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Higgs 
hadroproduction

Complicated final states  
with many legs for  

signals and even more  
legs for background  

 processes

Weak boson fusion Associated with top-pair 



Higgs 
hadroproduction

2 to 1 processes,  
opportunity for multi-loop 
calculations and higher  

precision. 
Associated with W or Z 

Gluon fusion



Perturbative QCD
difficulty

pert. orderLO
NLO

NNLO

NNNLO

final state 
partons

difficulty
NLO

2

3

4

5

most/all 
problems 

solved

many 
problems 

solved

many  
problems 
unsolved

⇠ 30%

⇠ 10%

⇠ 4%

SOLV
ED

work 
on co

mputat
ional 

 

effi
cie

ncy
 an

d phys
ics

� = �0↵
n
s + �1↵

n+1
s + �2↵

n+2
s + . . .



In this talk

Motivation for high precision determination 
of the gluon-fusion cross-section 

Techniques for a 2->1 computation through 
N3LO. Status of the computation.  

Results on the inclusive Higgs cross-section  

Challenges for sifferential cross-sections at 
N3LO.



How many Higgs 
bosons at the LHC?

Important test of the Standard 
Model Higgs sector  

Theoretical input needed for Higgs 
coupling extractions 

Precise measurements



N3LO will have a very 
important impact in Higgs 
coupling measurements

16 4 Higgs Boson Properties

fusion and via vector-boson fusion production [30–32]. The dimuon events can be observed as
a narrow resonance over a falling background distribution. The shape of the background can
be parametrized and fitted together with a signal model. Assuming the current performance of
the CMS detector, we confirm these studies and estimate a measurement of the hµµ coupling
with a precision of 8%, statistically limited in 3000 fb�1.
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Figure 12: Estimated precision on the measurements of ��, �W , �Z, �g, �b, �t and ��. The pro-
jections assume

�
s = 14 TeV and an integrated dataset of 300 fb�1 (left) and 3000 fb�1 (right).

The projections are obtained with the two uncertainty scenarios described in the text.
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Figure 13: Estimated precision on the signal strengths (left) and coupling modifiers (right).
The projections assuming

�
s = 14 TeV, an integrated dataset of 3000 fb�1 and Scenario 1 are

compared with a projection neglecting theoretical uncertainties.

4.5 Spin-parity

Besides testing Higgs couplings, it is important to determine the spin and quantum numbers
of the new particle as accurately as possible. The full case study has been presented by CMS
with the example of separation of the SM Higgs boson model and the pseudoscalar (0�) [7].
Studies on the prospects of measuring CP-mixing of the Higgs boson are presented using the
H! ZZ� ! 4l channel. The decay amplitude for a spin-zero boson defined as

A(H ! ZZ) = v�1
�

a1m2
Z��

1��
2 + a2 f �(1)

µ� f �(2),µ� + a3 f �(1)
µ� f̃ �(2),µ�

�
. (2)

Figure 5: A CMS projection from Ref. [71] on the uncertainty of the Higgs coupling
measurements at the end of the LHC physics program with collisions at 14 TeV and
3000fb�1 integrated luminosity. Two scenaria are compared, one (green lines) where the
theoretical uncertainties for the gluon-fusion cross-section remain as in the current Higgs
Cross-Section Woking Group recommendations [72, 73, 74] and one where the theoretical
uncertainties (including pdfs) have been eliminated from the gluon-fusion cross-section.

will constitute an important step towards a more ambitious future goal for a complete
automatisation of the computation of QCD amplitudes beyond one-loop.

The main physics results of our project will be presented in two publications:

3. a publication with analytic expressions for the master integrals and the mixed
QCD/EWK corrections to the matrix elements as well as the numerical evaluation
of their size.

4. a publication with updated predictions for the LHC Higgs boson gluon fusion pro-
duction cross-section and incorporation of the mixed QCD/EWK corrections in the
ihixs code.

The impact of the physics results publications will be multiple. The analytic expres-
sions for the master integrals will be useful for other calculations in perturbative QCD
( for example, they form a subset of the master integrals for top-pair production) while
their analytic structure will be of value in identifying underlying mathematical structures
in perturbation theory. Naturally, the greatest impact of our results will be in Higgs
phenomenology by eliminating what is currently (after our computation of Ref. [17]) the
largest source of uncertainty in the gluon-fusion cross-section. The theoretical uncertainty

14



NNLO 
Convergence through 
NNLO is slow… 

but acceptable with a 
judicious scale choice 
(mu=mh/2).  

O(10%) scale uncertainty 

Indications that 
corrections beyond NNLO 
are small from some 
flavours of resummation, 
but…

1. Introduction

Experiments at the Large Hadron Collider have made an impressive progress in the search

for the Higgs boson during 2011. In the Standard Model, only a small window of Higgs

boson masses is in agreement with LHC [1,2], Tevatron [3] and LEP [4] data. The search

for the Higgs boson will resume shortly in 2012. A discovery or exclusion of a Standard

Model Higgs is eminent, provided of course that the theoretical prediction is solid and

that the LHC machine and experiments perform as anticipated. In 2012, proton-proton

collisions at the LHC will have a new center of mass energy of 8 TeV.

The purpose of this article is to provide numerical results for the inclusive gluon fusion

Higgs boson cross-section at 8 TeV. We obtain state of the art predictions for the inclu-

sive gluon fusion cross section and its uncertainties with our publicly available computer

program iHixs [5]. iHixs evaluates the contribution to the cross-section in NNLO QCD

and includes important electroweak effects. A detailed description of the theoretical con-

tributions [6–20] which are incorporated and accounted for in iHixs can be found in the

corresponding publication [5].

In Section 2 we study the convergence of the perturbative QCD corrections. In Sec-

tion 3 we study the sensitivity of the cross-section on parton densities. In Section 4 we

study the effect of the Higgs width. In Section 6 we present our numerical values for the

cross-section and its uncertainties.

2. Perturbative convergence and scale uncertainties
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Figure 1: Scale dependence of the gluon fusion cross-section at LO, NLO, and NNLO for mH =
125GeV (left panel) and mH = 450GeV (right panel). The perturbative series converges faster for
scale choices smaller than Higgs boson mass.

