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Why Higher Spins?

e massive HS fields in string theory

may become massless in “tensionless” limit
interacting massless HS theory in flat space ?

e massless HS theory in AdS:
important role in (vectorial) AdS/CFT
e closely related “shadow”: conformal higher spin theory

e infinite dimensional HS symmetry:
implications for S-matrix? trivial?
(ctf. Coleman-Mandula, Weinberg’s soft theorem)



Consistent HS theories:

e massless HS theory in AdS,q:

2-derivative (unitary) but non-flat vac

dual to free CFTy: e.g. scalar in vector rep of U(N)
S-matrix 1s “simple”:

reproduces correlators of currents in free CFT

e conformal higher spin theory (CHS):
higher derivatives (non-unitary) but flat vacuum
closely related to AdS/CFT

S-matrix 1s “trivial”’: constrained by HS symmetry



e massless higher spin (MHS) theory 1n flat space:

existence of interacting theory presently unclear
S-matrix should be trivial to comply with

large gauge/global symmetry?

locality of 4-point and higher terms in action?

limit of AdS HS theory?

Aim: study simple amplitudes in CHS and MHS
and implications of HS symmetry



Free massless HS theory 1n flat space

e collection of free massless spins s = 0,1,2,3, ..., 00
gauge-invariance 0Dy ..ms = Omy Ema...ms)

Fronsdal action S = [d* ¢™ " buy .+ ..

e massless vector, graviton, etc.: for s > 0 have 2 d.o.f. in 4d
e “trivial” theory: total no. of d.o.f. =0

1+ 2=1+2(0)=0
s=1

e free massless spin s partition function:

8_ / )2 11/2 2
ZMHS,S — [dZZ?AleJ_]l = [degcdgfsﬁeti)s—Q] - (\/detl(—<92))

A, = —0? on symmetric rank s traceless tensor



Total partition function: [Beccaria, AT 15]

ZMHS = HZMHSS

s=0
B { 1 }1/2{ det Ag }1/2{detA1Lr/2{detAQL}lm _1
B det AO det Al_l_ det AZJ_ det ABL e =

e cancellation of physical spin s det and ghost det for spin s+ 1
reflects hidden simplicity due to large gauge symmetry

e oo product 1s a priort ambiguous: requires regularization

that should be consistent with underlying symmetry

e (-func. reg. is equiv to cancellation of factors in £

[cf. (-func. reg. of vac energy in string theory

consistent with symmetries — massless vector in d = 26 |



Lesson: theories of co number of fields:

require specific definition at quantum level

maintain symmetries — regularization or defn of ) 0 °

[cf. ambiguities in defn of string field theory may be fixed by
corresp with underlying 1-st quantised w-sheet formulation]



Conformal higher spin theory

e generalization of Maxwell (s = 1) and Weyl (s = 2) theories:
F2 ~ 92,

C? 1~ haO%hy + O*hahahy + 0*hohohoho + ...
dimensionless coupling

differential + algebraic (Weyl) gauge symmetry

Ohs = O€s—1 + 1 052

can gauge-fix h, to be transverse and traceless

e totally symmetric h,,, ., describes pure spin s states off shell
has maximal gauge symm consistent with locality

at expense of higher-deriv kin terms (non-unitary)
[Fradkin, AT 85; AT 02; Segal 02]

S, = fd4a: heP,0%*h,
P, ~ (0" — 872’?" )® — transv. traceless projector
e CHS field h, hasdim A =2 — s




Interacting theory: conformally invariant in flat space
number of derivatives in vertices fixed by dimension

S, =k [ d' (hsa%hs L geitertes 2 poh

_|_as1+32+33+84—4h81h82 th h34 4 )

interacting action consistent with symmetries: induced theory

Some properties of free theory indicating hidden simplicity:
e free partition function ( A; = —9?%)

Zons.s = {(det As—1)s+1} 1/2 _ SU {det AkL} 1/2

(det Ay)®

_ - ~rdet Ag11/27(det Aq)271/21 (det Ag)*q1/2
Zcus = HZCHS,S = {detAJ [(detAQ)J {(detAg)?’}

s=1



no naive cancellation but if define as counting effective d.o.1.

