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Outline
1. One-loop: 

-Yang-Mills beta function from tree S-matrix
-review of related works

2. All-loops:
-dilatation operator is phase of S-matrix

3. 1½-loops:
-length changing effects in Yukawa theory
-subtleties with masses, etc.

-Can niceness of amplitudes help compute β-functions?
-How to think of RGE on shell, without a Lagrangian?

Questions



1-loop QCD β-function
• Start with form factor for Lagrangian Tr[F2]/g2

• Remove IR divergences using IR-safe ratio:
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1-loop QCD β-function
• Start with form factor for Lagrangian Tr[F2]/g2

• Remove IR divergences using IR-safe ratio:

• Phase equal to anomalous dimension: 
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• Optical theorem:
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• Parke-Taylor tree amplitude for color-singlet pair:

• Phase space: use nice spinor parametrization

•    = scattering angle.  Plug into amplitude:
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Figure 1: Di↵erent contributions to the anomalous dimension � and thus the � function.
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BCFW recursion [], properties of self-dual Yang-Mills [], the twistor string [], etc. In fact,

the formula is a direct consequence of basic physical principles, specifically its little-group

properties and classical small-angle limits. The key point is that the little-group phases

(2.13) imply that the amplitude can be written as h34i2
h12i2 times a rational function F (s, t, u).

Since a tree amplitude cannot have a squared denominator such as 1/h12i2, F needs to be

proportional to s = h12i[21], and since it needs to be dimensionless and only massless poles

can appear in its denominator, the most general possibility is F = c
1

s
t + c

2

s
u . In the small-

angle limit t ! 0, the amplitude has to reproduce the Coulomb-like attractive potential

M ! �2g2fa1a4bfa2a3b s
t , and similarly at u ! 0, which fixes c

1

= c
2

= �2g2CA, which

agrees with eq. (3.2) using spinor identities. We note in particular the absence of polynomial

ambiguities for massless particles with spin due to the little group, which is a generic feature

[? ? ].

Plugging in the explicit values for the rotated spinors in eq. (2.18),

h1020i = h12i, h120i = h102i = h12i cos ✓, h101i = h12i sin ✓ ei�, h202i = h12i sin ✓ e�i� ,

(3.3)

{r
o
ta
te
d
˙s
p
in
o
r˙
p
ro

d
u
ct
s}

one thus evaluates the amplitude (3.2):
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For +� pairs, one simply inserts either cos4 ✓ or sin4 ✓ e±4i� into the numerator, respectively,

depending on whether 1 and 10 have same or opposite helicities.

3.1 One-loop �-function

The Yang-Mills �-function can now be calculated by acting with the amplitude on the tree

form factors for the Lagrangian density L ⌘ �Ga
µ⌫G

µ⌫ a/(4g2) and the stress tensor T↵�,↵̇
˙� .

We need both, to form the infrared-safe ratio in eq. (2.8).

At tree-level, for each of these form factors, there is a unique polynomial in spinors that

one can write down with the correct dimension, Lorentz indices, and little-group phases:
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the formula is a direct consequence of basic physical principles, specifically its little-group

properties and classical small-angle limits. The key point is that the little-group phases

(2.13) imply that the amplitude can be written as h34i2
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• Running of F2 equivalent to β-function

• One-loop unitarity ⇒  β-function as eigenvalue 

of 2→2 gluon tree amplitude.  No ghosts, etc.

• Sign:                   negative because      is positive:
    probed by two gluons, which attract

• Goal: systematize and extend to higher loops
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Related works
[Arkani-Hamed,  Cachazo& Kaplan ’08]

• Generalized unitarity:
  1-loop β-function ⇔ 1/ε poles ⇔ sum of bubble coefficients

• 1-loop dilatation operator in N=4SYM as 2→2 S-matrix
    originally motivated by symmetries!

• Vanishing of M++++ and M+++- leads to helicity selection rules:
explains many ‘zeros’ in dimension-6 SM EFT operator mixing

• Here: only standard unitarity; one tree and one form factor;
use Tuv to control IR divergences: works for QCD too!
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[+ collinear divergences]

[Zwiebel ’11;  Wilhelm ’14]
[Brandhuber et al ’15]

[Alonso,Jenkins,Manohar&Trott, ’14]
[Cheung&Shen, ’15]



• IR-safe ratio:

• Denominator is only matter contribution in QCD (& QED!)

