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Gehrmann & Remiddi: a method to evaluate master integrals.
It is assumed that the problem of reduction to master integrals
is solved.

Henn: use uniform transcendental (UT) bases!

A lot of applications [J.M. Henn, A.V. Smirnov, V.A. Smirnov,
K. Melnikov, F. Caola, R. Bonciani, V. Del Duca, H. Frellesvig,
F. Moriello, M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella,
J. Schlenk, U. Schubert, L. Tancredi, T. Gehrmann, A. von
Manteuffel, E. Weihs, F. Dulat, B. Mistlberger, R. N. Lee,...]
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The old straightforward analytical strategy:

to evaluate, by some methods, every scalar Feynman integral
generated by the given graph.
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The standard modern strategy:

to derive, without calculation, and then apply IBP identities
between the given family of Feynman integrals as recurrence
relations.

Any integral of the given family is expressed as a linear
combination of some basic (master) integrals.

The whole problem of evaluation—

m constructing a reduction procedure

m evaluating master integrals
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m Take some derivatives of given master integrals in masses
or/and kinematic invariants

m Express them in terms of Feynman integrals of the given
family with shifted indices
(One can do this automatically with LiteRed by R. Lee.)

m Apply an IBP reduction to express these integrals in terms
of master integrals to obtain a system of differential
equations

m Solve DE
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Let f = (f1,..., fy) be primary master integrals (MI) for a
given family of dimensionally regularized (with D = 4 — 2¢)
Feynman integrals.

Let x = (xi, ..., X,) be kinematical variables and/or masses,
or some new variables introduced to ‘get rid of square roots’.

DE:
0if (e, x) = Ai(e, x)f (€, x),

where 0; = %, and each A; is an N x N matrix.
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I—Introdur:tion. The method of differential equations

Henn (2013): turn to a new basis where DE take the form
0if (€, x) = e Ai(x)f (€, x) .
In the differential form,
df(e,x) = e(d A(x)) f(x,e),
where
A= Z’z\k log(aw) -
k

and A are constant matrices. The arguments of the
logarithms «; (letters) are functions of x. Elements of such
basis turn out to be uniformly transcendental (UT).

Let us call it epsilon form.
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The case of two scales, i.e. with one variable in the DE, i.e.
n=1.

One tries to achieve the following form of DE:

f'le,x) =€ Z Lf(e,x).

x — x(k)

where x(¥) is the set of singular points of the DE and N x N
matrices a, are independent of x and e.

For example, if x, = 0, —1,1 then results for elements of such
a basis are expressed in terms of HPL.
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/ dA(R)... ... dA(m)
0<Tl< Tk<X

— a linear combination of integrals

/ dry dm
0<n <..m<x Tk + ak T+ a

where a; =0, —1 or 1.
HPLs

H(ai, as, ..., an x) / f(ar; t)H(ay, . . .,

where f(£1;t) =1/(1Ft), f(0;t) =1/¢t,

ap; t)dt,
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How to turn to a UT basis?

m An algorithmical description in the case of one variable

There are private implementations and an implementation
announced by O. Gituliar at Loops&Legs'16 but not yet
made public.

m Select basis integrals that have constant leading
singularities
which are multidimensional residues of the integrand.
(Replace propagators by delta functions).

m In simple situations where integrals can be expressed in
terms of gamma functions, adjust indices properly

m Use Feynman parametrization



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations
I—Introdut:tion. The method of differential equations

m If you have almost reached the e-form, make a small final
rotation of the current basis.



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations
I—Introdur:tion. The method of differential equations

m If you have almost reached the e-form, make a small final
rotation of the current basis.
Applied in our papers with J. Henn.



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations
I—Introdur:tion. The method of differential equations

m If you have almost reached the e-form, make a small final
rotation of the current basis.
Applied in our papers with J. Henn.



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations

I—Introdur:tion. The method of differential equations

m If you have almost reached the e-form, make a small final
rotation of the current basis.
Applied in our papers with J. Henn.

An approach using Magnus and Dyson series expansion



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations

I—Introdur:tion. The method of differential equations

m If you have almost reached the e-form, make a small final
rotation of the current basis.
Applied in our papers with J. Henn.