Zenss = (Zo) = (det Ag) ™%, vy=s(s+1)=2,6,...
Zens = | [(Zo) = (Zo)* Viot = ¥ Vs
s=0 s=0

fin.

regularization : Z f(s) — Z f(s) o—€(s+3)
s=0 s=0

then ot = Y ., Vs = 0 or (Zcnus)iot = 1 as in MHS case
e same regularization is implied by relation

of massless HS in AdS;,1 and CHS at the boundary

e 1-100p Zcps(S*) in same regularization is again =1
consistent with relation to MHS part. funct. in AdS5
[Giombi et al 13; AT 13; Beccaria, Bekaert, AT 14]



e regularization consistent with symmetries of CHS theory:
vanishing of conformal anomaly [Giombi,Klebanov; AT 13]

T" = —aR*R* + ¢ C?
ay = 14y, + 3)
Cs — Qg = 720V3(15V — 4bv, +4) | vs = S(s+ 1)

7%)5(

. . (st
e sums to 0 in same regularization y oo f(s) e~ <(*2)] .

©@,

Z(cs—as):(), ZaS:

s=1 s=1

e total c- and a- anomaly vanish: 1-loop quantum consistency
e novel mechanism of UV finiteness:
summation of oo number of bosonic fields (cf. string theory)



CHS as “induced” theory

consider free U (V) complex scalar CFT

[ d%z 30,

e cxists tower of on-shell conserved traceless HS currents
Js = O Js P; ~ @ja(ml...ams)d% + ...

e implies existence of infinite tower of conserved charges:
symmetries of free equation 9*® = 0 — HS symmetry
(conf Killing tensors) [Eastwood, Vasiliev]

e generating functional for correlators of currents:

add hJ; and integrate out ®,

F[h]:Nlogdet(—(?Q%—Zhsjs), Js ~ 0°

e source fields h, are CHS fields
CHS: gauge th of symm of Laplace eq (cf. Poincare — diffs)



h, are gauge fields for symm of free scalar theory:

5hm1---m3 — 6<m15m2...m3) T N(mims Xmg-m,)

generalizing diffs and Weyl symmetry of Weyl gravity

have dim A = 2 — s, i.e. “shadow” counterparts

of dim s + 2 currents J, 1in scalar CFT

e vectorial AdS/CFT:

J, dual to massless HS fields in Ad.S;,1

I"|h] should follow from Vasiliev-type theory in AdS ;1

upon integrating over AdS,,; fields ¢, with Dirichlet b.c.
T = [ [dgexp (— NS[g))

Pslgagg="hs
e ['|A] is non-local and does not have CHS symmetries but
its logarithmically UV divergent part 1s local and invariant



e natural defn of CHS action as “induced” [AT 02; Segal 02]

. AR =0+ Tk

Scas ~ logdet A(h)

log €

or Schg ~ tr e—€A(h)

e—0, fin
e familiar low-spin case in manifestly covariant form (d = 4)

L=\/gg™Dp®* D, d+(LR+h))D*®, D, = d,+iA,

related to 0®*0P + h,D* 7, P by redefs
ho = hy + A, A™ + LR, etc.
coeff of log UV divergence — from standard Seeley coeft:

SO+1‘|‘2 f d4$\/_(h/2 éFerrm Omnkl)

set gmn = Nmn + . . and extract cubic, quartic, etc. couplings
then can compute CHS scattering amplitudes: 1111, 2222, etc.



Strategy:

e compute quadratic, cubic, quartic CHS couplings directly
from UV singular part of corresponding scalar 1-loop diagrams
e use them to compute tree-level CHS 4-point scattering amps
e they turn out to be zero after non-trivial summation

over all spin s CHS intermediate states

e this appears to be a consequence of CHS global symmetry

e this may serve as a lesson for attempts to understand

what may happen in 2-derivative MHS theory in flat space

First 1llustrate this on simplest example:
scattering of external scalars via exchange of
tower of CHS fields



Scalar scattering via conformal HS exchange
[Joung, Nakach, AT 15]

external scalar scattering via exchange of tower of CHS fields

S[®, h] = /d% (©*0%® + i he Jo(®)] + S[h]

s=0

Shl =k / he P,0% hy + O(h?)
s=0

e )y coupled to ®*®; h, to 19*0, P + c.c.; by, to T, etc.