• Tree-level Tuv form factors: polynomials fixed by symmetry:
 -normalization is physical:
 -transverse (momentum conservation)
 -little group weights
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Finite coupling, 1: 
Analyticity

• Energy dependence ⇔ phase of amplitude

• Start from form factor with all outgoing 
momenta

• Use complex rescaling:
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Finite coupling, 1: 
Analyticity

• Rotation by     gives complex conjugate:
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Finite coupling, 2:
Optical theorem

• To compute ‘imaginary parts’

• ‘Standard’ optical theorem:             ,

• Formally, form factor = deformation of S-
matrix

• Restrict to final-state particles:
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Finite coupling
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F = e�i⇡DF ⇤
Analyticity + Unitarity

F = SF ⇤

Dilatation operator
= minus the phase of the S-matrix, 

divided by    .⇡

e�i⇡DF ⇤ = SF ⇤



• Twist-2 operators

• Mod out total derivatives: go forward p2=-p1

• Minimal form factor:

• Zwiebel’s phase space parametrization:

• Azimuthal integral gives Legendre polynomial!

[works for
spacelike channels!]

Partial waves ⇔ twist-2
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Partial waves ⇔ twist-2
• For QCD: gluons have spin, partial waves are some 

generalization of Legendre polynomials

• Made simple with Zwiebel’s parametrization: 

• Rotated form factor gives partial wave projector: 

• We checked that this matches moments of gluon 
DGLAP equation! �m =
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Varning!
• At higher loops:

• If coupling runs, phase gives anomalous 
dimension averaged over complex circle!

18

Phase of S-matrix ⇔ phase of S2→2 !!

e�i⇡DF ⇤ = SF ⇤ D '
✓
�O + �IR + �(g2)

@

@g2

◆

2 loops:
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M(1)
2!2

F (0)
2

M(0)
2!2

F (1)
2

+

M(0)
3!2

F (0)
3

18
18

+
non-minimal
form factor



Yukawa theory
• Motivation:

-mixing between different lengths
-investigate possible subtleties with formalism
-see nontrivial interplay between cuts

• 1 real scalar + 1 Weyl fermion

• Anomalous dimension matrix:
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longer easily subtracted using matrix elements of the stress tensor h1 . . . n|T↵�,↵̇ ˙� |0i, the

tight structure of one-loop infrared divergences renders that unnecessary. The basic point is

that that the one-loop infrared anomalous dimension takes a very specific form in any gauge

theory [? ? ? ]: fix signsfix signs

�
(1)

IR

({pi};µ) = g2

⇡2

X

i<j

T a
i T

a
j log

�2pi·pj � i0

µ2

+
X

i

�colli +O(g4) , (3.27)

where T a
i denotes the gauge-group generator acting on particle i. Note that, in contrast to why O(g4) when

having the supe-

script (1) on the

right hand side?

why O(g4) when

having the supe-

script (1) on the

right hand side?
ultraviolet anomalous dimension, this depends on log µ2. This dependence reflects divergences

that are simultaneously soft and collinear and is known to be at most linear to all orders in

perturbation theory. The fact that infrared divergences obey a renormalization group equation

is, of course, a manifestation of the general Wilsonian principle that di↵erent length scales

decouple from each other; we refer the reader to [] for a recent, modern proof and further

references.

The first term, coming from soft wide-angle radiation, can be easily identified with the

1/(sin2 ✓ cos2 ✓) term in eq. (3.4), since this is also the measure factor one would get from the check whether

correct equation

check whether

correct equation

integral over real radiation. This identification makes it possible to extract �colli and subtract

the infrared divergences for any number of legs. The general formula takes the form
 
�O +

nX

i=1

�colli

!
hp

1

, . . . , pn|O|0i(0) =� 1

⇡
hp

1

, . . . , pn|M⌦O|0i(0) (3.28)

+ hp
1

, . . . , pn|O|0i(0)
X

i<j

g2

#8⇡2

Z
d⌦ij

4⇡

T a
i T

a
j

sin2 ✓ cos2 ✓
,

fill in numberfill in number
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discuss planar

limit: quickly re-

fer to figure and

in N=4 repro-

duce Zwiebel’s

formula; in QCD

refer to Beisert

et al’s QCD di-

latation operator

but I don’t think

we want to do

anything explicit

about it.