The perturbative convergence of the Higgs boson cross-section has been studied thor-

oughly during the last decade. We find a similar convergence pattern at the new LHC

energy of 8TeV as for 7TeV and 14TeV. For illustration, we present in Figure 2 the

behavior of the cross-section at 8TeV by varying the renormalization and factorization

– 1 –
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…and estimates 
beyond

some estimates of 
beyond NNLO 
corrections were 
large.  

N3LO necessary not 
only to reduce 
scale variation 

but to also prove 
the validity of 
perturbation theory

Subgroup activity up to 
January meeting

Benchmarked re-summation contributions and different 
approximations to the N3LO inclusive cross section within 
the EFT approach. 
Submitted a review of the benchmark process to the 
steering committee.  

from S. Forte’s talk at the 9th workshop, Jan ‘15 HXSWG-2015



From NNLO to N3LO
going one order higher in 
perturbation theory is a big challenge 

NNLO has been a big challenge on its 
own, not very far in the past… 

…strategy and division of the 
problem is crucial!



A natural division

IR+UV

P (1)
gg

✏
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From NNLO to N3LO

learn from the experience at NNLO 
and do a “soft expansion” for the 
partonic cross-sections first

with



From NNLO to N3LO
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From NNLO to N3LO
Wilson coefficient 

Three-loop splitting functions 

Collinear and UV  
counterterms 

Triple virtual  

Soft expansion for triple real 

Exact (real-virtual)^2 

Exact real-virtual-virtual 

Soft expansion real-real-virtual 

Expansion using the 
differential equation method 

Exact quark channels 

Exact real-real-virtual
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What is now known for 
the N3LO correction
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What is now known for 
the N3LO correction



Why now?

Since the NNLO computations in 2002 a lot has 
changed.  

Could this computation had happened earlier?  

Some techniques and ideas have been present 
for quite some time now 

but, recent progress in the field of loop 
computations and new ideas were also 
crucial.   



Old and new 
Reverse unitarity: map phase space integrals on loop 
integrals with Cutkosky rules:  
 
 
 

 expand around the threshold limit:  
“Cutkosky rules can be differentiated with respect to 
masses and kinematic parameters” 
 
 
 



Old and new 

Laporta algorithm: Gauss 
elimination of  linearly dependent 
integrals and reduction of 
amplitudes to master integrals.  

New implementation of the algorithm 
with great efficiency optimisations.  
 



Old and new 
Dimensional shifts, Mellin-Barnes, multi-
dimensional integrations, polylogarithms 

New criteria to chose the order of integrations 

Clever representations of phase-space 
integrals 

From Mellin-Barnes to Euler type 
representations 

Symbol/coproduct and algebraic techniques 
for iterative integrations 



Old and new 
Differential equations method 

Finding Henn canonical forms 

Strategy of regions to determine 
boundary conditions 

Expansion of differential equations 
around the threshold limit turning 
their solution into an algebraic 
problem



How tough of a 
problem?

Two orders of magnitude more 
Feynman diagrams than NNLO 

1028  N3LO master integrals (27 at 
NNLO) 

72 boundary conditions for the N3LO 
master integrals (5 at NNLO) 



From NNLO to N3LOScale variation

carefully analyse the residual uncertainty associated to all of these contributions. In this

way we obtain the most precise theoretical prediction for the Higgs production cross section

available to date.

We conclude this section by summarizing, for later convenience, the default numerical

values of the input parameters used in our numerical studies, as well as concrete choices

for PDFs and quark mass schemes. In particular, we investigate three di↵erent setups,

which are summarized in Tab. 1–3. Note that we use NNLO PDFs even when we refer

to lower order terms of the cross section, unless stated otherwise. The values for the

quark masses used are in accordance with the recommendations of the Higgs Cross Section

Working Group [82], wherein the top quark mass was selected to facilitate comparisons

with existing experimental analyses at LHC, Run 11.

Table 1: Setup 1

p
S 13TeV

mh 125GeV
PDF PDF4LHC15 nnlo 100

as(mZ) 0.118
mt(mt) 162.7 (MS)
mb(mb) 4.18 (MS)

mc(3GeV ) 0.986 (MS)
µ = µR = µF 62.5 (= mh/2)

Table 2: Setup 2

p
S 13TeV

mh 125GeV
PDF PDF4LHC15 nnlo 100

as(mZ) 0.118
mt 172.5 (OS)
mb 4.92 (OS)
mc 1.67 (OS)

µ = µR = µF 62.5 (= mh/2)

Table 3: Setup 3

p
S 13TeV

mh 125GeV
PDF abm12lhc 5 nnlo

as(mZ) 0.113
mt(mt) 162.7 (MS)
mb(mb) 4.18 (MS)

mc(3GeV ) 0.986 (MS)
µ = µR = µF 62.5 (= mh/2)

3. The cross-section through N3LO in the infinite top-quark limit

3.1 The partonic cross section at N3LO in the heavy-top limit

In this section we discuss the contribution �̂ij,EFT in eq. (2.4) from the e↵ective theory

where the top quark is infinitely heavy. This contribution can be expanded into a pertur-

bative series in the strong coupling constant,

�̂ij,EFT

z
=

⇡ |C|2
8V

1X

n=0

⌘(n)ij (z) ans , (3.1)

where V ⌘ N2
c � 1 is the number of adjoint SU(Nc) colours, as ⌘ ↵s/⇡ denotes the strong

coupling constant evaluated at a scale µ and C is the Wilson coe�cient introduced in

eq. (2.5), which admits itself a perturbative expansion in the strong coupling [17, 18, 19],

C = a2s

1X

n=0

Cn a
n
s . (3.2)

Here both the coe�cients Cn and the strong coupling are functions of a common scale µ.

At LO in as only the gluon-gluon initial state contributes, and we have

⌘(0)ij (z) = �ig �jg �(1� z) . (3.3)

1Note that the current world average mOS
t = 173.2 is within the recommended uncertainty of 1GeV

from the proposed mOS
t = 172.5 that we use here.

– 6 –
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Figure 8: The dependence of the cross-section on a common renormalization and factorization
scale µ = µF = µR.

