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evaluating master integrals
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Three-loop results

[P. A. Baikov, K. G. Chetyrkin, A. V. Smirnov, V. A. Smirnov

and M. Steinhauser'09,

T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli, and

C. Studerus'10℄

Analyti
 results for the three missing 
oe�
ients

[R. N. Lee, A. V. Smirnov and V. A. Smirnov'10℄

Analyti
 results for the three-loop master integrals up to

weight 8

[R. N. Lee and V. A. Smirnov'10℄

motivated by a future four-loop 
al
ulation.
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Evaluating four-loop QCD form fa
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We apply

qgraf for the generation of Feynman amplitudes;

q2e and exp for writing down form fa
tors in terms of
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FIRE and LiteRed for the IBP redu
tion to master

integrals.

Cal
ulations in generi
 ξ-gauge for 
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= 1+
∑

n≥1

(

α0

s

4π

)
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(

µ2
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2

)(nǫ)
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(n)
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.

Our result is the fermioni
 
ontribution to F

(4)
q

in the large-N




limit.
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At most 12 indi
es 
an be positive.
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FIRE → 99 master integrals.

[J. Henn, A.&V. Smirnov'13℄: introdu
e an additional s
ale.

p

2

2

6= 0

504 master integrals

Derive (KZ) di�erential equations with respe
t to x = p

2

2

/p2
3

∂
x

f (x , ǫ) = ǫ

[

a

x

+
b

1− x

]

f (x , ǫ)

where a and b are x- and ǫ-independent 504× 504 matri
es.
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there is no singularity and it 
orresponds to propagator-type

integrals whi
h are known

[P. Baikov and K. Chetyrkin'10; R. Lee and V. Smirnov'11℄

To obtain analyti
al results for the 99 one-s
ale MI, we

perform (with the help of the HPL pa
kage [D. Ma��tre'06℄)

mat
hing at the point x = 0.
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Transporting boundary 
onditions at x = 1 to the point x = 0.

x

ǫa =
∑

j

x

jε
a

j

Results for the 99 one-s
ale MI 
an be obtained from the

`naive' part of the asymptoti
 expansion at x = 0, i.e. from

the part 
orresponding to the zero eigenvalue of the matrix a,

i.e. to j = 0.

Two alternative des
riptions of the asymptoti
 expansion:

with DE and with with expansion by regions

[M. Beneke and V. Smirnov'98℄

j = 0 
orresponds to the hard-. . . -hard region while terms with

j < 0 to other regions (soft, 
ollinear, . . . ). No positive j .
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stress-tensor multiplet).

Correlation fun
tions → both s
attering amplitudes and the

dual polygonal Wilson loops [L. F. Alday, B. Eden,

G. P. Kor
hemsky, J. Malda
ena and E. Sokat
hev'11,

B. Eden, G. P. Kor
hemsky and E. Sokat
hev℄

The 
omplexity in
reases very mu
h at higher loops.

An expli
it result for the two-loop four-point stress-tensor


orrelator

[B. Eden, C. S
hubert and E. Sokat
hev'00, M. Bian
hi,

S. Kova
s, G. Rossi and Y. S. Stanev'00℄
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Three-loop 
al
ulations [B. Eden, P. Heslop, G. P. Kor
hemsky

and E. Sokat
hev'12, J. Drummond, C. Duhr, B. Eden,

P. Heslop, J. Pennington & V. A. Smirnov'13, D. Chi
herin,

J. Drummond, P. Heslop and E. Sokat
hev'15℄

In [J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington

& V. A. Smirnov'13℄ also one four-loop integral was evaluated

(with one external vertex is 
onne
ted to the rest of this

diagram only by a single line.)

Four loops: 26 genuine four-loop integrals in the planar part of

the 
orrelator �ve of whi
h 
an be related to the ladder with

four rungs by �ip identities on subintegrals.
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Evaluating by DE:

Using 4-dimensional IBP relations?

[S. Caron-Huot & J.M. Henn'14℄

Using standard D-dimensional IBP relations?

B. Eden & V.S.: the D-dimensional way.

The goals:

To evaluate this four-dimensional four-loop integral.

To evaluate the whole set of the master integrals in D

dimensions. (The �rst example of su
h a 
al
ulation.)
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FIRE → 213 master integrals

Two variables: z

1

= z and z

2

= z̄

DE

∂

∂z
1

f = A

1

(z
1

, z
2

, ε)f ,

∂

∂z
2

f = A

2

(z
1

, z
2

, ε)f .

Constru
ting a 
anoni
al basis

We used a 
ode 
onstru
ted by Burkhard Eden.

212 of 213 elements of a 
anoni
al basis were obtained with

this 
ode.
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 behaviour of the solution of DE in the limit
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→ 0.

Thanks for Claude Duhr and Johannes Broedel for help in

manipulations with multiple polylogarithms!

If y is the expansion parameter in the limit z

1

, z
2

→ 0 then we

en
ounter the following power dependen
e

y

0, y−ε, y−2ε, y−3ε, y−4ε
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ause the 
orresponding

integrals are four-loop propagator integrals
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One 
ould 
onsider also the short-distan
e limit x
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→ 0 and

the limits z
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→ 0, z
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→ 1 and z

1

→ 1, z
2

→ 0 whi
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light-
one limits x
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1

→ 0 and x
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→ 0.

It turns out that the information about the the Eu
lidean limit

x

1

→ 0 gives su�
ient information.
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ations of the method of di�erential

equations are presented.

More new results will be obtained with this method in the

future.
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