3.5 stu↵ to be moved somewhere in next section and adapted to general case

Since L is the Yang-Mills Lagrangian, one can expect this anomalous dimension to be related

to the �-function of the theory. To derive the relation (??) noted in the introduction, one uses

that inserting L is equivalent to varying the coupling by an infinitesimal amount, formally

L ' g2 @
@g2 . The fact that the coupling runs means that such a deformation is not scale-

independent, in a way that is controlled by the commutator [? ]

⇥
g2

@

@g2
,�(g2)

@

@g2
⇤ ⌘ �L g2

@

@g2
�! �L = g2

@

@g2

✓
�(g2)

g2

◆
. (3.29)

4 Length-changing e↵ects and towards higher loops: Yukawa theory

{s
ec
:
to
w
a
rd

s
h
ig
h
er

lo
o
p
s}

Let us now look at Yukawa theory, where we will encounter several new e↵ects.

For illustration, it will be su�cient to consider a theory with a real scalar and one Weyl

fermion, with interaction Lagrangian

L
int

= �O� + yOy with O� = � 1

4!
�4 and Oy =

1

2
(  �+ h.c.) . (4.1)

{e
q
:
in
te
ra
ct
io
n
L
a
g
ra
n
g
ia
n
}

– 13 –�µ
@

@µ

✓ O�

Oy

◆
=

✓
�yy �y�
��y ���

◆✓ O�

Oy

◆



• Basic matrix elements:

• From these, simple 2→2  tree amplitudes

• Diagonal elements, same recipe:
-act with 2→2 amplitude on all pairs
-subtract IR (collinear) divs. using stress tensor
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The minimal form factors of the operators O� and Oy are

h1�2�3�4�|O�|0i = �1 , h1 2 3�|Oy|0i = h12i , h1
¯ 2 ¯ 3�|Oy|0i = [12] . (4.2)

{e
q
:
fo
rm

fa
ct
o
r}

Correspondingly, the elemental scattering amplitudes are

M
1�2�3�4�

= �� , M
1 2 3�

= yh12i , M
1 ̄2 ̄3�

= y[12] . (4.3)

{e
q
:
Y
u
k
a
w
a
th

eo
ry

el
em

en
ta
l
sc
a
tt
er
in
g
a
m
p
li
tu

d
es
}

Note that the relative signs between the latter two form factors is consistent with unitarity, so

that h1�|Oy|2 3 ih2 3 |Oy|1�i > 0 with h1�|Oy|2 3 i = h1�3̄ ¯ 2̄ ¯ |Oy|0i. Other amplitudes

are determined essentially by factorization:

M
1 2 ̄3�4�

= y2
✓h13i
h23i +

h14i
h24i

◆
,

M
1 2 3 ̄4 ̄

= y2
h12i
h34i ,

M
1 2 3 4 

= 3y2
h12i
[34]

.

(4.4)

{e
q
:
Y
u
k
a
w
a
th

eo
ry

sc
a
tt
er
in
g
a
m
p
li
tu

d
es
}

check signscheck signs

From these we will calculate the anomalous dimension matrix,

µ
@

@µ

 
O�

Oy

!
=

 
��� ��y
�y� �yy

! 
O�

Oy

!
. (4.5)

Note that we have normalized the operators so that their form factors (4.2), restricted to zero

total momentum, are precisely the derivatives of the S-matrix with respect to the correspond-

ing coupling. Therefore (. . . put ’vector field’ derivation here) the relation with �-function

is:

�ab =
@

@a
�(b), a, b = � or y. (4.6)

4.1 IR structure

Let us first consider the infrared structure. As before, we can obtain it from the anomalous

dimension of the stress tensor.