An approach using Magnus and Dyson series expansion

m Attempts in the case of several variables.



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations
I—Introdur:tion. The method of differential equations

m If you have almost reached the e-form, make a small final
rotation of the current basis.
Applied in our papers with J. Henn.

An approach using Magnus and Dyson series expansion

m Attempts in the case of several variables.

C. Meyer: adjust a transformation matrix using a proper
Ansatz (talk at Loops&Legs'16).



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations
I—Introdur:tion. The method of differential equations

m If you have almost reached the e-form, make a small final
rotation of the current basis.
Applied in our papers with J. Henn.

An approach using Magnus and Dyson series expansion

m Attempts in the case of several variables.

C. Meyer: adjust a transformation matrix using a proper
Ansatz (talk at Loops&Legs'16).

B. Eden: a code in a special case.
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The photon-quark form factor, which is a building block for
N*LO cross sections.

It is a gauge-invariant part of virtual forth-order corrections for
the process ete™ — 2 jets, or for Drell-Yan production at
hadron colliders.

Let '} be the photon-quark vertex function.

The scalar form factor is

1

fle) = “ag—ge T

where D =4 — 2¢, g = p; + p2 and p; (pz2) is the incoming
(anti-)quark momentum.

The large-N, asymptotics of F,(g?) — planar Feynman
diagrams.
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I—Ev:-;luating four-loop QCD form factors

Three-loop results

[P. A. Baikov, K. G. Chetyrkin, A. V. Smirnov, V. A. Smirnov
and M. Steinhauser'09,

T. Gehrmann, E. W. N. Glover, T. Huber, N. lkizlerli, and
C. Studerus'10]

Analytic results for the three missing coefficients

[R. N. Lee, A. V. Smirnov and V. A. Smirnov'10]
Analytic results for the three-loop master integrals up to
weight 8

[R. N. Lee and V. A. Smirnov'10]

motivated by a future four-loop calculation.



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations
I—Evaluating four-loop QCD form factors

The fermionic corrections (~ nf) to F, in the large-N, limit,
to the four-loop order.
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Numerical four-loop calculations [R. H. Boels, B. A. Kniehl,
0. V. Tarasov & G. Yang'13,16]

Results for some individual integrals in an analytical form
[A. von Manteuffel, E. Panzer & R. M. Schabinger'15]
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I—Evaluating four-loop QCD form factors

We apply
m qgraf for the generation of Feynman amplitudes;

m g2e and exp for writing down form factors in terms of
Feynman integrals

m FIRE and LiteRed for the IBP reduction to master
integrals.

Calculations in generic &-gauge for checks.

(ne)
=1 Fim.
- X () (_qz> |

Our result is the fermionic contribution to F in the large-N,
limit.
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I—Evaluating four-loop QCD form factors

The cusp and collinear anomalous dimensions

rygusp = 47
1 472 268 40ny¢
Tesp = (T3 T )T T
447*  88(; 5367° 490
2 o 2
Teusp = (45 AN
64¢3 80m% 1331 16n2
+ (- —~ nf — :
3 27 27 27
327%  1280¢; 30472 3463 128725
3 2
- (_ _ N 224
Teusp 135 27 243 g1 ) e g 224
a4n*  16252(; 1334672 60301\ , 64¢C; 32
- - - N 23 22 g
27 27 243 g1 ) T\ Ter) T



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations

I—Evaluating four-loop QCD form factors
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We reproduce results up to three loops

[A. Vogt'01; C.F. Berger'02; S. Moch, J.A.M. Vermaseren &
A. Vogt'04,05; P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov,
V.A. Smirnov & M. Steinhauser'09; T. Becher &

M. Neubert'09; T. Gehrmann, E.W.N. Glover, T. Huber,
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Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations
I—Ev:-llum:ing four-loop QCD form factors

We reproduce results up to three loops

[A. Vogt'01; C.F. Berger'02; S. Moch, J.A.M. Vermaseren &
A. Vogt'04,05; P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov,
V.A. Smirnov & M. Steinhauser'09; T. Becher &

M. Neubert'09; T. Gehrmann, E.W.N. Glover, T. Huber,

N. lkizlerli & C. Studerus'10]

The NZn? term of 13, ) agrees with
[M. Beneke & V.M. Braun'94]

