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N = 0 supersymmetry
U(1) gauge symmetry
D=2+1
not (2,1)
1 << N underlying particles

emergent “particle” degrees of freedom



ANyons



In 2+1 dimensions, quantum kinematics allows new
possibilities for guantum statistics, besides bosons
and fermions. There are several informative
perspectives on this:

a. The topology of braids goes beyond
permutations.

b. Abelian angular momentum allows fractional
offset in the quantization condition.



c. Flux "tubes” are point-like, so one can have
Aharonov-Bohm type effects for particles
carrying eftective charges and fluxes. This
construction supports:

Abelian or non-abelian interactions

Mutual statistics for non-identical particles






QHE Complex

Anyons, but Not Much Action



Quasiparticles in many FQHE states are firmly predicted
to embody these new possibilities.

Sadly, direct experimental tests have proved difficult.
There is a simple and profound reason for this: electric
charge is a daunting complication. Since the anyons are
usually electrically charged:

they get pinned to impurities
they are highly unfree, in large background B field

they are subject to mutual long-range forces (1/r) that
dominate the statistical interaction (1/r?)



There may be ways to work around those
difficulties:

in appropriate FQHE states, change
quasiparticle statistics without changing their

charge

wait for SFQHE, where the quasiparticles are
often electrically neutral anyons



But here | will briefly discuss another, radically
different possibility.
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Spin Liquids



It iIs widely expected that several 2D materials
should exhibit “spin liquid” phases.

The precise detinition of “spin liquid” is somewhat
vague. Qualitative features include formation of a
gap”, high degree of entanglement, and absence
of a local order parameter.
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Several candidate spin liguids include
guasiparticles with unusual guantum statistics.
That provides, in principle, precise
characterizations and signatures for those
universality classes.

A simple, exactly soluble model leading to a phase
of this kind is the “toric code” model. It appears to
be representative of a large universality class,
plausibly realized already (see below).
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In this universality class, there are two kinds of
quasiparticles: "magnetic” M and “electric” E.
Both, of course, are electrically neutral.

M and E, separately, are both bosons. But there is
non-trivial mutual statistics. When M goes around
E, there is a - sign. As a conseqguence, the relative
orbital angular momentum is half an odd integer.
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Here I've inserted a review of topic code basics:

15



Defining the Model

e Consider a kxk square lattice with spins 1/2

(“qubits”) on each link - 2k? qubits.

e A complete set of states can be labeled by the
eigenvalues of the 07;. If we use 1> for spin up,
and |o> for spin down, they become binary arrays.

e Define operators A; associated with sites and B,
associated with plaquettes:

A; = H a;
B, = |] ot
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The yellow links can be up or down, but they must all be equal.
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More formally, in operator language:

In the absence of the magnetic pair, our closed-loop £ type operator leaves the (that is, any of the 4!) ground state
invariant:

Zloop 0} = |0}
But in the presence of the X string there is a nontrivial commutator, and we get a factor -1:

Elﬂﬂpixﬁtrlngln}] = Elnnpxﬁtringln} = _-x!-:tringglnnp {-]} = _{-x!-:tring {-]:l:l









The toric code model appears to be representative
of a robust universality class. There is numerical
evidence that it is realized for the antiferromagnetic
Heisenberg model on a Kagome lattice. There is
circumstantial evidence that it is realized
experimentally in the mineral herbertsmithite.
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Threshold Production



The angular momentum associated with a newly
opening channel has a direct, quantitative effect on
the near-threshold behavior of the production cross
section.

Centrifugal barriers thin out the wave function near
the origin, for small momentum (kb).

This can be deduced from elementary quantum

mechanics. We have also checked it, in the
relevant cases, directly numerically.
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Figure 2. Probability densities for different two-anyon systems as a
function of their relative distance r at a fixed k. The s-wave eigen-
states (I = 0) will dominate the low-energy behaviour of the spectral
function.
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Figure 3. Two particle spectral function from exact diagonalization
(ED) on a 100 x 100 square lattice for fermions with nearest neighbor
repulsion U and next-nearest neighbor repulsion V. The high energy
behavior is drastically affected by interactions, but the low-energy
linear onset is unchanged. The on-set is not exactly zero because
of the averaging involved in ED with €=0.2. The left inset com-
pares the spectral function for non-interacting bosons (b), semions
(s), fermions (f), and hard-core bosons (hcb) on a 20 x 20 lattice.
The right inset shows the corresponding density of states for bosons
and fermions.



The angular momentum associated with a newly
opening channel has a direct, quantitative effect on
the near-threshold behavior of the production cross
section. The cross-section sets in as k=L,

One can aspire to see these effects in neutron
scattering experiments.
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Measurements of this kind diagnose the quantum
statistics of anyon production channels, generally.

There are interesting complications when one
produces three anyons; there one accesses more
of the dynamics.

| expect that the threshold spectroscopy of

guantum statistics will evolve rapidly from a
demonstration into a diagnostic.
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