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Why Higher Spins?
• massive HS fields in string theory
may become massless in “tensionless” limit
interacting massless HS theory in flat space ?

• massless HS theory in AdS:
important role in (vectorial) AdS/CFT
• closely related “shadow”: conformal higher spin theory

• infinite dimensional HS symmetry:
implications for S-matrix? trivial?
(cf. Coleman-Mandula, Weinberg’s soft theorem)



Consistent HS theories:
• massless HS theory in AdSd+1:
2-derivative (unitary) but non-flat vac
dual to free CFTd: e.g. scalar in vector rep of U(N)

S-matrix is “simple”:
reproduces correlators of currents in free CFT

• conformal higher spin theory (CHS):
higher derivatives (non-unitary) but flat vacuum
closely related to AdS/CFT

S-matrix is “trivial”: constrained by HS symmetry



• massless higher spin (MHS) theory in flat space:
existence of interacting theory presently unclear

S-matrix should be trivial to comply with
large gauge/global symmetry?
locality of 4-point and higher terms in action?
limit of AdS HS theory?

Aim: study simple amplitudes in CHS and MHS
and implications of HS symmetry



Free massless HS theory in flat space
• collection of free massless spins s = 0, 1, 2, 3, ...,∞
gauge-invariance δφm1...ms = ∂(m1εm2...ms)

Fronsdal action S =
∫
d4x φm1...ms∂2φm1...ms + ...

• massless vector, graviton, etc.: for s > 0 have 2 d.o.f. in 4d
• “trivial” theory: total no. of d.o.f. =0

1 +
∞∑
s=1

2 = 1 + 2ζ(0) = 0

• free massless spin s partition function:

ZMHS,s =
[det ∆s−1⊥

det ∆s⊥

]1/2
=
[ (det ∆s−1)2

det ∆s det ∆s−2

]1/2
=
(

1√
det (−∂2)

)2

∆s = −∂2 on symmetric rank s traceless tensor



Total partition function: [Beccaria, AT 15]

ZMHS =
∞∏
s=0

ZMHS,s

=
[ 1

det ∆0

]1/2[ det ∆0

det ∆1⊥

]1/2[det ∆1⊥

det ∆2⊥

]1/2[det ∆2⊥

det ∆3⊥

]1/2

... = 1

• cancellation of physical spin s det and ghost det for spin s+ 1

reflects hidden simplicity due to large gauge symmetry
• ∞ product is a priori ambiguous: requires regularization
that should be consistent with underlying symmetry
• ζ-func. reg. is equiv to cancellation of factors in Z
[cf. ζ-func. reg. of vac energy in string theory
consistent with symmetries – massless vector in d = 26 ]



Lesson: theories of∞ number of fields:
require specific definition at quantum level
maintain symmetries – regularization or defn of

∑∞
s

[cf. ambiguities in defn of string field theory may be fixed by
corresp with underlying 1-st quantised w-sheet formulation]



Conformal higher spin theory
• generalization of Maxwell (s = 1) and Weyl (s = 2) theories:
F 2
mn ∼ h1∂

2h1

C2
mnkl ∼ h2∂

4h2 + ∂4h2h2h2 + ∂4h2h2h2h2 + ...

dimensionless coupling
differential + algebraic (Weyl) gauge symmetry
δhs = ∂εs−1 + η αs−2

can gauge-fix hs to be transverse and traceless
• totally symmetric hm1...ms describes pure spin s states off shell
has maximal gauge symm consistent with locality
at expense of higher-deriv kin terms (non-unitary)
[Fradkin, AT 85; AT 02; Segal 02]

Ss =
∫
d4x hsPs∂

2shs
Ps ∼ (δmn − ∂m∂n

∂2
)s – transv. traceless projector

• CHS field hs has dim ∆ = 2− s



Interacting theory: conformally invariant in flat space
number of derivatives in vertices fixed by dimension

Ss = κ
∫
d4x
(
hs∂

2shs + ∂s1+s2+s3−2hs1hs2hs3

+∂s1+s2+s3+s4−4hs1hs2hs3hs4 + ...
)

interacting action consistent with symmetries: induced theory

Some properties of free theory indicating hidden simplicity:
• free partition function ( ∆s = −∂2 )

ZCHS,s =
[(det ∆s−1)s+1

(det ∆s)s

]1/2

=
s−1∏
k=0

[det ∆k⊥

det ∆s⊥

]1/2

ZCHS =
∞∏
s=1

ZCHS,s =
[det ∆0

det ∆1

]1/2[(det ∆1)3

(det ∆2)2

]1/2[(det ∆2)4

(det ∆3)3

]1/2

...



no naive cancellation but if define as counting effective d.o.f.

ZCHS,s = (Z0)νs = (det ∆0)−νs/2 , νs = s(s+ 1) = 2, 6, ...