Agreement of the n? term with
[Davies, B. Ruijl, T.Ueda, J. Vermaseren & A. Vogt'16]

All the other four-loop terms in 72, and 73 are new.
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I—Massless planar four-loop vertex integrals

All planar four-loop on-shell form-factor integrals with
p? = p3 =0, with ¢ = pi = (p1 + p2)?

dPhky ... dPk,
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I—Massless planar four-loop vertex integrals

All planar four-loop on-shell form-factor integrals with
p? = p3 =0, with ¢ = pi = (p1 + p2)?

dPhky ... dPk,
Fai,...,a;3 = /"'/(—(k1+p1)2)a‘(_(k2+p1)2)az(_(k3+pl)2)83
1

= lka £ p1)2)* (— (ks — p2)2) (—(ka — p2)2)% (—(ks — p2)2)°

1
ke — p2)?)%s(—kZ)ae (—k3)20(—k3)2 (—kz)2e
1
. (—(ki — k2)?) =23 (— (k1 — k3)?)~2e(—(k1 — ka)?) 215
1

“ ko — ka)?) e (—(ko — ka)2) 217 (—(ks — ka)?) s~

At most 12 indices can be positive.
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[J. Henn, AL&V. Smirnov'13]: introduce an additional scale.
2
p> # 0

«0O»

«Fr « =

DA
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I—Massless planar four-loop vertex integrals

FIRE — 99 master integrals.

. introduce an additional scale.
p; #0
504 master integrals

Derive (KZ) differential equations with respect to x = p3/p3

Oxf(x,€) =€ [3 + b

x 1—x

| fix.0

where a and b are x- and e-independent 504 x 504 matrices.



Solving these equations in terms of HPL with letters 0 and 1.

«0O0)>» «F»r «=>»

<

DA
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Natural boundary conditions at the point x = 1:
there is no singularity and it corresponds to propagator-type
integrals which are known
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I—Massless planar four-loop vertex integrals

Solving these equations in terms of HPL with letters 0 and 1.
Asymptotic behaviour at the points x =0 and x =1

flx,e) "= xf(e),
flx,e) =1 (1—x)"h(e),

Natural boundary conditions at the point x = 1:
there is no singularity and it corresponds to propagator-type
integrals which are known

To obtain analytical results for the 99 one-scale MlI, we
perform (with the help of the HPL package )
matching at the point x = 0.



Transporting boundary conditions at x = 1 to the point x = 0.

«0O0)>» «F»r «=>»

<

DA
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J

Results for the 99 one-scale Ml can be obtained from the
‘naive’ part of the asymptotic expansion at x = 0, i.e. from
the part corresponding to the zero eigenvalue of the matrix a,
ie. toyj =0.
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I—Massless planar four-loop vertex integrals

Transporting boundary conditions at x = 1 to the point x = 0.

x? = g x'*a;
J

Results for the 99 one-scale Ml can be obtained from the
‘naive’ part of the asymptotic expansion at x = 0, i.e. from
the part corresponding to the zero eigenvalue of the matrix a,

ie. toj =0.
Two alternative descriptions of the asymptotic expansion:
with DE and with with expansion by regions

J = 0 corresponds to the hard-.. .-hard region while terms with
J < 0 to other regions (soft, collinear, ...). No positive j.



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations

I—Massless planar four-loop vertex integrals

An example of our result




Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations

I—Massless planar four-loop vertex integrals

An example of our result

k2)2

liy = de ( 4

2 / /H TICICIZ (ky — ko)2(ka — ks)2(ky — ka)?
1

. (ko — ka)?(ks — ka)?(ki + p1)?(ka + p1)?(ka — p2)?(ks — p2)?
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I—Massless planar four-loop vertex integrals

1 +L21 < 173 , 1 [505 2+ 55O3< 1

T576e8 | 216 €6 864 35 T 10368" & 1206”7 T 1420
6317, 9895 , e 1 [89593 , ot 3419 , G 169789 ¢ 1
1555207 25023 | 2 T 77760 T 270 ™ ° T Ta032 V7| ¢
407 41820167 , 41719 , 263897

N [ 15 G53182000" T 972 " S 160 MS} 0,

where sg; = (g + (5.3, G = (1), Cij = C(i,])
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I—Evaluating conformal integrals

Correlation functions in N' =4 SYM (in particular of the
stress-tensor multiplet).