e /1, exchange with propagator ~ pés and p° 1n the vertices:

scale invariance, no dimensional parameters






Four-scalar tree-level scattering amplitude
t-channel amplitude

0@

AW (s t,u) = /{_IF(:_—E) , F(z) = Z(s + 1) Ps(2)

s=0

s, t, u are Mandelstam variables: s+t—+u =20

P,(z) — Legendre polynomial

e amplitude is scale-invariant: depends on ratios s, t, u
e summing over spins: natural cutoff prescription

Doao f(8) = > 02o f(8) e—eletaa) ,  Qd = %

e—0, fin

F(z)=0(z—1)

same found using gen function for Legendre polynomials
e surprising result: amplitude is o-function in phase space



Total amplitude:
o PP — OP: t-channel plus u-channel

Ass oo = K" [5(3) + 5(3) }

in c.o.m. frame p; + po = 0 = P53 + Py

scattering angle: * = —(sin? g)_l, 2 = —(cos? g)_l

arguments of delta-functions never vanish for real 6

Avsp0e = 0

o PO — D P™:
Ao oo = 5[ 0(4)+6(%) | = 55-[5(cot? §) —d(cos? §) |
t-channel and s-channel contributions cancel each other

Apor sppr = 0



e individual spin s exchange contributions are nontrivial
but total amplitude =0 in particular summation prescription
e large underlying symmetry constrains the S-matrix:

Ase = 01s implied by the global symmetry of CHS theory
(ctf. integrability / hidden conserved charges in 2d theories)

Global CHS symmetry :

e global part of CHS gauge symmetry:

symmetry of scalar Laplace eq (conformal Killing tensors)
conformal generators plus other higher spin generators

e in particular, “hyper-translations”

00 =¢, - P& =¢e""0,..0,9
e this fixes amplitude to be

Acpcp_>q>q>(5, t, U) — /ﬁ (t, U) 5(5) -+ kQ(S, U) 5(1:) + kg(t, S) 5(U)



e use also invariance under dilatations p — yp
Asoaa(¥’s, 7 t, 7 u) = Asoaa(s,t, u)

e solution consistent with crossing and scaling symmetry
Ao saa(s,t,u) =0

e regularization of the sum over s in which

tree-level scalar amplitude vanishes

1s thus consistent with underlying CHS symmetry



CHS tree level scattering  [Beccaria, Nakach, AT]

1. first find 2-, 3- and 4-point vertices in CHS action

from UV pole part of scalar loop integrals with J; insertions
2. compute resulting CHS scatt amps 1-1-1-1, 2-2-2-2, etc.

coupling of external CHS fields to complex scalar

L=-0,9"0"® + Z Ju(s) i) | Ju(s) = S
s=0
i85 93 s k’
Tu (@) = G 2 () () Gy (@)
k=0
Gl (@) = (9= )09+ )R (w) &* ()|
J:cpcp*, J,=%(0,2P* — 9,D%),

Jw =15 | — 9,0, D* — ©9,0,2* + 2 (9,9 9,9* + 9,0 9,P*)]



Induced CHS action
S — f d4£IZ ( ZS h3823h5 T ZSi asl+82+33_2h31 hSQ h53

1 ZSi as1+82—|—83—|—84—4h81hs2h83h84 —+ )

e kinetic term:

/ dk  N(k,p)..
21m)4 k2 (k 4 p)?

1 = -1 UV pole part (for TT field h):

4 S S
S = (2i+1 /d  hyus) U P



e cubic vertex: from pole part of

h(-p;-p,)

k k+p,;+p,
h(p,) . h(p,)

k+p,

for example: 1-1-s

o dk\ 4 ku(k+p1)v(k+p1+p2),(s)
Viwp(s) = J (%) k? (k+p1)?(k+p1+p2)?

