Renormalization Group and the S-matrix

Simon Caron-Huot

Niels Bohr International Academy, Copenhagen

on work with Matthias Wilhelm, 1607.xxxxx

Amplitudes 2016, Stockholm, July 5th 2016

Questions

- -Can niceness of amplitudes help compute \(\beta \)-functions?
- -How to think of RGE on shell, without a Lagrangian?

Outline

- I. One-loop:
 - -Yang-Mills beta function from tree S-matrix
 - -review of related works
- 2. All-loops:
 - -dilatation operator is phase of S-matrix
- 3. 1½-loops:
 - -length changing effects in Yukawa theory
 - -subtleties with masses, etc.

I-loop QCD β-function

- Start with form factor for Lagrangian Tr[F²]/g²
- Remove IR divergences using IR-safe ratio:

$$\frac{\langle p_1, p_2 | F^2 | 0 \rangle}{\langle p_1, p_2 | T^{\mu\nu} | 0 \rangle} \sim \left(\frac{-s}{\mu^2}\right)^{\frac{1}{2}\gamma_{F^2}}$$

I-loop QCD β-function

- Start with form factor for Lagrangian Tr[F²]/g²
- Remove IR divergences using IR-safe ratio:

$$\frac{\langle p_1, p_2 | F^2 | 0 \rangle}{\langle p_1, p_2 | T^{\mu\nu} | 0 \rangle} \sim \left(\frac{|s|}{\mu^2} \right)^{\frac{1}{2}\gamma_{F^2}} e^{-\frac{1}{2}i\pi\gamma_{F^2}}$$

Phase equal to anomalous dimension:

$$\gamma_{F^2}^{(1)} = -\frac{1}{\pi} 2 \operatorname{Im} \left(\log \frac{\langle p_1, p_2 | F^2 | 0 \rangle^{(1)}}{\langle p_1, p_2 | T^{\mu\nu} | 0 \rangle^{(1)}} \right)$$

$$\gamma_{F^2}^{(1)} = -\frac{1}{\pi} 2 \operatorname{Im} \left(\log \frac{\langle p_1, p_2 | F^2 | 0 \rangle^{(1)}}{\langle p_1, p_2 | T^{\mu\nu} | 0 \rangle^{(1)}} \right)$$

• Optical theorem:

Tree amplitude x Polynomial

Parke-Taylor tree amplitude for color-singlet pair:

$$\mathcal{M}_{1-2-3+4+}^{abcd} \delta^{cd} = -2g^2 C_A \delta^{ab} \frac{\langle 12 \rangle^4}{\langle 13 \rangle \langle 32 \rangle \langle 24 \rangle \langle 41 \rangle}$$

 Phase space: use nice spinor parametrization [Zwiebel '11]

$$\begin{pmatrix} \lambda_3 \\ \lambda_4 \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2}e^{i\phi} \\ \sin\frac{\theta}{2}e^{-i\phi} & \cos\frac{\theta}{2} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$

• θ = scattering angle. Plug into amplitude:

$$\langle 14 \rangle = \langle 23 \rangle = \cos \frac{\theta}{2}, \text{ etc.}$$

$$\mathcal{M}_{1-2-3+4+}^{abcd} \delta^{cd} = + \frac{2g^2 C_A \delta^{ab}}{\cos^2 \frac{\theta}{2} \sin^2 \frac{\theta}{2}}$$

$$\gamma_{F^2}^{(1)} = -\frac{1}{\pi} 2 \operatorname{Im} \left(\log \frac{\langle 1_- 2_- | F^2 | 0 \rangle^{(1)}}{\langle 1_- 2_+ | T^{\mu\nu} | 0 \rangle^{(1)}} \right)$$

$$= -\frac{1}{16\pi^2} \int_0^{\pi} \frac{\sin\theta d\theta}{2} \left(+\frac{2g^2 C_A}{\cos^2 \frac{\theta}{2} \sin^2 \frac{\theta}{2}} \right)$$