ZCHS =
∞∏
s=0

(Z0)νs = (Z0)νtot , νtot =
∞∑
s=0

νs

regularization :
∞∑
s=0

f(s) →
∞∑
s=0

f(s) e−ε(s+
1
2

)
∣∣∣
fin.

then νtot =
∑∞

s=0 νs = 0 or (ZCHS)tot = 1 as in MHS case
• same regularization is implied by relation
of massless HS in AdSd+1 and CHS at the boundary
• 1-loop ZCHS(S4) in same regularization is again =1
consistent with relation to MHS part. funct. in AdS5

[Giombi et al 13; AT 13; Beccaria, Bekaert, AT 14]



• regularization consistent with symmetries of CHS theory:
vanishing of conformal anomaly [Giombi,Klebanov; AT 13]

Tmm = −aR∗R∗ + cC2

as = 1
720
ν2
s (14νs + 3)

cs − as = 1
720
νs(15ν2

s − 45νs + 4) , νs = s(s+ 1)

• sums to 0 in same regularization
∑∞

s=0 f(s) e−ε(s+
1
2

)
∣∣
fin.

∞∑
s=1

(cs − as) = 0 ,
∞∑
s=1

as = 0

• total c- and a- anomaly vanish: 1-loop quantum consistency
• novel mechanism of UV finiteness:
summation of∞ number of bosonic fields (cf. string theory)



CHS as “induced” theory
consider free U(N) complex scalar CFT∫
ddxΦ∗i∂

2Φi

• exists tower of on-shell conserved traceless HS currents
Js = Φ∗i Js Φi ∼ Φ∗i∂(m1 ...∂ms)Φi + ...

• implies existence of infinite tower of conserved charges:
symmetries of free equation ∂2Φ = 0→ HS symmetry
(conf Killing tensors) [Eastwood, Vasiliev]
• generating functional for correlators of currents:
add hsJs and integrate out Φi

Γ[h] = N log det
(
− ∂2 +

∑
s

hs Js
)
, Js ∼ ∂s

• source fields hs are CHS fields
CHS: gauge th of symm of Laplace eq (cf. Poincare→ diffs)



hs are gauge fields for symm of free scalar theory:
δhm1···ms = ∂(m1εm2···ms) + η(m1m2 αm3···ms)

generalizing diffs and Weyl symmetry of Weyl gravity
have dim ∆ = 2− s, i.e. “shadow” counterparts
of dim s+ 2 currents Js in scalar CFT
• vectorial AdS/CFT:
Js dual to massless HS fields in AdSd+1

Γ[h] should follow from Vasiliev-type theory in AdSd+1

upon integrating over AdSd+1 fields φs with Dirichlet b.c.

e−Γ[h] =
∫
φs|∂AdS

=hs
[dφs] exp

(
−NS̄[φ]

)
• Γ[h] is non-local and does not have CHS symmetries but
its logarithmically UV divergent part is local and invariant



• natural defn of CHS action as “induced” [AT 02; Segal 02]

SCHS ∼ log det ∆(h)
∣∣∣
log ε

, ∆(h) = −∂2 +
∑
s

Jshs

or SCHS ∼ tr e−ε∆(h)
∣∣∣
ε→0, fin

• familiar low-spin case in manifestly covariant form (d = 4)

L =
√
g gmnDmΦ∗DnΦ+(1

6
R+h′0)Φ∗Φ , Dm = ∂m+iAm

related to ∂Φ∗∂Φ + hsΦ
∗JsΦ by redefs

h0 = h′0 + AmA
m + 1

6
R, etc.

coeff of log UV divergence – from standard Seeley coeff:

S0+1+2 =
∫
d4x
√
g
(
h′20 + 1

6
F 2
mn + 1

60
C2
mnkl

)
set gmn = ηmn + h′mn and extract cubic, quartic, etc. couplings
then can compute CHS scattering amplitudes: 1111, 2222, etc.



Strategy:
• compute quadratic, cubic, quartic CHS couplings directly
from UV singular part of corresponding scalar 1-loop diagrams
• use them to compute tree-level CHS 4-point scattering amps
• they turn out to be zero after non-trivial summation
over all spin s CHS intermediate states
• this appears to be a consequence of CHS global symmetry
• this may serve as a lesson for attempts to understand
what may happen in 2-derivative MHS theory in flat space

First illustrate this on simplest example:
scattering of external scalars via exchange of
tower of CHS fields



Scalar scattering via conformal HS exchange
[Joung, Nakach, AT 15]

external scalar scattering via exchange of tower of CHS fields

S[Φ, h] =

∫
d4x
[
Φ∗∂2Φ +

∞∑
s=0

hs Js(Φ)
]

+ S[h]

S[h] = κ
∞∑
s=0

∫
hs Ps∂

2s hs +O(h3)

• h0 coupled to Φ∗Φ; hµ to iΦ∗∂µΦ + c.c.; hµν to Tµν , etc.
• hs exchange with propagator ∼ 1

p2s
and ps in the vertices:

scale invariance, no dimensional parameters





Four-scalar tree-level scattering amplitude
t-channel amplitude

A(t)(s, t, u) = κ−1F ( s−u
s+u

) , F (z) ≡
∞∑
s=0

(s+ 1
2
)Ps(z)

s, t, u are Mandelstam variables: s + t + u = 0

Ps(z) – Legendre polynomial
• amplitude is scale-invariant: depends on ratios s, t, u
• summing over spins: natural cutoff prescription∑∞

s=0 f(s)→
∑∞

s=0 f(s) e−ε(s+αd)
∣∣∣
ε→0, fin

, αd = d−3
2

= 1
2

F (z) = δ(z − 1)

same found using gen function for Legendre polynomials
• surprising result: amplitude is δ-function in phase space