% part

S3(1,1,5) = (5—2:2)! J d*x [ap(smuh“hp(b’) — 2Ry, 0" Dp(s—1) hyy hP7Y
_ %3p(s—2)ghuhvhwp(8_2) _ gﬁp(S_Q)h“Dh”h

= NI R By )|

prp(s—2)



e.g. 1-1-2 is same as in Maxwell [ d'z \/g g"’g*" F,,\F,,
So(1,1,2) = & [ 'z |0,hy DhHhe” — 20,h,, 0% by, h”
£ 21 O g+ ONW O R By

e quartic vertex:
e.g. 4-vector contact term from pole part of diagram

w

o p

= [ d*xz(h,h*)? combining into [ d*z(hy — $h,h*)?
contribution to 1-1-1-1 scattering cancels against iy exchange
e similar (more complicated) for 2-2-s and 2-2-2-2 vertices, etc.



CHS “S-matrix”

e s — ] case 1s standard vector but for s > 2

higher-derivative 0°° kinetic term: non-unitary theory

e formal definition of “S-matrix”: amputated Green’s functions
with special asymptotic states attached

equivalent to: S = S(hqass(hin)) = Ash? + Ashd + ...

53 _ B .
oh hclass N 07 hCIaSS - hin —|_ O(hIZn)7 82 hin — O

o s = 2: 9" Weyl graviton with 6 d.o.f.

1 171 1
pt € [F - p2—i—e}e—>0
linearized Bach eqs 0,,,0x Ry, + ... = 0 solved in particular

by R,,, = 0: choose standard helicity =2 graviton

as special asymptotic states

e same for s > 2: use CHS vertices and internal propagators
but standard massless spin s polarizations as asymptotic states



CHS 4-particle tree level amplitude
helicities (A1, A2, A3, A\4) and s, t,u (p7 = O for ext legs)
exchange diagrams

4-vector scattering
spin s exchange: two 1-1-s vertices and TT spin s propagator

1
Vaﬁp(s) <p7 Q) — I Nap [% Pp(s) + % Qp(s)]
(s +2)!

— INap1PBPps - - -Pps T 3MBp1qaPps - - - Pps — 3M8p1qalps - - - dos + 3Nap1PBps - - - dos

- %namnﬁpz Pp3z - -Pps P 4 — %77040177592 dps -+ -4ps P - Q}



e s = 2 exchange (Weyl graviton)
same as 4-vector amplitude in conformal sugra F'* 4 C?
only MHV non-zero ( ++++, +++-,... =0)

A AP AP AP

5 s
+ o+ 0 | 2%
T 48 t2 | 48 u?

5 u’ 5 u’
NI 0
TTE 8 | 8

e s = 4 exchange:

propagator (P! =

a] ooz 28_1(28+ 1)' (a « « o)
Dig) 55, (P) = () [P 8, L85 Fos Pay)

B gp(alagp(6152paspg4)) + 3_?1’) P(a1a2Pa3a4)P(ﬁ152P53ﬁ4)}



again only MHYV are non-zero:

A AWM AW AW
2 2 2 2 2 3
++ 7 0 s“(28s* +42st+ 15t%) | s°(28s” +42su+ 15u”)
80 t4 S0 ut
ey | W80T £ 425u+155%) [ w7 (280" +42tu + 15u7)
Tt 80 s4 K0 t4 0

e General structure of spin s exchange 1111 amplitudes (# 0)

AP (£ £FF) = ea(3) P (§>, AP (& £ FF) = e (2) Pu(3),
A EFFH = (5 P(), A EFFE) = co(5) Pu()
Cs = 2(3—1)3&9:431) (s+2)
P,(z) =22 P (2£2), s—2order s =2,4,6,...

P (z) are Jacobi polynomials, i.e.

S s+j) _s—j S— .
Po() = Y1) oo o o ~ 27 2 F (2 — 5,5+ 3,5, — 1)




Sum over spins
total + + —— amplitude: t- plus u-channel

AW = [(§)Po(D) + (3) Ps(3)]
define x = t/s
A (z) = o4(z) + 0,(—1 — ), os(x) = csx™° Py(x)

use generating function for Jacobi polynomials Ps(i’g )

00
ZI—S PS(I') Zs—2 _ 12 16

o L \/22_22(9;‘{‘2) _|_1<\/22_2z(»’;+2)_|_1_z_|_1>4
0. @) oo
o(x) = Z os(x) = lin} cs x5 Py(x) 2572
zZ—

2,4,6,... s=2,4,6,...
=+ |—-2z+2(x+1)xlog(:+1)—1).



summed over s amplitude 1s zero as in scalar scattering case

Y AV(z)=o(x)+o(-1-2)=0

$s=2,4,06,...