�scale
EFT,k

LO (k = 0) ±14.8%

NLO (k = 1) ±16.6%

NNLO (k = 2) ±8.8%

N3LO (k = 3) ±1.9%

Table 5: Scale variation of the cross-section as defined in eq. (3.11) for a common renormalization
and factorization scale µ = µF = µR.

the treatment of both infrared and ultraviolet singularities. For a physical process such

as inclusive Higgs production, where one cannot identify very disparate physical scales,

large separations between the renormalization from the factorization scale entail the risk

of introducing unnecessarily large logarithms. In Fig. 8 we present the dependence of the

cross-section on a common renormalization and factorization scale µ = µR = µF . Through

N3LO, the behaviour is very close to the scale-variation pattern observed when varying

only the renormalization scale with the factorization scale held fixed. More precisely, using

the same quantifier as introduced in eq. (3.11) for the variation of the renormalization scale

only, the variation of the cross-section in the range [mH/4,mH ] for the common scale µ

is shown in Tab. 5. We observe that the scale variation with µR = µF is slightly reduced

compared to varying only the renormalization scale at NLO and NNLO, and this di↵erence

becomes indeed imperceptible at N3LO.

The scale variation is the main tool for estimating the theoretical uncertainty of a

cross-section in perturbative QCD, and it has been successfully applied to a multitude of

– 16 –

N3LO result is very precise and  
within the NNLO scale variation.



Composition of the inclusive 
cross-section

N3LO QCD for infinite Mtop limit 

Finite quark-mass corrections at  
- NLO exact  
 
- NNLO 1/mtop expansion 

Two-loop electroweak corrections 

Mixed QCD-electroweak corrections

CA, Duhr, Dulat, Furlan, Gehrmann, Herzog,  
Lazopoulos, Mistlberger

Dawson; Djouadi, Gtaudenz, Spira, Zerwas;  
Harlander, Kant; CA,Beerli, Bucherer, Daleo,  
Kunszt; Bonciani, Degrassi, Vicini 

Harlander, Mantler, Marzani, Ozeren;  
Pak, Rogal, Steinhauser

CA, Boughezal, Petriello 

Actis, Passarino, Sturm, Uccirati;  
Aglietti, Bonciani, Degrassi, Vicini

Higgs production cross-section at higher orders. In this section we combine all these e↵ects,

and as a result we are able to present the most precise prediction for the gluon-fusion cross-

section available to date. In particular (for the Setup 1 of Tab. ??) for a Higgs boson with

a mass mH = 125 GeV, the cross-section at the LHC with a center-of-mass energy of 13

TeV is

� = 48.58 pb+2.22 pb (+4.56%)
�3.27 pb (�6.72%) (theory)± 1.56 pb (3.20%) (PDF+↵s) . (8.1)

Equation (??) is one of the main results of our work. In the following, we will analyze it

in some detail.

Let us start by commenting on the central value of the prediction (??). Since eq. (??)

is the combination of all the e↵ects considered in previous sections, it is interesting to see

how the final prediction is built up from the di↵erent contributions. The breakdown of the

di↵erent e↵ects is:

48.58 pb = 16.00 pb (+32.9%) (LO, rEFT)

+20.84 pb (+42.9%) (NLO, rEFT)

� 2.05 pb (�4.2%) ((t, b, c), exact NLO)

+ 9.56 pb (+19.7%) (NNLO, rEFT)

+ 0.34 pb (+0.7%) (NNLO, 1/mt)

+ 2.40 pb (+4.9%) (EW, QCD-EW)

+ 1.49 pb (+3.1%) (N3LO, rEFT)

(8.2)

where we denote by rEFT the contributions in the large-mt limit, rescaled by the ratio RLO

of the exact LO cross-section by the cross-section in the EFT (see Section ??). All the

numbers in eq. (??) have been obtained by setting the renormalization and factorization

scales equal to mH/2 and using the same set of parton densities at all perturbative orders.

Specifically, the first line, (LO, rEFT), is the cross-section at LO taking into account only

the top quark. The second line, (NLO, rEFT) are the NLO corrections to the LO cross-

section in the rescaled EFT, and the third line, ((t, b, c), exact NLO), is the correction

that needs to be added to the first two lines in order to obtain the exact QCD cross-section

through NLO, including the full dependence on top, bottom and charm quark masses.

The fourth and fifth lines contain the NNLO QCD corrections to the NLO cross-section

in the rescaled EFT: (NNLO, rEFT) denotes the NNLO corrections in the EFT rescaled

by RLO, and (NNLO, 1/mt) contains subleading corrections in the top mass at NNLO

computed as an expansion in 1/mt. The sixth line, (EW, QCD-EW), contains the two-

loop electroweak corrections, computed exactly, and three-loop mixed QCD-electroweak

corrections, computed in an e↵ective theory approach. The last line, (N3LO, rEFT), is

the main addition of our work and contains the N3LO corrections to the NNLO rEFT

cross-section, rescaled by RLO. Resummation e↵ects, within the resummation frameworks

studied in Section ??, contribute at the per mille level for our choice of the central scale,

µ = mH/2, and are therefore neglected.

Next, let us analyze the uncertainties quoted in our cross-section prediction. We

present our result in eq. (??) with two uncertainties which we describe in the following. The

– 38 –



Theoretical Uncertainties

Next, let us analyze the uncertainties quoted in our cross-section prediction. We

present our result in eq. (8.1) with two uncertainties which we describe in the following. The

first uncertainty in eq. (8.1) is the theory uncertainty related to missing corrections in the

perturbative description of the cross-section. Just like for the central value, it is interesting

to look at the breakdown of how the di↵erent e↵ects build up the final number. Collecting

all the uncertainties described in previous sections, we find the following components:

�(scale) �(trunc) �(PDF-TH) �(EW) �(t, b, c) �(1/mt)

+0.10 pb
�1.15 pb ±0.18 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb

+0.21%
�2.37% ±0.37% ±1.16% ±1% ±0.83% ±1%

In the previous table, �(scale) and �(trunc) denote the scale and truncation uncertainties

on the rEFT cross-section, and �(PDF-TH) denotes the uncertainty on the cross-section

prediction due to our ignorance of N3LO parton densities, cf. Section 3. �(EW), �(t, b, c)

and �(1/mt) denote the uncertainties on the cross-section due to missing quark-mass e↵ects

at NNLO and mixed QCD-EW corrections. The first uncertainty in eq. (8.1) is then

obtained by adding linearly all these e↵ects. The parametric uncertainty due to the mass

values of the top, bottom and charm quarks is at the per mille level, and hence completely

negligible. We note that including into our prediction resummation e↵ects in the schemes

that we have studied in Section 4 would lead to a very small scale variation, which we

believe unrealistic and which we do not expect to capture the uncertainty due to missing

higher-order corrections at N4LO and beyond. Based on this observation, as well as on the

fact that the definition of the resummation scheme may su↵er from large ambiguities, we

prefer a prudent approach and we adopt to adhere to fixed-order perturbation theory as

an estimator of remaining theoretical uncertainty from QCD.