$$\frac{7^{\text{uv}}}{\text{helicities}} - \frac{2g^2C_A(\cos^8\frac{\theta}{2}) + \sin^8\frac{\theta}{2})}{\cos^2\frac{\theta}{2}\sin^2\frac{\theta}{2}}$$

$$\gamma_{F^2}^{(1)} = -\frac{1}{\pi} 2 \operatorname{Im} \left(\log \frac{\langle 1_- 2_- | F^2 | 0 \rangle^{(1)}}{\langle 1_- 2_+ | T^{\mu\nu} | 0 \rangle^{(1)}} \right)$$

$$= -\frac{1}{16\pi^2} \int_0^\pi \frac{\sin\theta d\theta}{2} \left(+ \frac{2g^2 C_A}{\cos^2\frac{\theta}{2} \sin^2\frac{\theta}{2}} \right) \xrightarrow[2^{-}]{}^{+} \xrightarrow{F_2} F_2$$

from
$$T^{\text{uv}}$$
 helicities $-\frac{2g^2C_A(\cos^8\frac{\theta}{2})+\sin^8\frac{\theta}{2})}{\cos^2\frac{\theta}{2}\sin^2\frac{\theta}{2}}$

IR/collinear divergences cancel, integral finite!

$$\gamma_{F^2}^{(1)} = -\frac{g^2}{16\pi^2} \times \frac{22C_A}{3}$$

• Running of F^2 equivalent to β -function

$$\gamma_{F^2} = g^2 \frac{\partial}{\partial g^2} \left(\frac{\beta(g^2)}{g^2} \right)$$

[Kluberg-Stern&Zuber '74]

$$\Rightarrow \beta(g^2) = -\frac{g^2}{16\pi^2} \times \frac{22C_A}{3} \quad \checkmark$$

- One-loop unitarity $\Rightarrow \beta$ -function as eigenvalue of $2\rightarrow 2$ gluon tree amplitude. No ghosts, etc.
- Sign: $\gamma \sim -\mathcal{M}/\pi$ negative because \mathcal{M} is positive: γ probed by two gluons, which attract
- Goal: systematize and extend to higher loops

Related works

Generalized unitarity:

I-loop β -function \Leftrightarrow I/ ϵ poles \Leftrightarrow sum of bubble coefficients

[+ collinear divergences] [Arkani-Hamed, Cachazo& Kaplan '08]

- I-loop dilatation operator in N=4SYM as 2→2 S-matrix originally motivated by symmetries!

 [Zwiebel '11; Wilhelm '14]
 [Brandhuber et al '15]
- Vanishing of M++++ and M+++- leads to helicity selection rules: explains many 'zeros' in dimension-6 SM EFT operator mixing [Alonso,Jenkins,Manohar&Trott, '14]

[Cheung&Shen, '15]

• Here: only standard unitarity; one tree and one form factor; use T^{uv} to control IR divergences: works for QCD too!

More on stress tensor

• IR-safe ratio:
$$\frac{1}{g^2}\beta(g^2)^{(1)} = -\frac{1}{\pi} 2\operatorname{Im} \left(\log \frac{\langle p_1, p_2 | F^2 | 0 \rangle^{(1)}}{\langle p_1, p_2 | T^{\mu\nu} | 0 \rangle^{(1)}}\right)$$

- Denominator is only matter contribution in QCD (& QED!)
- Tree-level T^{uv} form factors: polynomials fixed by symmetry:
 - -normalization is physical: $\langle p|T^{\mu\nu}|p\rangle=2p^{\mu}p^{\nu}$
 - -transverse (momentum conservation)
 - -little group weights

gluons:
$$\langle 1_-^a 2_+^b | T^{\alpha\beta,\dot{\alpha}\dot{\beta}} | 0 \rangle = 2\lambda_1^\alpha \lambda_1^\beta \tilde{\lambda}_2^{\dot{\alpha}} \tilde{\lambda}_2^{\dot{\beta}}$$