Generalize to s > 1 external states
Why Jacobi polynomials? cf. partial wave expansion in terms
of intermediate angular mom J states [Jacob, Wick 1959]

A>\1 A2;A3, )\4( ) f{>\ }( ) Z(‘] T %)Fg\)}( ) P(|)\+M| 4 _MD(COS (9)
J

A=A — o, p=X—N\, M =max(|\,|u|
F33(0) = (cos )™ (sin )N = (— gyl ()2

e identification of .J-th partial wave with contribution of
exchange of intermediate spin .J field (Lorentz invariance)



e scale invariance controls how I depends on s
e.g., for dim 1 external particles Fg\)}(s) = const

e general prediction for Jacob-Wick coefficient for scattering
of CHS fields of dim A; = 2 — |\;| (no dim## 0 parameters!)

)

{Ai}(s) — & [J—max(AL|u]! | r—9 _ %Ef:l A,

= B Trmm(N ]!

Special cases (J = s):
e External scalar scattering ®®* — ¢d*: )\, =0, A; =1

Aopoo(s.0) = > (s+ HF PLY(cos0)
s=0,2,...

)

same as s-channel exchange from Lagrangian with F(()S = const



o 1_|_1_|_ — 1_|_1_|_
t-channel (cosf = —1—-232)
. _ s 4,0
Aryiy(0) = (sing)™ Z (s + %)Fil;#r P (cos 0)

s=2.4,...

agrees with Lagrangian result and ng + = 1) (51+1) =)

o 2_|_2_|_ — 2_|_2_|_
t-channel ++ — ++4 or + + —— MHYV (s-channel vanishes)
4

Acpirs(6.6) = = D7 (s +HFOE PEY(cos )

t4
$=4,6,...

explicit computation gives for full (t- plus u- channel) amplitude
A = e, [(3)7 () + ()77 Pu()]

t S

.82 (8,0) r+2 9 2s+1
PS(I) =4 PS—4 (_) ? Cs = 33 (s—3)(5—2)(s—1)s(s+1)(s+2)(s+3)(s+4)




® Sum OVer Spins:

oo oo
o(x) = Z os(x) = lirq co TP (z) 271
$=4,6,8,... “ $=4,6,8,...

= L [60(x+1)°2% log (L +1)—602° —1502* —1102° — 152>+ 32 — 1]

total amplitude vanishes: t- and u- channels cancel
olx)+o(—-1—2)=0
e still to add contribution of s = 0, 2 exchanges + 2222 vertex

AO,S _ i AO,t _ £2 u4 AO,u _ t4 u2
+4i++ T 184327 +4i++ T 204827 +4i++ T 204827

A2 _ 465462 A2 _u?(25* 1055 t+335% 2245343 %)
++++ T T 92160 i+t T 30720 s%

A2 2 (2571053 u+33s2u2—24 50343 ut)
T+ 30720 s

Acontact _ s —55 t426 5% t2+63 53 t3454 2 442755496

Tt 7680 s4



non-trivial cancellation (similarly for all other helicity choices)
AO,S_|_AO,t_|_A0,u_|_A2,s_|_A2,t_|_A2,u_|_Acontact — 0

thus full 2222 amplitude vanishes as it did in 1111 case

e same cancellation checked for 1122 amplitude:

expressed in terms of Ps(ﬁ’j ) (=1 — 2%) in s-channel and

Pﬁ;‘f ) (=1 — 2%) in t-channel in agreement with J-W;

exchanges cancel against 1122 contact term
e similar considerations should apply for ss — ss amplitude
e conjecture: full CHS S-matrix 1s trivial

e this should follow from underlying global CHS symmetry
as 1n external scalar scattering case



CHS symmetries
define h(x,u) = h

H1 K
/J/]_.”lu/su ...u s

F(,u) % g, u) = f(u,u) 3 OPm0ud) g(g y)