From the scalar stress tensor, we obtain

�
(1)

IR

= 2�coll.� =
1

⇡

h1�2�|M⌦ T↵�,↵̇
˙� |0i(0)

h1�2�|T↵�,↵̇ ˙� |0i(0) = � y2

8⇡2

, (4.7)

and from the fermionic stress tensor, we get

�
(1)

IR

= 2�coll. = 2�coll.
¯ =

1

⇡

h1 2 ¯ |M⌦ T↵�,↵̇
˙� |0i(0)

h1 2 ¯ |T↵�,↵̇ ˙� |0i(0) = ± y2

8⇡2

1

2
. (4.8)

Note that bothe the scalar and the fermionic stress tensor occur in both convolutions. More- check prefactors

and sign

check prefactors

and sign

– 14 –
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• Lower-triangular elements: two-loop integrals with 
3→2 tree amplitude:

• Lower-triangular vanish at 1-loop: can’t have 2→1 cut!

• Keep all graphs in 3→2 amplitude: 1PI or not

• Only single-scale integrals. Propagators& measure 
factorize, integrals ok with explicit parametrization:

21

�y� ⇠ � 1

⇡

⇠ y3⇠ �y

+

�0
1

↵ = �↵
1

cos ✓
2

� ei� �↵
2

cos ✓
1

sin ✓
2

,

�0
2

↵ = �↵
1

sin ✓
2

cos ✓
3

+ ei� �↵
2

�
cos ✓

1

cos ✓
2

cos ✓
3

� ei⇢ sin ✓
1

sin ✓
3

�
,

�0
3

↵ = �↵
1

sin ✓
2

sin ✓
3

+ ei� �↵
2

�
cos ✓

1

cos ✓
2

sin ✓
3

+ ei⇢ sin ✓
1

cos ✓
3

�
.

(4.51)

The amplitude then becomes

M
1

0
�2

0
�3

0
�!1 2 ̄

=
y3

h12i(e
i⇢ tan ✓

1

cot ✓
2

csc ✓
2

cot ✓
3

+ cot2 ✓
2

+ 1) . (4.52)

{e
q
:
a
m
p
li
tu

d
e
3
to

2
}

In order to calculate the phase-space integral, we also require the measure factor. It is given

by
s
12

2
2 sin ✓

1

cos ✓
1

d✓
1

4 sin3 ✓
2

cos ✓
2

d✓
2

2 sin ✓
3

cos ✓
3

d✓
3

d⇢

2⇡

d�

2⇡
. (4.53)

{e
q
:
m
ea

su
re

3
to

2
}

In order to check the normalisation of (4.53), we compute

s
12

2

Z ⇡
2

0

2 sin ✓
1

cos ✓
1

d✓
1

Z ⇡
2

0

4 sin3 ✓
2

cos ✓
2

d✓
2

Z ⇡
2

0

2 sin ✓
3

cos ✓
3

d✓
3

Z
2⇡

0

d⇢

2⇡

Z
2⇡

0

d�

2⇡
=

s
12

2
.

(4.54)

{e
q
:
m
ea

su
re

3
to

2
in
te
g
ra
te
d
}

We compare this to the discontinuity of the sunrise integral

p1

p2

= e2�E"
�(1� ")3�(1 + 2")

2"(1� 2")�(3� 3")
(�s

12

)

✓
�s

12

µ2

◆�2"

= �s
12

4"
+

1

2
s
12

log

✓
�s

12

µ2

◆
� 13s

12

8
+O(") ,

(4.55)

finding perfect agreement. Integrating the amplitude (4.52) against the measure (4.53), we add prefactor

with 4⇡ etc

add prefactor

with 4⇡ etc

do further checks

on measure us-

ing IBP?

do further checks

on measure us-

ing IBP?

find

� [12]y3 . (4.56)

Thus, we find

�O�!Oy = � 2y3

(4⇡)4
+

1

6

y�

(4⇡)4
. (4.57)

From literature re-

sult. Derivation

of prefactor for

our result miss-

ing: combinato-

rial one and one

from discontinu-

ity at two-loop

order

literature re-

sult. Derivation

of prefactor for

our result miss-

ing: combinato-

rial one and one

from discontinu-

ity at two-loop

order

�O�!Oy =
@

@�
�y , (4.58)

we find that the corresponding contribution to �y at order �y3 is

� 2y3�

(4⇡)4
+

1

12

y�2

(4⇡)4
. (4.59)

This result can be compared e.g. to (3.3) of [? ], giving agreement. literature resultliterature result

It is interesting to see that the two-loop calculation done in this subsection is actually

simpler that the one-loop calculation done in the last subsection! In the approach we use, the

complexity scales more with the number of legs than with the number of loops.