The second uncertainty in eq. (8.1) is the PDF+↵s uncertainty due to the determina-

tion of the parton distribution functions and the strong coupling constant, following the

PDF4LHC recommendation. When studying the correlations with other uncertainties in

Monte-Carlo simulations, it is often necessary to separate the PDF and ↵s uncertainties:

�(PDF) �(↵s)

±0.90 pb +1.27pb
�1.25pb

±1.86% +2.61%
�2.58%

Since the �(↵s) error is asymmetric, in the combination presented in eq. (8.1) we conser-

vatively add in quadrature the largest of the two errors to the PDF error.

As pointed out in Section 7, the PDF4LHC uncertainty estimate quoted above does

not cover the cross-section value as predicted by the ABM12 set of parton distribution func-

tions. For comparison we quote here the corresponding cross-section value and PDF+↵s

– 39 –

Small uncertainties O(1% - 2%)…but quite a few of them 

missing N3LO pdfs 

missing exactly computed mixed QCD+EWK 

missing N3LO partonic cross-sections in  
closed functional form 

missing top-bottom interference effects at NNLO



From NNLO to N3LO
uncertainty with the ABM12 set8:

�ABM12 = 45.07 pb+2.00 pb (+4.43%)
�2.88 pb (�6.39%) (theory)± 0.52 pb (1.17%) (PDF+↵s) . (8.3)

The significantly lower central value is mostly due to the smaller value of ↵s, which

however is also smaller than the world average.

It is also interesting to compare our prediction (8.1) to the value one would have

obtained without the knowledge of the N3LO corrections in the rEFT. We find

�NNLO = 47.02 pb +5.13 pb (10.9%)
�5.17 pb (11.0%) (theory)

+1.48 pb
�1.46 pb

(3.14%)
(3.11%) (PDF+↵s) . (8.4)

The central value in eq. (8.4) is obtained by summing all terms in eq. (8.2) except for

the term in the last line. Moreover, we do not include the uncertainties �(PDF-TH)

and �(trunc) from missing higher orders in the extraction of the parton densities and

from the truncation of the threshold expansion (because the NNLO cross-sections are

known in a closed analytic form). The scale variation uncertainty �(scale) at NNLO is

approximately five times larger than at N3LO. This explains the reduction by a factor

of two in the total �(theory) uncertainty by including the N3LO corrections presented in

this publication. We stress at this point that uncertainties on the NNLO cross-section

have been investigated by di↵erent groups in the past, yielding a variety of uncertainty

estimates at NNLO [46, 51, 52, 100, 119, 120, 121, 122]. Here we adopt exactly the same

prescription to estimate the uncertainty at NNLO and at N3LO, and we do not only rely

on scale variation for the NNLO uncertainty estimate, as was often done in the past.

Finally, we have also studied how our predictions change as we vary the center-of-mass

energy and the value of the Higgs mass. Our predictions for di↵erent values of the proton-

proton collision energy and a Higgs mass of mH = 125 GeV are summarized in Tab. 10.

In comparison to the o�cial recommendation of the LHC Higgs Cross-section Working

Group earlier than our work [48], our results have a larger central value by about 11%.

The di↵erence can be attributed to the choice of optimal renormalization and factorization

scale, the e↵ect of the N3LO corrections, the di↵erent sets of parton distribution functions

and value of ↵s as well as smaller di↵erences due to the treatment of finite quark-mass

e↵ects. In comparison to the earlier recommendation from some of the authors in ref. [120],

our result has a central value which is higher by 3.5%. The di↵erence can be attributed to

the e↵ect of the N3LO corrections, the di↵erent sets of parton distribution functions and

value of ↵s as well as smaller di↵erences due to the treatment of finite quark-mass e↵ects.

Additional cross-section predictions for a variety of collider energies and Higgs boson

masses can be found in Appendix E.

9. Conclusion

In this paper we have presented the most precise prediction for the Higgs boson gluon-

fusion cross-section at the LHC. In order to achieve this task, we have combined all known

8We use the abm11 5 as nlo and abm11 5 as nnlo set to estimate the �(PDF-TH): these sets are fits

with a fixed value of ↵s which allows us to compare NLO and NNLO grids for the same ↵s value. Using

this prescription �(PDF-TH)= 1.1% very similar to the corresponding uncertainty for the set.
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8. Recommendation for the LHC

In previous sections we have considered various e↵ects that contribute to the gluon-fusion

Higgs production cross-section at higher orders. In this section we combine all these e↵ects,

and as a result we are able to present the most precise prediction for the gluon-fusion cross-

section available to date. In particular (for the Setup 1 of Tab. 1) for a Higgs boson with

a mass mH = 125 GeV, the cross-section at the LHC with a center-of-mass energy of 13

TeV is

� = 48.58 pb+2.22 pb (+4.56%)
�3.27 pb (�6.72%) (theory)± 1.56 pb (3.20%) (PDF+↵s) . (8.1)

Equation (8.1) is one of the main results of our work. In the following, we will analyze it

in some detail.

Let us start by commenting on the central value of the prediction (8.1). Since eq. (8.1)

is the combination of all the e↵ects considered in previous sections, it is interesting to see

how the final prediction is built up from the di↵erent contributions. The breakdown of the

di↵erent e↵ects is:

48.58 pb = 16.00 pb (+32.9%) (LO, rEFT)

+20.84 pb (+42.9%) (NLO, rEFT)

� 2.05 pb (�4.2%) ((t, b, c), exact NLO)

+ 9.56 pb (+19.7%) (NNLO, rEFT)

+ 0.34 pb (+0.2%) (NNLO, 1/mt)

+ 2.40 pb (+4.9%) (EW, QCD-EW)

+ 1.49 pb (+3.1%) (N3LO, rEFT)

(8.2)

where we denote by rEFT the contributions in the large-mt limit, rescaled by the ratio

RLO of the exact LO cross-section by the cross-section in the EFT (see Section 5). All the

numbers in eq. (8.2) have been obtained by setting the renormalization and factorization

scales equal to mH/2 and using the same set of parton densities at all perturbative orders.