Finite coupling, I: Analyticity

- Energy dependence ⇔ phase of amplitude
- Start from form factor with all outgoing momenta
- Use complex rescaling:

$$F(p_1,\ldots,p_n)\to F(p_1e^{i\alpha},\ldots,p_ne^{i\alpha})$$

Finite coupling, 1: Analyticity

$$F(p_1, \dots, p_n) \to F(p_1 e^{i\alpha}, \dots, p_n e^{i\alpha})$$
$$= e^{i\alpha D} F(p_1, \dots, p_n),$$

• Rotation by π gives complex conjugate:

$$F^* = e^{i\pi D}F$$

$$D \equiv \sum_i p_i^{\mu} \frac{\partial}{\partial p_i^{\mu}}$$
 dilatation operator

Finite coupling, 2: Optical theorem

- To compute 'imaginary parts'
- 'Standard' optical theorem: $SS^\dagger=1$, $S=1+i\mathcal{M}$ $\Rightarrow -i(\mathcal{M}-\mathcal{M}^\dagger)=\mathcal{M}\mathcal{M}^\dagger$
- Formally, form factor = deformation of S-matrix $\delta S = i \mathcal{F}$

$$0 = \delta(SS^{\dagger}) = i(\mathcal{F}S^{\dagger} - S\mathcal{F}^{\dagger})$$
$$\Rightarrow \mathcal{F} = S\mathcal{F}^{\dagger}S$$

• Restrict to final-state particles:

$$(F = SF^*)$$

Finite coupling

Analyticity

$$F = e^{-i\pi D} F^*$$

+ Unitarity

$$F = SF^*$$

$$e^{-i\pi D}F^* = SF^*$$

Dilatation operator = minus the phase of the S-matrix, divided by π .

Partial waves ⇔ twist-2

- Twist-2 operators $\text{Tr}[\bar{\phi}(\overset{\leftrightarrow}{D}_+)^m \phi]$
- Mod out total derivatives: go forward $p_2=-p_1$
- Minimal form factor:

$$\langle p, -p|\mathcal{O}_m|0\rangle = (p_+)^m$$

- Zwiebel's phase space parametrization: [works for spacelike channels!] $p'^{\alpha\dot{\alpha}} = \lambda^{\alpha}\tilde{\lambda}^{\dot{\alpha}}(\cos\frac{\theta}{2} \sin\frac{\theta}{2}e^{i\phi})(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}e^{-i\phi})$
- Azimuthal integral gives Legendre polynomial!

$$P_m(\cos\theta) = \int_0^{2\pi} \frac{d\phi}{2\pi} (\cos\frac{\theta}{2} - \sin\frac{\theta}{2}e^{i\phi})^m (\cos\frac{\theta}{2} + \sin\frac{\theta}{2}e^{-i\phi})^m$$

twist-two operators \Leftrightarrow partial wave amplitude

Partial waves ⇔ twist-2

- For QCD: gluons have spin, partial waves are some generalization of Legendre polynomials
- Made simple with Zwiebel's parametrization:

$$\langle 1_{-}2_{+}|F_{11}(D_{1\dot{1}})^{m}\bar{F}_{\dot{1}\dot{1}}|0\rangle = (\lambda_{1})^{2}(\tilde{\lambda}_{2})^{2}(\lambda_{1}\tilde{\lambda}_{1})^{m-2}$$

• Rotated form factor gives partial wave projector:

$$\gamma_m \sim \frac{-1}{16\pi^2} \int \frac{d\Omega}{4\pi} \mathcal{M}(\cos\theta) \int_0^{2\pi} \frac{d\phi}{2\pi} (\cos\frac{\theta}{2} - i\sin\frac{\theta}{2}e^{i\phi})^{m-2} (\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}e^{-i\phi})^{m+2}$$

• We checked that this matches moments of gluon DGLAP equation! $\gamma_m = \int_0^1 dx x^m P_{gg}(x)$

QCD phase shifts (times - I/π) \Leftrightarrow DGLAP equation!