Total amplitude:
• Φ Φ → Φ Φ: t-channel plus u-channel

AΦΦ→ΦΦ = κ−1
[
δ( s

t
) + δ( s

u
)
]

in c.o.m. frame ~p1 + ~p2 = 0 = ~p3 + ~p4

scattering angle: s
t

= −(sin2 θ
2
)−1, s

u
= −(cos2 θ

2
)−1

arguments of delta-functions never vanish for real θ

AΦΦ→ΦΦ = 0

• Φ Φ∗ → Φ Φ∗:

AΦΦ∗→ΦΦ∗ = κ−1

2

[
δ(u

t
)+δ(u

s
)
]

= κ−1

2

[
δ(cot2 θ

2
)−δ(cos2 θ

2
)
]

t-channel and s-channel contributions cancel each other

AΦΦ∗→ΦΦ∗ = 0



• individual spin s exchange contributions are nontrivial
but total amplitude =0 in particular summation prescription
• large underlying symmetry constrains the S-matrix:
A4Φ = 0 is implied by the global symmetry of CHS theory
(cf. integrability / hidden conserved charges in 2d theories)

Global CHS symmetry :
• global part of CHS gauge symmetry:
symmetry of scalar Laplace eq (conformal Killing tensors)
conformal generators plus other higher spin generators
• in particular, “hyper-translations”

δΦ = εr · PrΦ = εµ1....µr∂µ1 ...∂µrΦ

• this fixes amplitude to be

AΦΦ→ΦΦ(s, t, u) = k1(t, u) δ(s) + k2(s, u) δ(t) + k3(t, s) δ(u)



• use also invariance under dilatations p→ γp

AΦΦ→ΦΦ(γ2 s, γ2 t, γ2 u) = AΦΦ→ΦΦ(s, t, u)

• solution consistent with crossing and scaling symmetry
AΦΦ→ΦΦ(s, t, u) = 0

• regularization of the sum over s in which
tree-level scalar amplitude vanishes
is thus consistent with underlying CHS symmetry



CHS tree level scattering [Beccaria, Nakach, AT]
1. first find 2-, 3- and 4-point vertices in CHS action
from UV pole part of scalar loop integrals with Js insertions
2. compute resulting CHS scatt amps 1-1-1-1, 2-2-2-2, etc.

coupling of external CHS fields to complex scalar

L = −∂µΦ∗ ∂µΦ +
∞∑
s=0

Jµ(s) h
µ(s) , Jµ(s) ≡ Jµ1...µs

Jµ(s)(x) = is 2s

(2s)!

s∑
k=0

(
s
k

)( s+k−1
2
s

)
G

(k)
µ(s)(x)

G
(k)
µ(s)(x) = (∂ − ∂′)µ(k)(∂ + ∂′)µ(s−k)Φ(x) Φ∗(x′)

∣∣∣
x=x′

J = Φ Φ∗, Jµ = i
2

(∂µΦ Φ∗ − Φ ∂µΦ∗),

Jµν = 1
12

[
− ∂µ∂νΦ Φ∗ − Φ ∂µ∂νΦ

∗ + 2 (∂µΦ ∂νΦ
∗ + ∂νΦ ∂µΦ∗)

]



Induced CHS action
S =

∫
d4x
(∑

s hs∂
2shs +

∑
si
∂s1+s2+s3−2hs1hs2hs3

+
∑

si
∂s1+s2+s3+s4−4hs1hs2hs3hs4 + ...

)
• kinetic term:

k

k+p

h(p) h(-p)
=

∫
ddk

(2π)d
N(k, p)...
k2 (k + p)2

1
ε

= 1
d−4

UV pole part (for TT field hs):

S2 = 1
2s (2s+1)!

∫
d4xhµ(s)�

s hµ(s)



• cubic vertex: from pole part of

h(p1)

k

k+p1

k+p1+p2

h(p2)

h(-p1-p2)

for example: 1-1-s

Vµνρ(s) =
∫ (

dk
2π

)d kµ(k+p1)ν(k+p1+p2)ρ(s)
k2(k+p1)2(k+p1+p2)2

∣∣∣
1
ε

part

S3(1, 1, s) = is

(s+2)!