Specifically, the first line, (LO, rEFT), is the cross-section at LO taking into account only

the top quark. The second line, (NLO, rEFT) are the NLO corrections to the LO cross-

section in the rescaled EFT, and the third line, ((t, b, c), exact NLO), is the correction

that needs to be added to the first two lines in order to obtain the exact QCD cross-section

through NLO, including the full dependence on top, bottom and charm quark masses.

The fourth and fifth lines contain the NNLO QCD corrections to the NLO cross-section

in the rescaled EFT: (NNLO, rEFT) denotes the NNLO corrections in the EFT rescaled

by RLO, and (NNLO, 1/mt) contains subleading corrections in the top mass at NNLO

computed as an expansion in 1/mt. The sixth line, (EW, QCD-EW), contains the two-

loop electroweak corrections, computed exactly, and three-loop mixed QCD-electroweak

corrections, computed in an e↵ective theory approach. The last line, (N3LO, rEFT), is

the main addition of our work and contains the N3LO corrections to the NNLO rEFT

cross-section, rescaled by RLO. Resummation e↵ects, within the resummation frameworks

studied in Section 4, contribute at the per mille level for our choice of the central scale,

µ = mH/2, and are therefore neglected.
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A doubling of the “theory” precision…



Differential cross-
sections

in collaboration with Simone Lionetti, Bernhard 
Mistlberger, Andrea Pelloni, Caterina Specchia 



from inclusive to 
differential

Experiments impose cuts and reject many of 
the Higgs signal events.   

The inclusive cross-section is an idealized 
observable.  

It is important to predict with high accuracy 
differential distributions.  

Ideally, we would like a fully differential 
Higgs cross-section calculation at N3LO. 



from inclusive to 
differential…challenges

Inclusive = Integral over differential, but 

An one-scale problem (Higgs mass) 
becomes a multi scale problem (…energies 
and angles of all particles) with 
complicated infrared divergence structure.  

Integration variables are physically 
measured quantities. We are not allowed to 
“integrate them out”



Integral with an overlapping singularity when the 
``physical’’ variables x,y->1. 

 J(x,y) is a phase-space selection function. Need the 
answer for any J(x,y) 

Non-linear mappings or sector decomposition or other 
subtraction methods can be used to calculate the 
singular part analytically and the remainder 
numerically  

 These techniques have not been extended or used at 
such a high perturbative order as N3LO….  
  

Z 1

0

dxdy

(2� x� y)a
J(x, y)



=

Z i1

�i1

dw1dw2

(2⇡i)2
�(�w1)

1 + w1

�(�w2)

1 + w2
2�a�w1�w2

For the inclusive cross-section calculation, there are 
additional techniques, which integrate out the original 
phase-space. 

Z 1

0

dxdy

(2� x� y)a

Reverse-unitarity 

Feynman parameters 

Differential equations 

Mellin-Barnes

We must now 
live without them!}



from inclusive to 
differential…challenges

The inclusive cross-section has been 
computed as series in a threshold 
expansion. 

A complicated technique…relies on reverse 
unitarity, strategy of regions and crucially 
on the differential equations method.  

Especially challenging to extend it to a 
more differential computation:



Assume delta -> 0, the expansion parameter 

Inclusively, there is only one “region”:  x,y ~ delta 

Let’s now be differential in x

Z 1

0
dxdy

x

✏
y

✏

(� + x+ y)a

x

✏

Z 1

0
dy

y

✏

(� + x+ y)a

We now have more “regions”, accounting for all  
possible hierarchies of x and delta. 



Momentum conservation is important for the 
cancelation of infrared divergences.  In a threshold 
expansion, this cancelation happens order by order.  

But, generic experimental observables in the selection 
function J(ph,…) cannot be defined analytically, as an 
order by order threshold expansion 

Cancelation of poles needs to be numerical, but also 
incomplete…hard to control that the correctness of the 
computation.   

�(ph + g1 + g2 + . . .� p1 � p2)J(ph, g1, g2, . . .)

small



Higgs differntial, 
radiation inclusive

As a first step, we can be differential only on the 
components of the Higgs momentum:

1. General setup

We consider the di↵erential partonic cross-sections for the production of a Higgs boson in

gluon fusion. It can be cast in the form:

�̂ij =
X

f

Z
dPSij!fJ (ph)Mij!f (1.1)

where i, j denote the initial state partons and we sum over all final states consisiting of

the Higgs boson anf f = 0..x partons with x being the perturbative order. The function

J (pH) is an arbitrary “jet” function of the Higgs momentum which serves to define the

experimental observable and Mij!f is the appropriate matrix elements (with all averaging

and summation of degrees of freedom implicit).

We can write the Higgs momentum in the jet function as

ph =
(p1 + p2) · ph

2p1 · p2
(p1+p2)�

(p1 � p2) · ph
2p1 · p2

(p1�p2)+

s
(2p1 · ph)(2p1 · ph)� p

2
h(2p1 · p2)

2p1 · p2
p̂T

(1.2)

with p̂

2
T = �1.

We can decompose the phase-space as follows

�̂ij =
X

f

Z
dQ

2
dWd

D
phd

d
g

⇥ �

D(g + ph � p1 � p2)J (ph)�(p
2
h �m

2
h)�(Q

2 � g

2)�(W � ph · (p1 � p2))

⇥Fij!f

�
W,Q

2
,m

2
h, s

�
(1.3)

where

Fij!f

�
W,Q

2
,m

2
h, s

�
=

Z "
fY

k=0

d

D
gk�

(+)(g2k)

#
�(g �

fX

k=0

gi)Mij!k (1.4)

We can rewrite

�̂ij =
X

f

Z
dQ

2
dW

23�2✏
s

1�✏
d⌦d�2J (ph)

�
�3(m

2
h, s,Q

2)�W

2
��✏Fij!f

�
W,Q

2
,m

2
h, s

�
(1.5)

where D = 4� 2✏, s ⌘ (p1 + p2)
2 and

�3(a, b, c) ⌘ a

2 + b

2 + c

2 � 2ab� 2ac� 2bc. (1.6)

The Higgs momentum in the argument of the jet-function (Eq. 1.2) can also be cast

in terms of the W,Q

2
, s,m

2
h invariants as follows:

ph =
s+m

2
h �Q

2

2s
(p1 + p2)�

W

2s
(p1 � p2) +

q
�3(m2

h, s,Q
2)�W

2

2
p
s

p̂T (1.7)

