may outperform the collective operation



Issue: Expensive collectives

Use non-blocking collectives (MPI_Ialltoall,...)

– Allow for overlapping collectives with other operations, e.g. 
computation, I/O or other 
communication

– May be faster
than the blocking 
corresponds even without 
the overlap

– Replacement is trivial
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Issue: Performance bottlenecks due to I/O

Parallelize your I/O !

– MPI I/O, I/O libraries (HDF5, NetCDF), hand-written 
schemas,...

– Without parallelization, I/O will be a scalability bottleneck 
in every application

Try to hide I/O (asynchronous I/O)
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Issue: Performance bottlenecks due to I/O

Tune filesystem (Lustre) parameters

– Lustre stripe counts & sizes, see ”man lfs”

– Rule of thumb: 

 # files > # OSTs => Set stripe_count=1
You will reduce the lustre contention and OST file locking this 
way and gain performance

 #files==1 => Set stripe_count=#OSTs 
Assuming you have more than 1 I/O client

 #files<#OSTs => Select stripe_count  so that you use all OSTs



Case study: Single-writer I/O

32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size

– Unable to take advantage of file system parallelism

– Access to multiple disks adds overhead which hurts 
performance
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Case study: Parallel I/O into a single file

A particular code both reads and writes a 377 GB HDF5 
file,  runs on 6000 cores on Cray XE6

– Total I/O volume (reads and writes) is 850 GB

Original stripe settings:  count =4, size=1M

– 1800 s run time (~ 30 minutes)

New stripe settings:  count=-1, size=1M

– 625 s run time (~ 10 minutes)



Summary

Possible approaches for alleviating typical scalability
bottlenecks

– Find the optimal decomposition & rank placement

– Use non-blocking communication operations for p2p and 
collective communication both

– Hybridize (=mix MPI+OpenMP) the code to improve load
balance and alleviate bottleneck collectives

– All file I/O needs to be parallel, I/O performance is 
sensitive to the platform setup