∫
d4x
[
∂ρ(s)hµh

µhρ(s) − 2hµ ∂
µ ∂ρ(s−1) hν h

νρ(s−1)

− s
2
∂ρ(s−2)�hµhνhµνρ(s−2) − s

2
∂ρ(s−2)hµ�hνhµνρ(s−2)

− ∂λ∂ρ(s−2)hµ∂λhνhµνρ(s−2)

]



e.g. 1-1-2 is same as in Maxwell
∫
d4x
√
g gµνgλρFµλFµρ

S3(1, 1, 2) = 1
24

∫
d4x
[
∂ρhµ ∂σh

µhρσ − 2∂ρhµ ∂
µ hν h

νρ

+ 2hµ�hνhµν + ∂λh
µ∂λhνhµν

]
• quartic vertex:
e.g. 4-vector contact term from pole part of diagram

µ ν

ρσ

1
16

∫
d4x(hµh

µ)2 combining into
∫
d4x(h0 − 1

4
hµh

µ)2

contribution to 1-1-1-1 scattering cancels against h0 exchange
• similar (more complicated) for 2-2-s and 2-2-2-2 vertices, etc.



CHS “S-matrix”
• s = 1 case is standard vector but for s> 2

higher-derivative ∂2s kinetic term: non-unitary theory
• formal definition of “S-matrix”: amputated Green’s functions
with special asymptotic states attached
equivalent to: S = S(hclass(hin)) = A3h

3
in + A4h

4
in + ...

δS
δh

∣∣∣
hclass

= 0, hclass = hin +O(h2
in), ∂2shin = 0

• s = 2: ∂4 Weyl graviton with 6 d.o.f.
1
p4
→ 1

ε

[
1
p2
− 1

p2+ε

]
ε→0

linearized Bach eqs ∂m∂kRkn + ... = 0 solved in particular
by Rmn = 0: choose standard helicity ±2 graviton
as special asymptotic states
• same for s > 2: use CHS vertices and internal propagators
but standard massless spin s polarizations as asymptotic states



CHS 4-particle tree level amplitude
helicities (λ1, λ2, λ3, λ4) and s, t, u (p2

i = 0 for ext legs)
exchange diagrams

1

2 4

3 1

2 4

3 1

2 4

3

4-vector scattering
spin s exchange: two 1-1-s vertices and TT spin s propagator

Vαβρ(s)(p, q) =
1

(s+ 2)!

{
ηαβ
[
1
2
pρ(s) +

1
2
qρ(s)

]
− 1

2
ηαρ1pβpρ2 . . . pρs + 1

2
ηβρ1qαpρ2 . . . pρs − 1

2
ηβρ1qαqρ2 . . . qρs + 1

2
ηαρ1pβqρ2 . . . qρs

− 1
2
ηαρ1ηβρ2 pρ3 . . . pρs p · q − 1

2
ηαρ1ηβρ2 qρ3 . . . qρs p · q

}



• s = 2 exchange (Weyl graviton)
same as 4-vector amplitude in conformal sugra F 2 + C2 + ...
only MHV non-zero ( ++++, +++-,... =0 )

λ A
(2)
s A

(2)
t A

(2)
u

±±∓∓ 0
5

48

s2

t2
5

48

s2

u2

±∓∓± 5

48

u2

s2
5

48

u2

t2
0

• s = 4 exchange:
propagator (P µ

ν = δµν −
∂µ∂ν
∂2

)

Dα1α2α3α4
β1β2β3β4

(p) =
2s−1(2s+ 1)!

(p2)s

[
P

(α1

(β1
Pα2
β2
Pα3
β3
P
α4)

β4)

− 6
7
P (α1α2P(β1β2P

α3
β3
P
α4)

β4)
+ 3

35
P (α1α2Pα3α4)P(β1β2Pβ3β4)

]



again only MHV are non-zero:
λ A

(4)
s A

(4)
t A

(4)
u

±±∓∓ 0
s2 (28 s2 + 42 s t + 15 t2)

80 t4
s2 (28 s2 + 42 s u + 15 u2)

80 u4

±∓∓± u2 (28 u2 + 42 s u + 15 s2)
80 s4

u2 (28 u2 + 42 t u + 15 u2)

80 t4
0

• General structure of spin s exchange 1111 amplitudes (6= 0)

A
(s)
t (±±∓∓) = cs

( s
t

)s
Ps
( t

s
)
, A(s)

u (±±∓∓) = cs
( s

u
)s

Ps
(u

s
)
,

A(s)
s (±∓∓±) = cs

(u
s
)s

Ps
( s

u
)
, A

(s)
t (±∓∓±) = cs

(u
t

)s
Ps
( t

u
)

cs = 2 s+1
2 (s−1) s (s+1) (s+2)

Ps(x) = xs−2 P
(4,0)
s−2

(
x+2
x

)
, s−2 order s = 2, 4, 6, . . .

P
(a,b)
n (x) are Jacobi polynomials, i.e.

Ps(x) =
∑s

j=2
1

(j−2)! (j+2)!
(s+j)!
(s−j)! x

s−j ∼ xs−2
2F1

(
2− s, s+ 3, 5;− 1

x

)



Sum over spins
total + +−− amplitude: t- plus u-channel

A(s) = cs
[(

s
t

)s
Ps

(
t
s

)
+
(

s
u

)s
Ps

(
u
s

)]
define x = t/s

A(s)(x) = σs(x) + σs(−1− x), σs(x) = cs x
−s Ps(x)

use generating function for Jacobi polynomials P (4,0)
s−2

∞∑
s=2

x−s Ps(x) zs−2 = 1
x2

16√
z2− 2z(x+2)

x
+1

(√
z2− 2z(z+2)

z
+1−z+1

)4

σ(x) =
∞∑

s=2,4,6,...