Varning!

• At higher loops: Phase of S-matrix \nleftrightarrow phase of S_{2→2}!!

 If coupling runs, phase gives anomalous dimension averaged over complex circle!

$$e^{-i\pi D}F^* = SF^*$$
 $D \simeq \left(\gamma_{\mathcal{O}} + \gamma_{\mathrm{IR}} + \beta(g^2)\frac{\partial}{\partial g^2}\right)$

Yukawa theory

- Motivation:
 - -mixing between different lengths
 - -investigate possible subtleties with formalism
 - -see nontrivial interplay between cuts

I real scalar + I Weyl fermion

$$\mathcal{L}_{\text{int}} = \lambda \mathcal{O}_{\lambda} + y \mathcal{O}_{y}$$
 with $\mathcal{O}_{\lambda} = -\frac{1}{4!} \phi^{4}$ and $\mathcal{O}_{y} = \frac{1}{2} (\psi \psi \phi + \text{h.c.})$.

Anomalous dimension matrix:

$$-\mu \frac{\partial}{\partial \mu} \begin{pmatrix} \mathcal{O}_{\lambda} \\ \mathcal{O}_{y} \end{pmatrix} = \begin{pmatrix} \gamma_{yy} & \gamma_{y\lambda} \\ \gamma_{\lambda y} & \gamma_{\lambda \lambda} \end{pmatrix} \begin{pmatrix} \mathcal{O}_{\lambda} \\ \mathcal{O}_{y} \end{pmatrix}$$

Basic matrix elements:

• From these, simple $2\rightarrow 2$ tree amplitudes

- Diagonal elements, same recipe:
 - -act with $2\rightarrow 2$ amplitude on all pairs
 - -subtract IR (collinear) divs. using stress tensor

 Lower-triangular elements: two-loop integrals with 3→2 tree amplitude:

- Lower-triangular vanish at I-loop: can't have 2→I cut!
- Keep all graphs in $3 \rightarrow 2$ amplitude: IPI or not
- Only single-scale integrals. Propagators& measure factorize, integrals ok with explicit parametrization:

$$\lambda_{1}^{\prime \alpha} = \lambda_{1}^{\alpha} \cos \theta_{2} - e^{i\phi} \lambda_{2}^{\alpha} \cos \theta_{1} \sin \theta_{2} ,$$

$$\lambda_{2}^{\prime \alpha} = \lambda_{1}^{\alpha} \sin \theta_{2} \cos \theta_{3} + e^{i\phi} \lambda_{2}^{\alpha} \left(\cos \theta_{1} \cos \theta_{2} \cos \theta_{3} - e^{i\rho} \sin \theta_{1} \sin \theta_{3}\right) ,$$

$$\lambda_{3}^{\prime \alpha} = \lambda_{1}^{\alpha} \sin \theta_{2} \sin \theta_{3} + e^{i\phi} \lambda_{2}^{\alpha} \left(\cos \theta_{1} \cos \theta_{2} \sin \theta_{3} + e^{i\rho} \sin \theta_{1} \cos \theta_{3}\right) .$$

 Upper-triangular elements (length-increasing): formally one-loop, but individual cuts harder

$$-\frac{1}{\pi} \int d\text{Lips} \frac{\langle l_2 p_1 \rangle \langle l_1 p_3 \rangle}{\langle l_1 p_1 \rangle \langle l_2 p_3 \rangle}$$

New feature:
2 integral produces a log

$$\propto 1 + \log \frac{p_2 \cdot p_3}{(p_1 + p_2) \cdot p_3}$$

Generic feature beyond LO for final states with >= 3 particles! But RG should give a polynomial!

Cancellation between cuts:

Generically expected!

