Manne Siegbahn Memorial Lectures

Light at Bicycle Speed ... and Slower Yet!

by Lene Vestergaard Hau (Lyman Laboratory, Harvard University, Cambridge, U.S.A.)

Europe/Stockholm
Description

Light pulses have been slowed in a Bose-Einstein condensate to only 17 m/s, more than seven orders of magnitude lower than the light speed in vacuum. Associated with the dramatic reduction factor for the light speed is a spatial compression of the pulses by the same large factor. A light pulse, which is 1-2 miles long in vacuum, is compressed to a size of ~50 um, and at that point it is completely contained within the atom cloud.

This further allows the light pulse to be completely stopped and stored in the atomic medium for up to several milliseconds, and subsequently regenerated with no loss. With the most recent extension of the method, the light roadblock, light pulses have been compressed from 2 miles to only 1-2 um. This system has been used to generate the superfluid analogue of shock waves, Quantum Shock Waves, in Bose-Einstein condensates.

These dramatic excitations result in the formation of solitons that in turn decay into quantized vortices - created far out of equilibrium, in pairs of opposite circulation - revealing directly the process of superfluid breakdown in Bose-Einstein condensates.