σs(x) = lim
z→1

∞∑
s=2,4,6,...

cs x
−s Ps(x) zs−2

= 1
8

[
− 2x+ 2 (x+ 1)x log

(
1
x

+ 1
)
− 1
]
.



summed over s amplitude is zero as in scalar scattering case

A(x) =
∞∑

s=2,4,6,...

A(s)(x) = σ(x) + σ(−1− x) = 0

Generalize to s > 1 external states
Why Jacobi polynomials? cf. partial wave expansion in terms
of intermediate angular mom J states [Jacob, Wick 1959]

Aλ1,λ2;λ3,λ4(s, θ) = f{λi}(θ)
∑
J

(J + 1
2
)F

(J)
{λi}(s) P

(|λ+µ|,|λ−µ|)
J−M (cos θ)

λ = λ1 − λ2, µ = λ3 − λ4, M = max(|λ|, |µ|)

f{λi}(θ) =
(

cos θ
2

)|λ+µ| (
sin θ

2

)|λ−µ|
=
(
− u

s

) 1
2
|λ+µ| (− t

s

) 1
2
|λ−µ|

• identification of J-th partial wave with contribution of
exchange of intermediate spin J field (Lorentz invariance)



• scale invariance controls how F depends on s

e.g., for dim 1 external particles F
(J)
{λi}(s) = const

• general prediction for Jacob-Wick coefficient for scattering
of CHS fields of dim ∆i = 2− |λi| (no dim6= 0 parameters!)

F
(J)
{λi}(s) = kλ,µ

[J−max(|λ|,|µ|)]!
[J+min(|λ|,|µ|)]! sr , r = 2− 1

2

∑4
i=1 ∆i

Special cases (J = s):
• External scalar scattering ΦΦ∗ → ΦΦ∗: λi = 0, ∆i = 1

A0,0;0,0(s, θ) =
∑

s=0,2,...

(s+ 1
2
)F

(s)
0 P (0,0)

s (cos θ)

same as s-channel exchange from Lagrangian with F
(s)
0 = const



• 1+1+ → 1+1+

t-channel (cos θ = −1− 2 s
t
)

A++;++(θ) = (sin θ
2
)−4

∑
s=2,4,...

(s+ 1
2
)F

(s)
++;++ P

(4,0)
s−2 (cos θ)

agrees with Lagrangian result and F
(s)
++;++ = 1

(s−1) s (s+1) (s+2)

• 2+2+ → 2+2+

t-channel ++→ ++ or + +−−MHV (s-channel vanishes)

A++;++(t, θ) =
s4

t4

∑
s=4,6,...

(s+ 1
2
)F(s)t2 P

(8,0)
s−4 (cos θ)

explicit computation gives for full (t- plus u- channel) amplitude

A(s) = cs s2
[ (

s
t

)s−2
Ps

(
t
s

)
+
(

s
u

)s−2
Ps

(
u
s

)]
Ps(x) = xs−2 P

(8,0)
s−4

(
x+2
x

)
, cs = 9

32
2s+1

(s−3)(s−2)(s−1)s(s+1)(s+2)(s+3)(s+4)



• sum over spins:

σ(x) =
∞∑

s=4,6,8,...

σs(x) = lim
z→1

∞∑
s=4,6,8,...

cs x
−(s−2) Ps(x) zs−4

= 1
4320

[
60 (x+1)3 x3 log

(
1
x
+ 1
)
−60x5−150x4−110x3−15x2+3x−1

]
total amplitude vanishes: t- and u- channels cancel
σ(x) + σ(−1− x) = 0

• still to add contribution of s = 0, 2 exchanges + 2222 vertex

A0,s
++;++ = s2

18432
, A0,t

++;++ = t2 u4
2048 s4 , A0,u

++;++ = t4 u2
2048 s4 ,

A2,s
++;++ = s2+6 s t+6 t2

92160
, A2,t

++;++ =
u2(2 s4−10 s3 t+33 s2 t2−24 s t3+3 t4)

30720 s4

A2,u
++;++ =

t2 (2 s4−10 s3 u+33 s2 u2−24 s u3+3 u4)
30720 s4

Acontact
++;++ = − s6−s5 t+26 s4 t2+63 s3 t3+54 s2 t4+27 s t5+9 t6

7680 s4



non-trivial cancellation (similarly for all other helicity choices)

A0,s + A0,t + A0,u + A2,s + A2,t + A2,u + Acontact = 0

thus full 2222 amplitude vanishes as it did in 1111 case

• same cancellation checked for 1122 amplitude:
expressed in terms of P (6,2)

s−4 (−1− 2 t
s) in s-channel and

P
(6,0)
s−4 (−1− 2 t

s) in t-channel in agreement with J-W;
exchanges cancel against 1122 contact term