In summary [up to irrelevant typos]

$$\begin{pmatrix} n=3 & n=4 \\ \gamma_{yy} & \gamma_{y\lambda} \\ \gamma_{\lambda y} & \gamma_{\lambda \lambda} \end{pmatrix} = \frac{1}{16\pi^2} \begin{pmatrix} \text{I-loop, 'easy'} & \text{I-loop 3} \rightarrow \text{4 'hard'} \\ 12y^2 & 8\lambda y - 96y^3 \\ 0 + \frac{-2y^3 + \lambda y/6}{16\pi^2} & 6\lambda + 4y^2 \\ \text{2-loop, 'easy'} & \text{I-loop, 'easy'} \end{pmatrix}$$

 Length-changing effect only affect eigenvalues at two-loops: 'l ½loops'

(because of the one-loop zero for length-decreasing effects)

To get β-function:
 use generalization of QCD formula for F²!

[Kluberg-Stern&Zuber '74]

$$\partial_a \beta_b = \gamma_{ab}$$

[interpretation:

- Form factor = variation of S-matrix

$$\partial_a \mathcal{M}(g_a(\mu), \mu) = \mathcal{F}_a$$

- Commute this variation with RGE:

$$\left(\mu \frac{\partial}{\partial \mu} + \beta_a \frac{\partial}{\partial g_a}\right) \mathcal{M}(g_a(\mu), \mu)$$

- 'anomalous dimension of couplings controls perturbations of RG flow']

Symmetry of derivatives not manifest!

$$\begin{pmatrix} \gamma_{yy} & \gamma_{y\lambda} \\ \gamma_{\lambda y} & \gamma_{\lambda \lambda} \end{pmatrix} = \frac{1}{16\pi^2} \begin{pmatrix} 12y^2 & 8\lambda y - 96y^3 \\ 0 + \frac{-2y^3 + \lambda y/6}{16\pi^2} & 6\lambda + 4y^2 \end{pmatrix}$$
$$\partial_a \beta_b = \gamma_{ab} \Rightarrow \beta(\lambda) = \frac{1}{16\pi^2} \left(3\lambda^2 + 4\lambda y^2 - 24y^4 \right)$$
$$\beta(y) = \dots$$

Nice consistency check!

Which property of the S-matrix ensures this??

On masses

- In conventional RG applications, a particle is either light or heavy and integrated out: it is appropriate to use massless S-matrix
- Example: running of heavy quark mass operator $\bar{\psi}_Q \psi_Q$ is only relevant at energies >> m_Q

Does unitarity 'misses' mass logarithms?

Does unitarity 'misses' mass logarithms?

- No! RG can answer two distinct questions:
 - I. Optimal bare parameters to use at a given cutoff scale (e.g. lattice, or putative UV completion of SM)?
 - 2. Optimal running couplings to use to minimize large logs in a physical observable at given energy scale?
- Constant logarithms affect only first question [and quadratic divergences]
 - ⇒Unitarity correctly answers second question

Summary

• Dilatation operator is minus the phase of the S-matrix, divided by π . $(e^{-i\pi D}F^* = SF^*)$

• One-loop YM β -function " $-\frac{11}{3}$ " is an eigenvalue of Parke-Taylor amplitude:

$$\mathcal{M}_4 = \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$

- IR divergences: cancel using stress tensor
- Analyzed Yukawa to 1½ loops

Outlook

Dilatation operator in N=4/QCD at higher loops? (Twist-two in QCD: all spins from same matrix elements?)

[Beisert, Ferretti, Heise & Zarembo '04]

[(Loebbert), Nandan, Sieg, Wilhelm & Yang, '15] [Brandhuber, Kostacinska, Penante, Travaglini & Young, '16]

• Length-changing: mysterious cancellations of logs between cuts? N=4 Yangian? Role of F^* in $e^{-i\pi D}F^*=SF^*$?

[Brandhuber, Heslop, Travaglini& Young,' 15]

- Which questions can be answered with spectrum of S (now already known in planar N=4 SYM?)
- Exponentiation of logs: Derive RGE from on-shell ideas?