The sum or the final-state parton momenta is:

g =
s+Q

2 �m

2
h

2s
(p1 + p2) +

W

2s
(p1 � p2)�

q
�3(m2

h, s,Q
2)�W

2

2
p
s

p̂T (1.8)
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Treat numerically the Higgs phase-space and analytically  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Test case: double real 
radiation at NNLO

M0(p1, p2) =

p2

p1

p2

p1

, M1(p1, p2) =

p2

p1

p2

p1
,

M2(p1, p2) = , M3(p1, p2) = ,

M4(p1, p2) = , M5(p1, p2) =

where the dashed line stands for cut propagators and the double line represents the Higgs
together with the two constraining delta functions of eq. (10). We correspondently define

�̄(p2
h

� z) := �(p2
h

� z) �(2p
h

(p1 � p2)�W ) �((p1 + p1 � p
h

)2 �Q2). (11)

Since all the delta functions present in �̄(p2
h

� z) are independent of the gluon momenta, it is
convenient to separate the integrations over g1 and g2 from the one over p

h

. This can be done by
introducing an integral identity over the collective real radiation g = g1+g2, so that the integrals

M
i

=

Z
dDp

h

dDg1d
Dg2

(2⇡)2D�3
�̄(p2

h

� z)�(D)(p1 + p2 � g12 � p
h

)�(g21)�(g
2
2)Fi

(p1, p2, g1, g2)

become

M
i

=

Z
dDp

h

dDg

(2⇡)2D�3
�̄(p2

h

� z)�(D)(p1 + p2 � g � p
h

)⇥

⇥
Z

dDg1�(g
2
1)�((g1 � g)2)F

i

(p1, p2, g1, g1 � g)

where F
i

(p1, p2, g1, g2) contains all the propagators that appear in the i-th master integral, with
F0(p1, p2, g1, g2) = 1. The integral over the gluon momentum g1 is then a function of all the
possible Lorentz invariants

V
i

(p1 g, p2 g ; s, z, Q
2,W ) :=

Z
dDg1�(g

2
1)�((g1 � g)2)F

i

(p1, p2, g1, g1 � g).

2

 very few especially simple master 
integrals….



Amazing simplicity 
at NNLO

All master integrals can be written in terms of a single  
Appel hypergeometric function:

where we defined
ā := 1� a, a0 :=

a

a� 1
.

The first term in the numerator starts at order ✏2 , while the two following terms are of order
✏. Because of the overall factor of (�2✏) in front of the integral, we can keep just the last three
terms of the numerator and write:

F1(1,�✏,�✏, 1� 2✏, x, y) =(�2✏)x̄✏ȳ✏
Z 1

0

dt
(1� tx0)✏ + (1� ty0)✏ � 1

t1+2✏
+O(✏3)

=x̄✏ȳ✏ [ 2F1(�✏,�✏, 1� 2✏, x0) + 2F1(�✏,�✏, 1� 2✏, y0)� 1] +O(✏3)

= [x̄✏

2F1(1,�✏, 1� 2✏, y) + ȳ✏ 2F1(1,�✏, 1� 2✏, x)� x̄✏ȳ✏)] +O(✏3)

This can be easily expanded to:

F1(1,�✏,�✏, 1� 2✏, x, y) = 1 + ✏(log(1� x) + log(1� y))

� ✏2
✓
2Li2(x) + 2Li2(y) +

1

2
(log(1� x)� log(1� y))2

◆
+O(✏3).

2 Masters List

Here we list the master integrals together with their complete arguments.

M1 =C1 ·M0 2F1(1, 1, 1� ✏, X1) (24a)

M2 =C2 ·M0 F1 (1,�✏,�✏, 1� 2✏, X2, Y2)

=C2 ·M0

⇥
X̄2

✏

2F1(1,�✏; 1� 2✏;Y2) + Ȳ2
✏

2F1(1,�✏; 1� 2✏;X2)� X̄2
✏

Ȳ2
✏

⇤
+O(✏2)

(24b)

M2 =C2 ·M0 F1 (1,�✏,�✏, 1� 2✏, X3, Y3)

=C2 ·M0

⇥
X̄3

✏

2F1(1,�✏; 1� 2✏;Y3) + Ȳ3
✏

2F1(1,�✏; 1� 2✏;X3)� X̄3
✏

Ȳ3
✏

⇤
+O(✏2)

(24c)

M4 =C4 ·M0 2F1(1, 1; 1� ✏;X4) (24d)

M5 =C5 ·M0 2F1(1, 1� ✏; 2� 2✏;X5) (24e)

5

Originates from a single type of angular integrations which fits  
all 

Could be more general than 2 ->1 processes… 

Unclear if similarly simple results hold at N3LO…
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Conclusions/
Outlook

First N3LO computation for a hadron collider 
process  

Results to the most precise determination of the 
Higgs and a BSM CP-even scalar.  

Further improvements can come with further 
cutting edge calculations: exact quark mass 
dependence at NLO, exact EWK-QCD corrections, 
more NNLO and N3LO processes for PDF fits 

Tempting next theoretical challenge: can we do 
differential distributions?



Extra slides

Επιπλέον Υλικό



Factorisation of the 
Wilson coefficient

Excellent agreement between expanding the  
product  and expanding the factors separately

channel is getting cancelled in the total cross-section. This behaviour can be qualitatively

understood from the fact that a change in the factorization scale modifies the resolution on

quark-gluon splitting processes, therefore turning quarks into gluons and vice versa. We

remark that this feature is not captured by approximate predictions of the cross-section

based on the soft-approximations, which only include the gluon-gluon channel.

To summarize, we have identified in this section two sources of uncertainty for the

N3LO cross-section in the limit of infinite top mass. We observe that the dependence on

the factorization scale is flat over wide ranges of values of µF , and the scale variation is

dominated by the µR variation. Moreover, we see that the inclusion of the quark-gluon

channel plays an important role in stabilizing the scale dependence at N3LO. Our scale

variation estimate of the uncertainty is 1.9% (according to our prescription in eq. (3.11)).

We believe that at this order in perturbation theory this uncertainty gives a reliable esti-

mate of missing higher-order corrections from N4LO and beyond. In the next section we

give further support to this claim by analyzing the e↵ect of various resummations beyond

N3LO.

4. Corrections at N4LO and beyond in the infinite top-quark limit

In the previous section we have argued that the scale variation at N3LO gives a reliable

estimate for the missing higher-order corrections to the hadronic gluon-fusion cross-section.

