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N = 0 supersymmetry 

U(1) gauge symmetry 

D = 2 + 1  

not (2,1) 

1 << N underlying particles 

emergent “particle” degrees of freedom 
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Anyons



In 2+1 dimensions, quantum kinematics allows new 
possibilities for quantum statistics, besides bosons 
and fermions.  There are several informative 
perspectives on this: 

a. The topology of braids goes beyond 
permutations. 

b. Abelian angular momentum allows fractional 
offset in the quantization condition.
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c. Flux “tubes” are point-like, so one can have  
Aharonov-Bohm type effects for particles 
carrying effective charges and fluxes.  This 
construction supports:    

Abelian or non-abelian interactions 

Mutual statistics for non-identical particles
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QHE Complex
Anyons, but Not Much Action



Quasiparticles in many FQHE states are firmly predicted 
to embody these new possibilities.   

Sadly, direct experimental tests have proved difficult.  
There is a simple and profound reason for this: electric 
charge is a daunting complication.  Since the anyons are 
usually electrically charged:  

they get pinned to impurities 

they are highly unfree, in large background B field 

they are subject to mutual long-range forces (1/r) that 
dominate the statistical interaction  (1/r2) 
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There may be ways to work around those 
difficulties:    

in appropriate FQHE states, change 
quasiparticle statistics without changing their 
charge 

wait for SFQHE, where the quasiparticles are 
often electrically neutral anyons
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But here I will briefly discuss another, radically 
different possibility.   
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Spin Liquids



It is widely expected that several 2D materials 
should exhibit “spin liquid” phases.  

The precise definition of “spin liquid” is somewhat 
vague.   Qualitative features include formation of a 
gap*, high degree of entanglement, and absence 
of a local order parameter.  
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Several candidate spin liquids include 
quasiparticles with unusual quantum statistics.  
That provides, in principle, precise 
characterizations and signatures for those 
universality classes.    

A simple, exactly soluble model leading to a phase 
of this kind is the “toric code” model.   It appears to 
be representative of a large universality class, 
plausibly realized already (see below).
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In this universality class, there are two kinds of 
quasiparticles: “magnetic” M and “electric” E.   
Both, of course, are electrically neutral. 

M and E, separately, are both bosons.  But there is 
non-trivial mutual statistics.  When M goes around 
E, there is a - sign.  As a consequence, the relative 
orbital angular momentum is half an odd integer. 
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Here I’ve inserted a review of topic code basics:
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Defining the Model

• Consider a kxk square lattice with spins 1/2 
(“qubits”) on each link - 2k2 qubits. 

• A complete set of states can be labeled by the 
eigenvalues of the σz l .  If we use |1> for spin up, 
and |0> for spin down, they become binary arrays.

• Define operators As associated with sites and Bp 

associated with plaquettes: 



Lattice with periodic boundary conditions ( = torus)

B operator

A operator



• These operators all commute, because As always 
meet Bs at an even number of links.  Their 
eignvalues are ±1. 

• Define the “protected” states to be those left 
invariant (eigenvalue +1) by all the As and Bs. 
These define the allowed words of a simple code 
with remarkable properties, as we’ll see.

• The protected states are also precisely the ground 
states of the gapped Hamiltonian 



• The B = 1 equations say that the number of down 
(or up) spins on the links of any plaquette must be 
even. That condition is of course obeyed by many 
spin configurations.

• The A = 1 equations will set the coefficients of 
many such configurations equal.   To see how 
powerful those equations are, we use them to boil 
down the independent coefficients, by mapping to 
a few canonical spin configurations, whose 
coefficients will therefore determine the others.   

Finding the Protected States



• A maximal tree is a set of links that contains no 
loops, but that you can’t add to without creating a 
loop.

• By applying A operators to a state for which all 
the Bk = 1, you can set all the spins on the links of 
a maximal tree = |0> (i.e., down).  This is similar to 
gauge fixing in a gauge theory.

• In the following maximal tree, you can run along 
the top row, then act with As “from the bottom 
up” one column at a time setting spins = |0>.   
None of these actions interferes with the previous 
ones.   



A maximal tree; dotted line is periodic reflection.



• The B = 1 condition then enforces many 
additional spins down: 



Spins down red links force (B=1) spins down on the blue links too. 



• The value of the spin on the northwest link is 
enforced at other links, again through B = 1:



The green links can be up or down, but they must all be equal.



• Similarly, the value at the southeast link is 
enforced elsewhere ... 



The yellow links can be up or down, but they must all be equal.



• The sum (mod 2) of spins along a vertical or 
horizontal loop cannot be altered by acting with 
As, so there is no further reduction.   