Correlation functions — both scattering amplitudes and the
dual polygonal Wilson loops

The complexity increases very much at higher loops.
An explicit result for the two-loop four-point stress-tensor
correlator



Three-loop calculations [B. Eden, P. Heslop, G. P. Korchemsky
and E. Sokatchev'12, J. Drummond, C. Duhr, B. Eden,

P. Heslop, J. Pennington & V. A. Smirnov'13, D. Chicherin,

J. Drummond, P. Heslop and E. Sokatchev'15]

u]
b}
it
int

DA
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Three-loop calculations [B. Eden, P. Heslop, G. P. Korchemsky
and E. Sokatchev'12, J. Drummond, C. Duhr, B. Eden,

P. Heslop, J. Pennington & V. A. Smirnov'13, D. Chicherin,

J. Drummond, P. Heslop and E. Sokatchev'15]

In [J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington
& V. A Smirnov'13] also one four-loop integral was evaluated
(with one external vertex is connected to the rest of this
diagram only by a single line.)
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I—Evaluating conformal integrals

Three-loop calculations

In

also one four-loop integral was evaluated
(with one external vertex is connected to the rest of this
diagram only by a single line.)

Four loops: 26 genuine four-loop integrals in the planar part of
the correlator five of which can be related to the ladder with
four rungs by flip identities on subintegrals.



x3

x4

DA




X4 — 00 x3 = 0
4

T1

z3

Z4

T2

2

Q>



Evaluating by DE:

«<O> <Fr <>

<

DA



Evaluating by DE:

m Using 4-dimensional IBP relations?
[S. Caron-Huot & J.M. Henn'14]

DA
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I—Evaluating conformal integrals

Evaluating by DE:

m Using 4-dimensional IBP relations?

m Using standard D-dimensional IBP relations?

B. Eden & V.S.: the D-dimensional way.
The goals:

m To evaluate this four-dimensional four-loop integral.

m To evaluate the whole set of the master integrals in D
dimensions. (The first example of such a calculation.)
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I—Evaluating conformal integrals

/ / [ [~ X6<]i:)[<5 ((i)zxii;z]iﬁf(n—xﬂﬂa‘

00 =X P17 [0 = x6)°] 72 [ (% — x7)*] 2 [—(%6 — 7)™

/\/\

[—(x2 — x6)?]%5 [~ (%2 — x8)]?[— (x5 — x6)?]*"[— (x5 — x7)?]%®
[—x7]7%%[—(xa — x8)°] %[~ (x5 — x8)°] "7 [—xg] %

(06 — P xr — x0)70

~—

X

~
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I—Evaluating conformal integrals

/ / [ [~ X6<]i:)[<5 ((i)zxii;z]iﬁf(n—xﬂﬂa‘

00 =X P17 [0 = x6)°] 72 [ (% — x7)*] 2 [—(%6 — 7)™

/\/\

[—(x2 — x6)?]%5 [~ (%2 — x8)]?[— (x5 — x6)?]*"[— (x5 — x7)?]%®
[—x7]7%%[—(xa — x8)°] %[~ (x5 — x8)°] "7 [—xg] %

(06 — P xr — x0)70

~—

X

~

ai <0fori>11
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I—Evaluating conformal integrals

/ / [ [~ Xe(]i:XS((i)zxiiL:;7]iTX8(X1—X7)2]"‘

[— 0 = x5)?] 712 [ (a1 — X6 )21~ 2 [ (x2 — x7)?] =2 [ (%6 — X7)?] "¢

A

X

[—(x2 — x6)?]%5 [~ (%2 — x8)]?[— (x5 — x6)?]*"[— (x5 — x7)?]%®
[—x7]7%%[—(xa — x8)°] %[~ (x5 — x8)°] "7 [—xg] %

(06 — P xr — x0)70

v/\

X

~

ai <0fori>11

Three coordinate differences squared off the light cone
X12 = —zz, X2 - (1 - Z)(l - 2)7 (Xl - X2)2 = -1
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I—Evaluating conformal integrals