• similar considerations should apply for ss→ ss amplitude

• conjecture: full CHS S-matrix is trivial
• this should follow from underlying global CHS symmetry

as in external scalar scattering case



CHS symmetries
define h(x, u) ≡ hµ1...µsu

µ1 ...uµs

f(x, u) ? g(x, u) = f(x, u) e
i
2

(
←
∂x·
→
∂u−

←
∂u·
→
∂x) g(x, u)

[f(x, u), g(x, u)] = 2f(x, u) cos[ i
2
(
←
∂x ·

→
∂u −

←
∂u ·

→
∂x))] g(x, u)

{f(x, u), g(x, u)} = 2f(x, u) sin[ i
2
(
←
∂x ·

→
∂u −

←
∂u ·

→
∂x)] g(x, u)

diff and algebraic symm of scalar-CHS system [Segal 02]

δεh(x, u) = (u · ∂x)ε(x, u)− i
2

[h(x, u), ε(x, u)]

δαh(x, u) =
(
u2 − 1

4
∂2
x

)
α(x, u)− 1

2
{h(x, u), α(x, u)}

δε+iαΦ(x) = e−
i
2
∂x′ ·∂u

(
ε(x, u) + iα(x, u)

)
Φ(x)

∣∣
x=x′, u=0

δh = δ[0]h+ δ[1]h: δ[0]hs ∼ ∂εs−1 + ηαs−2 gauge symmetry
global symmetry from δ[1]h ∼ ε ∂h+ ∂ε h+ ... for special ε



spin s field transforms in terms of s′ < s fields

δ[1]
ε h0 ∼

∑
k

1
k!
εµ(k)∂µ(k)h0

δ[1]
ε h

ρ ∼
∑

k

[
1

(k+1)!
ερµ(k)∂µ(k)h0 + 1

k!
εµ(k)∂µ(k)h

ρ
]

δ[1]
ε h

ρσ ∼
∑

k

[
1

(k+2)!
ερσµ(k)∂µ(k)h0 + 1

(k+1)!
εµ(k)(ρ∂µ(k)h

σ) + 1
2!k!
εµ(k)∂µ(k)h

ρσ
]

special choice of global symmetry parameters:
constraints on amplitudes as in external scalar scattering case

higher spin global symmetries→ higher spin conserved charges
→ triviality of S-matrix (cf. Coleman-Mandula)



Massless HS theory in flat space
• 2-derivative unitary free theory is known but
is there a consistent (gauge-invariant, local) interacting theory?
• which is underlying symmetry?
• expect HS symmetry→∞ tower of HS conserved charges
hidden simplicity? fixing S-matrix uniquely?
S-matrix is “trivial”? non-trivial only for special momenta?
UV finiteness?
• “flat limit” of Vasiliev’s theory in AdS?
leading Regge trajectory “truncation” of
α′ →∞ limit of flat-space string?



Interacting massless higher spins in flat d> 4 space:
• free theory

∫
d4x ∂φs∂φs, δφs = ∂εs−1

• interacting theory? various s > 2 “no-go theorems”
no minimal interactions – no long-range forces [Weinberg]

• consistent theory may still exist if contains
(i) infinite tower of spins s = 0, 1, 2, 3, ...,∞
(ii) higher derivative (non-minimal) cubic interactions
∂nφs1φs2φs3 , s2 + s3− s16n6 s2 + s3 + s1 (s16 s26 s3)

e.g. 2-2-2 vertex has ∂2, ∂6

[l.c: Bengtsson, Bengtsson, Brink; Metsaev;
cov: Manvelyan, Mkrtchyan, Ruhl; Sagnotti, Taronna; Joung]
• Noether procedure: deform δφs = ∂εs−1 + ..., add 4-vertex,...
should fix 3-point coupling consts



l.c. gauge: [Metsaev] gs1s2s3 = g `s1+s2+s3−1

(s1+s2+s3−1)!

• two parameters: g= dimensionless and `= length

1

g2

∫
d4x
[∑

s

∂φs∂φs+
∑

`n−1∂nφs1φs2φs3+
∑

`k−2∂kφ4+...
]

– φ3 terms: two covariant structures ∂s1+s2+s3 and ∂s2+s3−s1

– φ4 remains to be fixed (local?)
– effectively non-local theory: no. ∂ grows with s and n of φn

• motivation to study:
possible relation to AdS theory (UV limit, loops, etc.)
• despite ∂n vertices and scale ` theory may be UV finite
[in particular summation prescription; cf. string and CHS]



Free higher spin action
symmetric higher spin tensors

φs(x, u) = φa1...as(x)ua1 . . . uas

Fronsdal action

S(2)[φs] = 1
2

∫
ddx
[
φs(x, ∂u) T̂ F̂ φs(x, u)

]
u=0

T̂ = 1−1
4
u2∂2

u, F̂ ≡ ∂2
x−(u·∂x) D̂, D̂ ≡ (∂x·∂u)−1

2
(u·∂x)∂2

u

off-shell field φs double-traceless

(∂2
u)