– 21 –



• Upper-triangular elements (length-increasing): 
formally one-loop, but individual cuts harder

22

1

2

3

New feature:
integral produces a log

� 1

⇡

Z
dLips

hl2p1ihl1p3i
hl1p1ihl2p3i

/ 1 + log

p2 · p3
(p1 + p2)·p3

Generic feature beyond LO for final states with >= 3 
particles!  But RG should give a polynomial!
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+ +

1

2

3

4

1

2

3

4

1

2

3

4

+ log

(p1+p2)·p3p1·(p2+p3)

p1·p2p2·p3
+1 + log

p1·p2
p1·(p2+p3)

1 + log

p2·p3
(p1+p2)·p3 = 2

Cancellation between cuts:

Generically expected!



• In summary [up to irrelevant typos]

• Length-changing effect only affect eigenvalues at 
two-loops: ‘1½loops’

24

2-loop, ‘easy’

1-loop, ‘easy’ 1-loop 3→4 ‘hard’

1-loop, ‘easy’

n = 4n = 3

(because of the one-loop zero
for length-decreasing effects) 

✓
�yy �y�
��y ���

◆
=

1

16⇡2

 
12y2 8�y � 96y3

0 + �2y3+�y/6
16⇡2 6�+ 4y2

!



• To get β-function:
use generalization of QCD formula for F2!

[interpretation:
  - Form factor = variation of S-matrix

  - Commute this variation with RGE:
 

  - ‘anomalous dimension of couplings 
    controls perturbations of RG flow’]
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@a�b = �ab

✓
µ

@

@µ
+ �a

@

@ga

◆
M(ga(µ), µ)

@aM(ga(µ), µ) = Fa

[Kluberg-Stern&Zuber ’74]
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�(�) =
1

16⇡2

�
3�2 + 4�y2 � 24y4

�

✓
�yy �y�
��y ���

◆
=

1

16⇡2

 
12y2 8�y � 96y3

0 + �2y3+�y/6
16⇡2 6�+ 4y2

!

versus xTuv

Symmetry of derivatives not manifest!

Which property of the S-matrix ensures this??

M2!2

�(y) = . . .

Nice consistency check!

@a�b = �ab )

M2!3



On masses

27

• In conventional RG applications, a particle is either 
light or heavy and integrated out:
it is appropriate to use massless S-matrix

• Example: running of heavy quark mass
operator           is only relevant at energies >> mQ ̄Q Q



• Does unitarity ‘misses’ mass logarithms?

28

/ �m2
log

m2

µ2
) µ

@

µ
(m2)

?/ �m2 No cut!



• Does unitarity ‘misses’ mass logarithms?

• No! RG can answer two distinct questions:

• Constant logarithms affect only first question

29

1. Optimal bare parameters to use at a given cutoff scale
(e.g. lattice, or putative UV completion of SM)?

2. Optimal running couplings to use to minimize large 
logs in a physical observable at given energy scale?

[and quadratic divergences]

⇒Unitarity correctly answers second question

/ �m2
log

m2

µ2
) µ

@

µ
(m2)

?/ �m2 No cut!

[see evanescent effects:
Bern,Cheung,Chi,Davies,Dixon&Nohle ’15]



Summary
• Dilatation operator is minus the phase of the 

S-matrix, divided by   .   (                         )

• One-loop YM β-function ‘‘       ’’ is an 
eigenvalue of Parke-Taylor amplitude:

• IR divergences: cancel using stress tensor

• Analyzed Yukawa to 1½ loops
30

M4 =
hiji4

h12ih23ih34ih41i

⇡

� 11
3

e�i⇡DF ⇤ = SF ⇤



Outlook
• Dilatation operator in N=4/QCD at higher loops? (Twist-

two in QCD: all spins from same matrix elements?)

• Length-changing: mysterious cancellations of logs between 
cuts? N=4 Yangian?  Role of F* in                           ?

• Which questions can be answered with spectrum of S 
(now already known in planar N=4 SYM?)

• Exponentiation of logs: Derive RGE from on-shell ideas?
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