/ / [ [~ X6<]i:)[<5 ((i)zxii;z]iﬁf(n—xﬂﬂa‘

00 =X P17 [0 = x6)°] 72 [ (% — x7)*] 2 [—(%6 — 7)™

/\/\

[—(x2 — x6)?]%5 [~ (%2 — x8)]?[— (x5 — x6)?]*"[— (x5 — x7)?]%®
[—x7]7%%[—(xa — x8)°] %[~ (x5 — x8)°] "7 [—xg] %

(06 — P xr — x0)70

~—

X

~

ai <0fori>11

Three coordinate differences squared off the light cone
X12 = —zz, X2 - (1 - Z)(l - 2)7 (Xl - X2)2 = -1

Our integral is F111111,1,1.1,1.0,..

byt dydydydydydy
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FIRE — 213 master integrals

Two variables: zz =z and z, = Z

«0O0)>» «F»r «=>»

<

DA
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Constructing a canonical basis



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations

I—Evaluating conformal integrals

FIRE — 213 master integrals

Two variables: zz =z and z, = Z

DE
0
8—217[ — A1(217227€)f7
if = Az, z,¢)f
822 - 2\41, 42, .

Constructing a canonical basis
We used a code constructed by Burkhard Eden.
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I—Evaluating conformal integrals

FIRE — 213 master integrals

Two variables: zz =z and z, = Z

DE
0
8—217[ — A1(217227€)f7
if = Az, z,¢)f
822 - 2\41, 42, .

Constructing a canonical basis

We used a code constructed by Burkhard Eden.

212 of 213 elements of a canonical basis were obtained with
this code.



DE in our canonical basis

0 -

a—z:lf = E,"A]_(Z]_,Zg)f,
U PP
822 EARN\Z1, 22 .

DA
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I—Evaluating conformal integrals

DE in our canonical basis

o _
0—21 = €A1(21,22)f,
Db = cho(a, 2)f
(922 = EANZ1,22 .
A= 24
with

A = ZA;{ |Og(Oék) .

and letters taken from the alphabet
{212,212, —a+n,1l-a—2n,1-2an,z1+2n—-22}



Solve DE order in order in ¢

8
f= Z Fgi

i=0

«0O0)>» «F»r «=>»

<

v
it

DA
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Solve DE order in order in ¢
8
f=> f0
i=0

—f0) = Az, )"V,

—f(l) = A2(Zl, Zz)f(i_l) .
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I—Evaluating conformal integrals

Solve DE order in order in ¢

8
f=> f0

i=0

0 - .
a—zlf(') = Az, )V,
9 iy y (i-1)
a—zzf = A2(Zl, 22))[ .
First, solve
0 _
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I—Evaluating conformal integrals

Solve DE order in order in ¢

8
f=> f0

i=0

aiZlf(i) = Az, 2)f07D
if(") = Az, )0V
0z ’

First, solve
if(") = A (z1, 2)f0V
0z ’

Solution

f)(z,2) = / dzA1(z, 2)f (4, ) + H(2)
0
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I—Evaluating conformal integrals

The result is a linear combination of multiple (Goncharov)
polylogarithms (MPL) G(a1, a2, ..., aw; z1)
where a; € {O, 1, Z, 1-— 2z, 1/22, —22/(1 — Zz)}.
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I—Evaluating conformal integrals

The result is a linear combination of multiple (Goncharov)
polylogarithms (MPL) G(a1, a2, ..., aw; z1)
where a; € {O, 1, Z, 1-— 2z, 1/22, —22/(1 — Zz)}.

G(ay,...,anz) = / dt G(az,...,ant)
0 t_a]_
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I—Evaluating conformal integrals

The result is a linear combination of multiple (Goncharov)
polylogarithms (MPL) G(a1, a2, ..., aw; z1)
where a; € {O, 1, Z, 1-— 2z, 1/22, —22/(1 — Zz)}.

G(al,...,an;z):/ dt G(az,...,ant)
0

t—a

Substitute solution into the second equation to obtain

o _ .
0—22/7( ( ) A2(Zl,22)h(l_1)(22)

+A2 (z1, 2 / dZ1A1 (71, Zz)f( 2)(2_1722)

a22/ leAl 21 Zz)f (21,22)



The dependence on z; should drop out! (A useful check.)