2φs(x, u) = 0

gauge transformations

δ(0)
s φs(x, u) = (u · ∂x)εs−1(x, u)

de Donder gauge: ∂a1φa1...as + ... = 0

equations of motion �φs(x, u) = 0



• scattering of spin 0 particles:
need cubic interaction vertices with s1 = 0, s2, s3

traceless-transverse part of cubic vertex (∂xij ≡ ∂xi − ∂xj )

S(3)[φ0, φs2 , φs3 ] =g0s2s3

∫
ddx
[
(∂u2 · ∂x31)s2(∂u3 · ∂x12)s3

× φ0(x1)φs2(x2, u2)φs3(x3, u3)
]
ui=0
xi=x

propagator: Dds(u, u′; p) = − i
p2
Pd−2
s (u, u′) – traceless in d− 2

in d = 4: P2
s (u, u′) = 1

(s!)2

(√
u2u′2

)s
Ts

(
u·u′√
u2u′2

)
Ts(z) ≡ s

2

∑[s/2]
k=0

(−1)k(s−k−1)!
k!(s−2k)!

(2z)s−2k

= 1
2

[(
z +
√
z2 − 1

)s
+
(
z −
√
z2 − 1

)s]
Ts = Chebyshev polynomial of first kind



Tree-level 4-scalar scattering amplitude [Ponomarev, AT 16]
• exchange of tower of higher spin fields
[Bekaert, Joung, Mourad 09]
here real scalar is s = 0 member of HS tower
(i) use of explicit values of coupling constants of HS theory
(ii) add contribution of contact 4-vertex

Exchange contribution: s-channel exchange of spin s field

≡ Asexch(s, t, u)

Mandelstam variables (p2
i = p′2i = 0, s + t + u = 0)

Aexch =
∞∑

s=0,2,4,...

Asexch, Asexch(s, t, u) = −ig
2
00s

s

(
t + u

)s
Ts
(

t−u
t+u

)



Aexch(s, t, u) = − i
s

[
F
(√

s + t +
√

t
)

+ F
(√

s + t−
√

t
)]

F (z) ≡
∞∑

s=0,2,4,...

g2
00s ( z

2

4
)s = 1

8
g2 (`z)2

[
I0(`z)− J0(`z)

]
sum over spins here is convergent:
non-trivial dependence on Mandelstam variables and `

Âexch(s, t, u) = Aexch(s, t, u) +Aexch(t, s, u) +Aexch(u, t, s)

• Regge limit: t→∞, s=fixed

Âexch(s, t, u) ∼ −ig
2

s
`2t I0(`

√
8t) ∼ −ig

2

s
(`2t)3/4 e`

√
8t

• Fixed angle limit: s, t, u→∞, t
s

= − sin2 θ
2
, u

s
= − cos2 θ

2

Âexch(s, t, u) ∼ ig2|s|3/4 e`
√
|s| f(θ) →∞ , f(θ) > 0



• cf. string theory: Shapiro-Virasoro amplitude is UV-soft

A4 = g2 Γ(−1− 1
4
α′s)Γ(−1− 1

4
α′s)Γ(−1− 1

4
α′s)

Γ(2 + 1
4
α′s)Γ(2 + 1

4
α′s)Γ(2 + 1

4
α′s)

A4 → g2|s|−6(sin θ)−6e−α
′|s|h(θ) → 0

h(θ) = −1
4

(
sin2 θ

2
log sin2 θ

2
− cos2 θ

2
log cos2 θ

2

)
> 0

4-scalar vertex contribution ?

• expected to be effectively “non-local” – infinite series in ∂n:
may “soften” large p behaviour of exchange contribution
• guess 4-scalar vertex in flat-space HS action from
its form in AdS action reconstructed using AdS/CFT



[Bekaert, Erdmenger, Ponomarev, Sleight 2015]: ∇ → ∂

S(4)[φ0] = g2
∫
d4x
[∑∞

s=0f2s

(
∆x34

) (
∂x12 · ∂x34

)2s

× φ0(x1)φ0(x2)φ0(x3)φ0(x4)
]
xi=x

∆x34 ≡ (∂x3 + ∂x4)
2, ∂x12 ≡ ∂x1 − ∂x2

f2s(z) = infinite series in z, regular at z = 0: no poles

z →∞ : f2s(z)→ c2s
`4s−2

z
, c2s = 1

[(2s−1)!]2

then asymptotic contribution to 4-scalar amplitude is∑∞
s=0 f2s(s) (t− u)2s = 2t+s

2s

[
I0

(
2`
√

2t + s
)
− J0

(
2`
√

2t + s
)]

UV as in exchange amplitude: possible cancellation?

• simplest self-energy 1-loop diagram is exp UV divergent
but may be made finite once 4-vertex tadole contribution is added?