In this section we corroborate this claim by investigating various other sources of terms

beyond N3LO. We check that, if we restrict the analysis to the natural choice of scales from

the interval [mH/4,mH ], the phenomenological e↵ect of these terms is always captured by

the scale variation at N3LO. We start by investigating higher-order terms generated by

using an alternative prescription to include the Wilson coe�cient C into a perturbative

computation, and we turn to the study of higher-order e↵ects due to resummation in

subsequent sections. We note at this point that the e↵ect of missing higher-order terms

beyond N3LO was already investigated in ref. [56] by analysing the numerical impact of the

leading N4LO threshold logarithms [56, 98, 99]. The conclusions of ref. [56] are consistent

with the findings in this section.

4.1 Factorization of the Wilson coe�cient

The (partonic) cross-section in the e↵ective theory is obtained by multiplying (the square

of) the Wilson coe�cient by the perturbative expansion of the coe�cient functions ⌘ij ,

see eq. (3.1). As the Wilson coe�cient itself admits a perturbative expansion, eq. (3.2),

eq. (3.1) takes the following form up to N3LO in perturbation theory,

�̂ij,EFT

z
= �0 |1 + . . .+ a3s C3 +O(a4s)|2

X

i,j

(1 + . . .+ a3s ⌘
(3)
ij (z) +O(a4s)) , (4.1)

where �0 denotes the Born cross-section. Conventionally in fixed-order perturbation theory

through N3LO, one only includes corrections up to O(a5s) from the product in eq. (4.1) and

drops all terms of higher order (the Born cross-section is proportional to a2s). This is also

the approach adopted in Section 3, where consistently only terms up to O(a5s) had been
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Figure 10: Scale variation with µ = µR = µF at N3LO within Setup 1 (solid line), compared to
the factorized form of the cross-section where the Wilson coe�cient and the coe�cient functions
are separately truncated to O(a5s) (dashed line).

where we suppressed the dependence of the PDFs and the partonic cross-sections on the

scales. The Mellin transform is invertible, and its inverse is given by

�(⌧) =
X

ij

Z c+i1

c�i1

dN

2⇡i
⌧1�N fi(N) fj(N) �̂ij(N) , (4.5)

where the contour of integration is chosen such that it lies to the right of all possible

singularities of the Mellin moments in the complex N plane.

From the definition of the Mellin transform it is apparent that the limit z ! 1 of the

partonic cross-sections corresponds to the limit N ! 1 of the Mellin moments of �̂ij(N).

In the limit N ! 1 the partonic cross-section in Mellin space can be written as [37]

�̂ij(N) = �ig �jg �̂res(N) +O
✓

1

N

◆

= �ig �jg a
2
s �0

"
1 +

1X

n=1

ans

2nX

m=0

�̂n,m logmN

#
+O

✓
1

N

◆
,

(4.6)

where �0 denotes the LO cross-section in the large-mt limit and �̂res(N) is related to

the Mellin transform of the soft-virtual cross-section. The constant and logarithmically-
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Resummation (I)
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Figure 12: Scale variation with µ = µR = µF of the N3LO+N3LL cross-section within Setup 1
for di↵erent resummation schemes. The fixed-order cross-sections are shown for comparison.

All these schemes are formally equivalent resummation schemes, because they agree in

the large-N limit. However, the formally subleading corrections can have a significant

numerical impact. In Fig. 12 we show the cross-section predictions for the four di↵erent

resummation schemes discussed in this section. We observe that within our preferred range

of scales, µ 2 [mH/4,mH ], all four schemes considered in this paper give results that agree

within the fixed-order scale variation at N3LO, giving further support to our claim that the

scale variation at N3LO provides a reliable estimate of the remaining missing perturbative

orders. We note, however, that outside this range of scales the di↵erent prescriptions may

di↵er widely, and we know of no compelling argument why any one of these schemes should

be more correct or reliable than the others. Based on these two observations, we are led to

conclude that threshold resummation does not modify our result beyond its nominal theory

error interval over the fixed-order N3LO prediction when the scales are chosen in the range

[mH/4,mH ], and we will therefore not include the e↵ects of threshold resummation in

Mellin space into our final cross-section prediction.

4.3 Threshold and ⇡2-resummation in Soft-Collinear E↵ective Theory

In this section we discuss an alternative way to represent the soft-virtual cross-section

in Higgs production, based on ideas from Soft-Collinear E↵ective Theory (SCET) [30,

31, 96, 97, 98]. Just like in the case of threshold resummation in Mellin space, we start

by introducing the necessary terminology and review the main ideas, in particular the
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Resummation (II)

SCET renormalisation group  
improvement agrees with N3LO

Soft-collinear effective theory

Figure 13: The Higgs boson production cross-section computed for the LHC using Setup 2 at
LO (green), NLO (orange), NNLO (blue), N3LO (red). Solid lines correspond to fixed-order (FO)
predictions and dashed lines to SCET predictions.

Unfortunately, not all anomalous dimensions required for the evolution of the N3LO

cross-section are known at this point. We therefore truncate all anomalous dimensions

at the maximally known order. Note that already at NNLO the unknown four-loop cusp

anomalous dimension would be required. We checked that the numerical dependence of

the result on the four-loop cusp anomalous dimension is small and insignificant for phe-

nomenological purposes.

In Fig. 13 we show the hadronic cross-section as a function of a common scale µ = µR =

µF . We observe that at lower orders there are significant di↵erences between fixed-order

and SCET-resummed cross-sections. At N3LO, the scale dependence of the resummed

cross-section is flat over a wide range of scales. The dependence of the SCET-resummed

cross-section on unphysical scales is reduced overall. This can be regarded as a means to find

an optimal central value for our prediction. Comparing fixed-order and SCET-resummed

cross-section predictions at N3LO we find perfect agreement for µ = mH/2, which supports

our preferred choice for the central scale. The upward bound of the uncertainty interval

obtained by means of scale variation is comparable to the one obtained for the fixed-order

cross-section. The lower bound of SCET-resummed cross-section scale variation interval is

well contained within the fixed-order interval.

To conclude the analysis, we also need to assess the stability of our result under a

variation of the soft, hard and top scales. We do this by varying these scales independently.