(), g(@,u)] = 2f (2, 1) cos[i(Dy - By — Dy - 02))] g, u)
{f(a:,u),g(x,u)} — 2f(:1:,u) Sin[%(ﬁx Oy — Oy - a:c)] g(x,u)

diff and algebraic symm of scalar-CHS system [Segal 02]
Och(z,u) = (u-0,)e(x,u) — L [h(z,u), e(z,u)]

2

Ooh(xz,u) = (u2 — 103 a(z,u) — L {h(z,u), a(z,u)}
Ocria®(z) = €7 2% % (e(z,u) + ia(z, u)) P(z)]

r=x', u=0

6h = 80h + 5WMh: §9h, ~ Oe,_1 + nas_o gauge symmetry
global symmetry from 6!"'h ~ € Oh + Oe h + ... for special ¢



spin s field transforms in terms of s’ < s fields

O Re ~ Dk :(kin!ep#(k)au(k)ho + %Eu(k)au(k)hp}
1

5£1] hPo ~ Zk :(kim!epaﬂ(k)@ﬂ(k)ho + (kil)!eu(k)(pﬁu(l{)ha) 4+ meﬂ(k)a,u(k)hpa}

special choice of global symmetry parameters:
constraints on amplitudes as in external scalar scattering case

higher spin global symmetries — higher spin conserved charges
— triviality of S-matrix (cf. Coleman-Mandula)



Massless HS theory 1n flat space

e 2-derivative unitary free theory 1s known but

1s there a consistent (gauge-invariant, local) interacting theory?
e which is underlying symmetry?

e expect HS symmetry — oo tower of HS conserved charges
hidden simplicity? fixing S-matrix uniquely?

S-matrix 1s “trivial”’? non-trivial only for special momenta?
UV finiteness?

e “flat limit” of Vasiliev’s theory in AdS?

leading Regge trajectory “truncation’ of

o/ — oo limit of flat-space string?



Interacting massless higher spins in flat d > 4 space:

o free theory [ d*z 0ps0¢s, dps = Des 1

e interacting theory? various s > 2 “no-go theorems”

no minimal interactions — no long-range forces [Weinberg]

e consistent theory may still exist 1f contains
(1) infinite tower of spins s = 0,1,2, 3, ..., 00
(1) higher derivative (non-minimal) cubic interactions

0" Ps, Vs, Psss S22+ 53— 851 <N Sa+53+51 (51X 52<53)
e.g. 2-2-2 vertex has 0%, 0°
[l.c: Bengtsson, Bengtsson, Brink; Metsaev;
cov: Manvelyan, Mkrtchyan, Ruhl; Sagnotti, Taronna; Joung]
e Noecther procedure: deform 0, = de,_1 + ..., add 4-vertex,...
should fix 3-point coupling consts



L 6814—824—83—1
Ysis2ss = Y (s1+s2+s3—1)!
e two parameters: g= dimensionless and /= length

% / A2 37 00,006,431 6,, 00,0, + Y 20 G

l.c. gauge: [Metsaev]

— ¢° terms: two covariant structures 91752753 gnd 92351

— ¢* remains to be fixed (local?)

— effectively non-local theory: no. 0 grows with s and n of ¢
e motivation to study:

possible relation to AdS theory (UV limit, loops, etc.)

e despite 0" vertices and scale ¢ theory may be UV finite

[in particular summation prescription; cf. string and CHS]



Free higher spin action
symmetric higher spin tensors

Gs(T, 1) = ™% () Ugy - - - Uqg,

Fronsdal action
Sp] = 3 / A"z [ps(,0.) TF ¢s(x,0)],_,

T = 1—+u?02, F=02—(uwd,)D, D= (8,-0,)—
off-shell field ¢, double-traceless
(00)"¢s(z,u) =0
gauge transformations
03 ¢s(w,u) = (u - Oy )esa(w, u)

de Donder gauge: 0""¢q,.q. + ... =10
equations of motion Hops(x,u) =0

(u'aﬂ:)a@%

1
2



e scattering of spin O particles:
need cubic interaction vertices with s; = 0, s9, S3
traceless-transverse part of cubic vertex (&Eij = 0, — c?xj)