0-0-0-s tree-level scattering amplitude
gauge-invariance constraints on higher-spin vertices:
impose linearized gauge invariance on on-shell amplitude
more efficient than off-shell Lagrangian approach

Conditions:
• linearized gauge invariance δφm1...ms ∼ ∂(m1εm2...ms)

of full amplitude A4 = Aexch +Acont
• locality of 4-point vertex V000s (no 1/p2 poles)

Strategy:
• solve non-trivial (“inhomogeneous”) gauge-inv cond
• add solution of “homogeneous” eq.: invariant 4-vertex
• choose minimal solution consistent with locality of 4-vertex



Example: scalar electrodynamics
L = ∂mφ∗∂mφ+ iAm(φ∗∂mφ− φ∂mφ∗) + AmAmφ

∗φ

δAm = ∂mε, δφ = iφε

A(1)φ(2)φ(3)A(4) scattering amplitude:
Am → ζm(p)eip·x, p · ζ = 0

Aexch =
1

p2
12

ζ1 · p2 ζ4 · p3 +
1

p2
13

ζ1 · p3 ζ4 · p2

• gauge transformation in leg 1: δζ1 = p1ε1, δφ = 0

δAexch = (ζ4 · p3 + ζ4 · p2)ε1 = −ζ4 · p1 ε1
• can be cancelled by adding contact AmAmφ∗φ vertex
Acont = ζ1 · ζ4 → δAcont = p1 · ζ4 ε1
• thus 4-point vertex can be found from condition
of linearized gauge invariance of on-shell amplitude



0-0-0-s exchange amplitude: [Roiban, AT]
0-0-s′ and 0-s′-s vertices in de Donder gauge: φs → ζs(p) e

ip·x

ζs(p, q
s) ≡ ζm1...ms(p) q

m1 ...qms , pij = pi · pj, p2
i = 0

s-channel:

Aexch = − ig
2

p2
12

∑
s′

`2s
′+s−2

(s′−1)!(s+s′−1)!
(p2

12)s
′
Ts′(

p213−p223
p212

) ζs(p4, p
s
3)

Ts(z) = 1
2

[
(z +

√
z2 − 1)s + (z −

√
z2 − 1)s

]
Aexch = −2ig2

p2
12

[
Fs(z+) + Fs(z−)

]
ζs(p4, p

s
3)

Fs(z) = z2−s[Is(z)− Js(z)
]
, z± = `(

√
p2

13±
√
p2

12 + p2
13)

add t and u channels, apply δζm1...ms(p) = p(m1εm2...ms)



1/p2 poles go away in the variation

δAexch = −2sg2
[
Fs(z+) + Fs(z−)

]
εs−1(p4, p

s−1
3 ) + ...

cancel this against variation of contribution of 0-0-0-s vertex

∑s/2
k=0 Vsk(p1, p2, p3)φ0(p1)(p2·∂u)kφ0(p2)(p3·∂u)s−kφ0(p3) ζs(p4, u)

δAcont = sVs0(p1, p2, p3) p2
24 ζs−1(p4, p

s−1
2 ) + ...

gauge-invariance: relation of Vsk to Bessel functions in Aexch

local solution for 4-vertex exists for s = 2 and s = 4



• s = 2:
V20 = g2

p212

[
F2(z+) + F2(z−)

−1
2

[
p2

13R2(p2
13) + p2

23R2(p2
23) + p2

12R2(p2
12)
]]

Rs(x) ≡ 1
2x

[
Is(
√
−x)− Js(

√
−x)

]
is x→ 0 residue of F2(x)

V20 is regular in p2
12 → 0 limit

complete 0-0-0-2 amplitude: simpler than exchange one

A = g2
[
p2

13R2(p2
13) + p2

23R2(p2
23) + p2

12R2(p2
12)
]

×
( ζ2(p4,p23)

p212
+

ζ2(p4,p22)

p213
+

ζ2(p4,p21)

p223

)



• s = 4:
4-vertex in terms of R4 ∼ Bessels, regular at small p
complete 0-0-0-4 amplitude:

A = U(p1, p2, p3) ζ4

(
p4, (p

2
12p2−p2

13p3)4
)
− ip212

15p213
ζ4(p4, p

4
2)+...

U = ( 1
p213

+ 1
p223

)R4(p2
12) + cycle

• s > 4: no local solution appears to exist [also: Taronna 11]
• related obstruction from Weinberg’s soft theorem
starting with 5-point function
• similar conclusions from BCFW constructibility
[Benincasa, Cachazo; Benincasa, Conde; Dempster, Tsulaia]

• relax locality assumption?!



Conclusions / Open questions
• beginning to learn how to do quantum computations in
theories with infinite number of massless higher spin fields:
importance of defn of quantum theory consistent with symm
• remarkable simplifications due to large HS symmetry:
1-loop Z = 1, zero effective number of d.o.f.
• conformal HS theory:
– vanishing of one-loop conformal anomalies in bosonic theory
– vanishing of scattering amplitudes with HS exchange

as required by conformal higher spin symmetry
• explore possibility of interacting HS theory in flat space:
one motivation: simplified version of HS theory in AdS

loop corrections should be simple or vanish?
• problems with gauge invariance starting with 4-vertex:

relax locality assumption?