«0O)>» «F)»r « =

DA
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HPL with letters O and 1, up to constants.
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To fix these 213 x 9 unknown constants, we match our results
in terms of multiple polylogarithms to the leading order
asymptotic behaviour of the solution of DE in the limit

z,z — 0 which corresponds to the Euclidean limit x; — 0.



Evaluating Four-Loop Three-Point Feynman Integrals by Differential Equations

I—Evaluating conformal integrals

The dependence on z; should drop out! (A useful check.)

A resulting equation for h()(z,) can then be solved in terms of
HPL with letters O and 1, up to constants.

To fix these 213 x 9 unknown constants, we match our results
in terms of multiple polylogarithms to the leading order
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z,z — 0 which corresponds to the Euclidean limit x; — 0.

Thanks for Claude Duhr and Johannes Broedel for help in
manipulations with multiple polylogarithms!
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I—Evaluating conformal integrals

The dependence on z; should drop out! (A useful check.)

A resulting equation for h()(z,) can then be solved in terms of
HPL with letters O and 1, up to constants.

To fix these 213 x 9 unknown constants, we match our results
in terms of multiple polylogarithms to the leading order
asymptotic behaviour of the solution of DE in the limit

z,z — 0 which corresponds to the Euclidean limit x; — 0.

Thanks for Claude Duhr and Johannes Broedel for help in
manipulations with multiple polylogarithms!

If y is the expansion parameter in the limit z;, z, — 0 then we
encounter the following power dependence

Yoy ey y ey
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We again use an interplay between expansion by regions and
solving canonical DE in the given limit.

The short-distance limit is simple because the corresponding
integrals are four-loop propagator integrals

One could consider also the short-distance limit x, — 0 and
the limits z; —+ 0,z — 1 and z; — 1,z — 0 which are
light-cone limits 7 — 0 and x§ — 0.
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I—Evaluating conformal integrals

We again use an interplay between expansion by regions and
solving canonical DE in the given limit.

The short-distance limit is simple because the corresponding
integrals are four-loop propagator integrals

One could consider also the short-distance limit x, — 0 and
the limits z; —+ 0,z — 1 and z; — 1,z — 0 which are
light-cone limits 7 — 0 and x§ — 0.

It turns out that the information about the the Euclidean limit
x1 — 0 gives sufficient information.
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The result for our integral is (z — z)™2 times a linear
combination of single valued multiple polylogarithms

E{al,...,ag} = (_1)231'(;(317 <. - dg; Z) + Z Cij G(Qi; Z) G(Qj; Z)

where a; U a; has length 8 and a; is never the empty word.
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I—Evaluating conformal integrals

The result for our integral is (z — z)™2 times a linear
combination of single valued multiple polylogarithms

E{al,...,ag} = (_1)231'(;(317 <. - dg; Z) + Z Cij G(Qi; Z) G(Qj; Z)

where a; U a; has length 8 and a; is never the empty word.

The coefficients c;; are polynomials of multiple zeta values
such that all branch cuts cancel. The entries in the weight
vectors are in the set {0,1} and the “condensed notation"
...0,0,0,1...=...4... etc. is used
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After flipping points x; <> x3 (i.e. z —1/z,z — 1/2)
followed by x; <+ xo (which implies z -1 -2,z - 1—2Z2):
this function takes the form

— Lpsy+ L3 +Lpsoy — Lazoy — L0 + L3300
— L3000 + £{1,3,00,0,0}
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basis were checked by a numerical calculation with FIESTA
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I—Evaluating conformal integrals

After flipping points x; <> x3 (i.e. z —1/z,z — 1/2)
followed by x; <+ xo (which implies z -1 -2,z - 1—2Z2):
this function takes the form

— Lpsy+ L3 +Lpsoy — Lazoy — L0 + L3300
— L3000 + £{1,3,00,0,0}

This result as well as those for some other elements in the
basis were checked by a numerical calculation with FIESTA

Agreement with independent calculations by O. Schnetz and
E. Panzer.
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I—Evaluating conformal integrals

m Two more applications of the method of differential
equations are presented.

m More new results will be obtained with this method in the
future.
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