S(3> [¢Oa QbSQ, gbss] —0J0s9s3 /ddl’ [(auz | 83331)82 (8u3 ) 5)51312)83

X G0(21) By (72, 1)y (35, 43)], g

T; =X

5 P¢?(u, u') — traceless in d — 2
1

( u2u/2) STS (\/%)

_ s s/2] (=1)*(s—k—1)! §—
Ti(z) = 3 l[céO] ( k)!(s(—%)! ) (22)7*

— %{(er V22— 1) + (2 — V22 — 1)8}
T = Chebyshev polynomial of first kind

propagator: D%(u,u’; p) = —
ind = 4: P2 (u,u') =

(s1)?




Tree-level 4-scalar scattering amplitude [Ponomarev, AT 16]
e exchange of tower of higher spin fields

[Bekaert, Joung, Mourad 09]

here real scalar i1s s = 0 member of HS tower

(1) use of explicit values of coupling constants of HS theory
(i1) add contribution of contact 4-vertex

Exchange contribution: s-channel exchange of spin s field

M = zxch(s7t7u)

Mandelstam variables (p? =p* =0, s+t+u=0)

00 . 2
Aemch — Z Azgccha Zxch(s7 t? U) — = “Joos (t - U—)S Ts(

S
s=0,2,4,...



F(z)= ) goos (5)° = 39° (£2)? [Io(£2) — Jo(¢2)]

sum over spins here 1s convergent:
non-trivial dependence on Mandelstam variables and ¢

-’Zl\e:cch(sa ta U_) — Aeazch(sa ta U_) + Aexch(ta S, 11) + Aexch(ua t7 S)

e Regge limit: t — oo, s=fixed

AN

i9° 9>, 3/4 08t
Acaen(s, £, 1) ~ ==/ t Io(0+/8t) ~ —— (P0)¥e

t 2

— —sin 4 2
S

e Fixed angle limit: s, t, u — oo, , g — — COS g

D

Agen (s, 6, 1) ~ ig?[s|>/ 1 VIO o f(6) >0



e cf. string theory: Shapiro-Virasoro amplitude 1s UV-soft

, (=1 = 2a/s)['(—1 — 3/s)['(—1 — 1a's)
A4 =49 1 1 1
L2+ 7a/5) (2 + ;a/5)['(2 + ;a's)

As— ¢?ls| 8 (sin §) S~ 5 g
h(f) = —%(sin® Llogsin® ¢ — cos? ¢ logcos® 2) > 0

4-scalar vertex contribution ?

X

e expected to be effectively “non-local” — infinite series in 0":
may “soften” large p behaviour of exchange contribution
e guess 4-scalar vertex 1n flat-space HS action from

its form 1n AdS action reconstructed using AdS/CFT



[Bekaert, Erdmenger, Ponomarev, Sleight 2015]: V — 0
SWgo] = ¢ [ d'x| ST o foe(Duss) (Orrs - ugy) ™

X %(5131)%(51?2)%($3)¢o($4)}

T;=x
A9634 = (8333 + a’m)zv awm = Uz — 85132
f2s(2) = infinite series in z, regular at z = 0: no poles
4s—2
s e Jas(2) = 2=, €25 = [(23—11)!]2

then asymptotic contribution to 4-scalar amplitude 1s
Zzio f23( ) (t — U.) = QH_S []0 (26\/ 2t + S) J() (26\/ 2t + S)}

UV as in exchange amplitude: possible cancellation?

e simplest self-energy 1-loop diagram 1s exp UV divergent
but may be made finite once 4-vertex tadole contribution 1s added?