The top-quark scale µt and the hard scale µh are varied by a factor of two up and down

around their respective central values, while the soft scale is varied in the interval µs 2
[µs(mH/4,mH), µs(mH ,mH)]. The e↵ect of the variation of the hard, soft and top-quark
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PDF Uncertainties

uncertainty with the ABM12 set8:

�ABM12 = 45.07 pb+2.00 pb (+4.43%)
�2.88 pb (�6.39%) (theory)± 0.52 pb (1.17%) (PDF+↵s) . (8.3)

The significantly lower central value is mostly due to the smaller value of ↵s, which

however is also smaller than the world average.

It is also interesting to compare our prediction (8.1) to the value one would have

obtained without the knowledge of the N3LO corrections in the rEFT. We find

�NNLO = 47.02 pb +5.13 pb (10.9%)
�5.17 pb (11.0%) (theory)

+1.48 pb
�1.46 pb

(3.14%)
(3.11%) (PDF+↵s) . (8.4)

The central value in eq. (8.4) is obtained by summing all terms in eq. (8.2) except for

the term in the last line. Moreover, we do not include the uncertainties �(PDF-TH)

and �(trunc) from missing higher orders in the extraction of the parton densities and

from the truncation of the threshold expansion (because the NNLO cross-sections are

known in a closed analytic form). The scale variation uncertainty �(scale) at NNLO is

approximately five times larger than at N3LO. This explains the reduction by a factor

of two in the total �(theory) uncertainty by including the N3LO corrections presented in

this publication. We stress at this point that uncertainties on the NNLO cross-section

have been investigated by di↵erent groups in the past, yielding a variety of uncertainty

estimates at NNLO [46, 51, 52, 100, 119, 120, 121, 122]. Here we adopt exactly the same

prescription to estimate the uncertainty at NNLO and at N3LO, and we do not only rely

on scale variation for the NNLO uncertainty estimate, as was often done in the past.

Finally, we have also studied how our predictions change as we vary the center-of-mass

energy and the value of the Higgs mass. Our predictions for di↵erent values of the proton-

proton collision energy and a Higgs mass of mH = 125 GeV are summarized in Tab. 10.

In comparison to the o�cial recommendation of the LHC Higgs Cross-section Working

Group earlier than our work [48], our results have a larger central value by about 11%.

The di↵erence can be attributed to the choice of optimal renormalization and factorization

scale, the e↵ect of the N3LO corrections, the di↵erent sets of parton distribution functions

and value of ↵s as well as smaller di↵erences due to the treatment of finite quark-mass

e↵ects. In comparison to the earlier recommendation from some of the authors in ref. [120],

our result has a central value which is higher by 3.5%. The di↵erence can be attributed to

the e↵ect of the N3LO corrections, the di↵erent sets of parton distribution functions and

value of ↵s as well as smaller di↵erences due to the treatment of finite quark-mass e↵ects.

Additional cross-section predictions for a variety of collider energies and Higgs boson

masses can be found in Appendix E.

9. Conclusion

In this paper we have presented the most precise prediction for the Higgs boson gluon-

fusion cross-section at the LHC. In order to achieve this task, we have combined all known

8We use the abm11 5 as nlo and abm11 5 as nnlo set to estimate the �(PDF-TH): these sets are fits

with a fixed value of ↵s which allows us to compare NLO and NNLO grids for the same ↵s value. Using

this prescription �(PDF-TH)= 1.1% very similar to the corresponding uncertainty for the set.
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8. Recommendation for the LHC

In previous sections we have considered various e↵ects that contribute to the gluon-fusion

Higgs production cross-section at higher orders. In this section we combine all these e↵ects,

and as a result we are able to present the most precise prediction for the gluon-fusion cross-

section available to date. In particular (for the Setup 1 of Tab. 1) for a Higgs boson with

a mass mH = 125 GeV, the cross-section at the LHC with a center-of-mass energy of 13

TeV is

� = 48.58 pb+2.22 pb (+4.56%)
�3.27 pb (�6.72%) (theory)± 1.56 pb (3.20%) (PDF+↵s) . (8.1)

Equation (8.1) is one of the main results of our work. In the following, we will analyze it

in some detail.

Let us start by commenting on the central value of the prediction (8.1). Since eq. (8.1)

is the combination of all the e↵ects considered in previous sections, it is interesting to see

how the final prediction is built up from the di↵erent contributions. The breakdown of the

di↵erent e↵ects is:

48.58 pb = 16.00 pb (+32.9%) (LO, rEFT)

+20.84 pb (+42.9%) (NLO, rEFT)

� 2.05 pb (�4.2%) ((t, b, c), exact NLO)

+ 9.56 pb (+19.7%) (NNLO, rEFT)

+ 0.34 pb (+0.2%) (NNLO, 1/mt)

+ 2.40 pb (+4.9%) (EW, QCD-EW)

+ 1.49 pb (+3.1%) (N3LO, rEFT)

(8.2)

where we denote by rEFT the contributions in the large-mt limit, rescaled by the ratio

RLO of the exact LO cross-section by the cross-section in the EFT (see Section 5). All the

numbers in eq. (8.2) have been obtained by setting the renormalization and factorization

scales equal to mH/2 and using the same set of parton densities at all perturbative orders.

Specifically, the first line, (LO, rEFT), is the cross-section at LO taking into account only

the top quark. The second line, (NLO, rEFT) are the NLO corrections to the LO cross-

section in the rescaled EFT, and the third line, ((t, b, c), exact NLO), is the correction

that needs to be added to the first two lines in order to obtain the exact QCD cross-section

through NLO, including the full dependence on top, bottom and charm quark masses.

The fourth and fifth lines contain the NNLO QCD corrections to the NLO cross-section

in the rescaled EFT: (NNLO, rEFT) denotes the NNLO corrections in the EFT rescaled

by RLO, and (NNLO, 1/mt) contains subleading corrections in the top mass at NNLO

computed as an expansion in 1/mt. The sixth line, (EW, QCD-EW), contains the two-

loop electroweak corrections, computed exactly, and three-loop mixed QCD-electroweak

corrections, computed in an e↵ective theory approach. The last line, (N3LO, rEFT), is

the main addition of our work and contains the N3LO corrections to the NNLO rEFT

cross-section, rescaled by RLO. Resummation e↵ects, within the resummation frameworks

studied in Section 4, contribute at the per mille level for our choice of the central scale,

µ = mH/2, and are therefore neglected.
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Cross-section with ABM pdfs and alphas  
differs from PDF4LHC beyond the level 

of the quoted accuracy. 

Discrepancies between PDFs exist.