• Thus there are four degenerate ground states.  
Each consists of a superposition of 1/4 of all 
possible solutions of the B = 0 equations, each 
taken with equal weight.   The 4 different classes 
are characterized by the sum of spins along 
vertical and horizontal loops (mod 2, of course) = 
(0,0), (0,1), (1,0), or (1,1).



• A more profound view is based on finding the 
operators that commute with the As and Bs (a.k.a. 
the centralizer).   There are two classes:

• Z-type operators, based on taking products of σz l  
around closed loops.

• X-type operators, based on taking products of σx l 

around links intersected by closed loops in the 
dual lattice.   A picture is worth ~1000 words here:





• Z operators for contractible loops are products of 
Bs.  (Just plaster the inside with plaquettes.)

• X operators for contractible loops are products of 
As.  (Plaster the inside with plaquettes of the dual 
lattice, and use sites at the centers of those 
plaquettes.)   



Electric and Magnetic 
Excitations

• Since the As and Bs commute with the 
Hamiltonian, and each other, we can diagonalize 
the Hamiltonian using their eigenstates.  

• The excitations of our model Hamiltonian have 
energy measured by the number of stars and 
plaquettes they bring from 1 to -1.   

• Due to the global constraints on the As and Bs, it 
is impossible to frustrate just one star or just one 
plaquette.   The minimum is two.



• Electric pairs can be created by open Z-type 
operators.

• No plaquettes are excited.  The excited stars 
occur for sites at the end of the string.  We say 
electric particles are at these sites.

• Since B operators move the string around, the 
connecting string can be jiggled around without 
changing the state.  Its topology does matter, 
however.   (Strings that wrap around cycles change 
the state, as we’ve seen with Z1 and Z2.)  



Electric pair with string



• Magnetic pairs can be created by open X-type 
operators.

• No stars are excited.  The excited plaquettes 
occur around the (dual) sites at the end of the 
string.  We say magnetic particles are at these 
sites.

• Since A operators move the string around, the 
connecting string can be jiggled around without 
changing the state.  Its topology does matter, 
however.   (Strings that wrap around cycles change 
the state, as we’ve seen with X1 and X2.)  



Magnetic pair with string



Mutual Anyonic Statistics

• Many-particle eigenstates, containing both 
electric and magnetic particles, can be 
constructed by plunking down multiple (non-
crossing) open strings.   The energies just add.   
Electric charges interact only by annihilating, as 
do magnetic charges.

• The topology of the string network matters, 
however.  Different topologies may define 
different states, or the same state with a different 
phase.   



• Electric strings can be pulled through one another 
(since all the σz commute) as can magnetic strings 
(since all the σx commute).   

• Interchange of electric - or magnetic - particles 
gives back the same state.  (See following Figures.) 
Thus, taken separately, they are bosons.



Two electric pairs with strings



Interchange, with p going over q

p

q



Getting back, with B operators

p

q



Reconnecting, with B operators

p

q



• But pulling an electric particle around a magnetic 
particle gives a minus sign, as a σz gets pulled 
through a σx:



The extra (orange) loop induces a  factor -1





• This behavior is unlike conventional quantum 
particle behavior.  The electric and magnetic 
particles have mutual anyon statistics.

• It is a subtle long-range quantum interaction, in a 
system with an energy gap.  



• With the schematic - Σ (A + B) Hamiltonian, the 
electric and magnetic particles at definite 
positions are exact eigenstates.  There is no 
tendency to “hop”.   With a more general 
Hamiltonian, of course, that wouldn’t necessarily 
be the case.  

Scholium



The toric code model appears to be representative 
of a robust universality class.  There is numerical 
evidence that it is realized for the antiferromagnetic 
Heisenberg model on a Kagome lattice.  There is 
circumstantial evidence that it is realized 
experimentally in the mineral herbertsmithite.   
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Threshold Production



The angular momentum associated with a newly 
opening channel has a direct, quantitative effect on 
the near-threshold behavior of the production cross 
section.    

Centrifugal barriers thin out the wave function near 
the origin, for small momentum (kL). 

This can be deduced from elementary quantum 
mechanics.   We have also checked it, in the 
relevant cases, directly numerically.      
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The angular momentum associated with a newly 
opening channel has a direct, quantitative effect on 
the near-threshold behavior of the production cross 
section.   The cross-section sets in as k2L.      

One can aspire to see these effects in neutron 
scattering experiments.
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Measurements of this kind diagnose the quantum 
statistics of anyon production channels, generally.  

There are interesting complications when one 
produces three anyons; there one accesses more 
of the dynamics.     

I expect that the threshold spectroscopy of 
quantum statistics will evolve rapidly from a 
demonstration into a diagnostic.  
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