0-0-0-s tree-level scattering amplitude

gauge-invariance constraints on higher-spin vertices:
impose linearized gauge invariance on on-shell amplitude
more efficient than off-shell Lagrangian approach

Conditions:

e linearized gauge invariance 0@, m, ~ O(m, €mg...m,)
of full amplitude Ay = Aexen + Acont

e locality of 4-point vertex Voo, (no 1/p? poles)

Strategy:

e solve non-trivial (“inhomogeneous™) gauge-inv cond

e add solution of “homogeneous” eq.: invariant 4-vertex

e choose minimal solution consistent with locality of 4-vertex



Example: scalar electrodynamics

L = 0G0y + i AT (§" O — GO ™) + A" A
0A,, = On€, 00 = 10¢

A(1)p(2)p(3)A(4) scattering amplitude:

Am — Cm(p)eipma p-¢=0

1 1
Aexeh = 5 C1 - Pp2Ga - p3+ —5C1 - P3Ca - P2
P12 P13

e gauge transformation in leg 1: 0(; = p1e1, 0 =0
OAcxch = (G4 p3+Ca-p2)er = =G -pr e

e can be cancelled by adding contact A™ A,,,¢* ¢ vertex
Acont — Cl ) C4 — 5Acont — P11~ C4 €1

e thus 4-point vertex can be found from condition

of linearized gauge invariance of on-shell amplitude



0-0-0-s exchange amplitude: [Roiban, AT]
0-0-s" and 0-s'-s vertices in de Donder gauge: ¢, — (,(p) e?*

Cs(P:q°) = Gnyooms (P) 4™ ¢, Pij = Pi - Py, pg = 0
s-channel:

Zg 258’ ' 4+s5—2 /
Acxch = p Z 61 l(:_|_8/_1 p12)s TS’(%) CS(p4 p3)
12 o

Ti(z) = 3[(z + V22 = 1) + (z = V2> = 1)°]

2ig” s
AeXCh — _pT [FS(Z—I—) + FS(Z—)] CS(leapS)
12

Fy(z) = 2% [IS(Z) - JS(Z)} ; At = 5(\/]?3:& \/p%Q ‘I'p%?))

add t and u channels, apply 0(p;,..m. (p) = Pimi1 €ma...ms)



1/p? poles go away in the variation
0Aexeh = —259° | Fy(24) + Fo(22)] e 1(pa,p5 ™) + -

cancel this against variation of contribution of 0-0-0-s vertex

Zk 0 sk(lh p27p3)¢0(p1)<p2 )050(2?2)(2?3 )S kgbo(p:&) Cs(p4, )
5Acont — S%O(plap%p?)) pgél Cs—l(psz;_l) -+ ...

gauge-invariance: relation of V,; to Bessel functions in A..p

local solution for 4-vertex exists fors =2 and s =4



o s —=2:
2
‘/20 — Z% [F2(2+) —+ FQ(Z_)

_% [p%SRQ (p%g) + pgng (pgg) =+ p%zRQ (p%Q)H

Ry(x) = 5; [L(vV=1) = J(V=2)]

is x — 0 residue of I3 (x)

V4o is regular in p7, — 0 limit
complete 0-0-0-2 amplitude: simpler than exchange one

A = ¢*|pisRa(pls) + p33Ra(p33) + piaRo(pls)]
X (M 4 C2(pa,p3) 4 C2(p4,p%))

5 5 5
P12 P13 P23



o s =4:
4-vertex 1n terms of R4 ~ Bessels, regular at small p
complete 0-0-0-4 amplitude:

i 2
A= U(phpz,ps) @ (p4a (p%ﬂb —p%3p3)4) — 1512%3 C4(p4,p§l)+...

U= (5 + ;) Ru(ply) + cycle

e s > 4: no local solution appears to exist [also: Taronna 11]
e related obstruction from Weinberg’s soft theorem

starting with 5-point function

e similar conclusions from BCFW constructibility
[Benincasa, Cachazo; Benincasa, Conde; Dempster, Tsulaia]

e relax locality assumption?!



Conclusions / Open questions
e beginning to learn how to do quantum computations in
theories with infinite number of massless higher spin fields:
importance of defn of quantum theory consistent with symm
e remarkable simplifications due to large HS symmetry:
1-loop Z = 1, zero effective number of d.o.f.
e conformal HS theory:
— vanishing of one-loop conformal anomalies in bosonic theory
— vanishing of scattering amplitudes with HS exchange
as required by conformal higher spin symmetry

e explore possibility of interacting HS theory 1n flat space:
one motivation: simplified version of HS theory in AdS

loop corrections should be simple or vanish?
e problems with gauge invariance starting with 4-vertex:

relax locality assumption?



