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THE 3-LOOP SOFT ANOMALOUS DIMENSION [N
MULTI-LeG SCATTERING

Plan of the talk

Soft singularities from Wilson lines: fixed-angle factorization and
rescaling symmetry.

The soft anomalous dimension for massless partons: the dipole formula.
The complete 3-loop soft anomalous dimension.

Calculation of connected webs in near light-like kinematics.

Colour conservation.

Special kinematics: collinear limit, Regge limit.



THE SOFT (EIKONAL) APPROXIMATION
AND RESCALING SYMMETRY

Eikonal Feynman rules:

Assuming k < p

(all components of K are small):
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Rescaling invariance: soft gluon emission (a) pﬂ (a) BM
only depends on the direction and colour g s @ — =g oI @ 5
charge of the emitter. p-k+ie bk —+ie

equivalent to emission from a Wilson line: @ 8, (OO’ ()) = Pexp {i Js / d\ 5 . A()\ 5) }
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IR SINGULAKRITIES FROM WILSON LINES

Factorization at fixed angles:

all kinematic invariants are simultaneously taken large p; - p; = Q°f; - 8; > A”

Soft singularities factorise to all orders & computed from a product of Wilson lines:

5 hard gluon amplitude 5 Wilson line amplitude
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S is a product of Wilson lines: S = (¢p, ® ¢, ® ...¢3,) — Process Independent!

The soft anomalous dimension T is the logarithmic derivative of S
_ 265

\ 57 B5

Due to rescaling symmetry it only depends on angles: ~;;



FACTORIZATION OF AMPLITUDES WITH MASSLESS LEGS

Fixed angle scattering p: - p; = Q?%85; - B > A2 e
with lightlike partons p; = 0

IR singularities can be factorised
- all originate in soft and collinear regions

Jet 2

Jet 3

Lightlike Wilson lines Jets (colour singlet) \
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The soft function now depends on 3; - 8;, violating rescaling symmetry.
This collinear anomaly is restored by the eikonal jets.
This implies an all-order constraint on the soft function,

leading to the Dipole Formula. Becher & Neubert,
y & 10 HIE pote o “ EG & Magnea (2009)




IR SINGULARITIES FORRAMPLITUDES
WITH MASSLESS LeGS

Solving a renormaliaztion-group equation Exponentiation:

Pi 1 w dN? 2 2 Pi
M(E,Ozs,e) :exp{—§/0 VF ()\ /Sijs0s(A ,e)) H ;,as

The Dipole Formula:

simple ansatz for the singularity structure of multi-leg massless amplitudes

)T T +Zw (cxs)
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FDip.(>‘7058) - 4 f}/K 053 Z In <
/ (4,9)

Lightlike Cusp anomalous dimension

Complete two-loop calculation by
Dixon, Mert-Aybat and Sterman in 2006
(confirming Catani’s predictions from 1998).

Generalization to all orders motivated
by constraints based on soft/jet factorisation

and rescaling symmetry. Becher & Neubert, Jet 2
EG & Magnea (2009)




CORRECTIONS TO THE DIPOLE FORMULA

There are two types of possible corrections to the dipole formula:

1. Corrections induced by higher Casimir contributions to the cusp anom. dim —
starting at 4 loops.
2. Functions of conformally-invariant cross ratios — starting at 3-loops:

I' = FDip. + A(Pzgkl) Pkl = (pi - pj) Pk - 1)
(pi - pe)(pj - 1)

Constraints on A(p;;k1):

Non-Abelian exponentiation theorem [EG, Smillie, White (2013)] implies that
A(pijki) has fully connected colour factors, such as fe¢ fede T?T;’-TET?

Bose symmetr
y y EG & Magnea, Becher & Neubert (2009)

Dixon, EG & Magnea (2010)

Collinear limits Del Duca, Duhr, EG, Magnea & White (2011)
Regge limit Ahrens & Neubert & Vernazza (2012)
Caron-Huot (2013)

Transcendental weight



THE COMPLETE 3-LOOP CORKRECTION
TO THE DIPOLE FORMULA

@. Almelid, C. Duhr, EG 1507.00047 (v2)

A(z,2) = 16 (%)3 fabefcde{ 3 [ TeTOTTY (F (1 1/2) — F(1/2))

1<i<y<k<i<n
+ TngT;?T;l (F(1-2) - F(2))

+ T{T)TT] (F (1/(1-2)) = F(1-1/(1 - Z)))]

N Z Z {17, T,f} T?Ti (¢s +2¢2¢3) }

i=11<j<k<n
J k#i

P1234 = 22

p1az2 = (1 — 2)(1 — 2)

F(2) = Laowon (2) + 26 (L100(2) + Loon (2)

L19..(z) are the single-valued harmonic polylogarithms introduced
by Francis Brown in 2009. They are single-valued in the region where z = 2

Symbol alphabet: {2z, 2,1 — 2,1 — 2} — crossing particles between initial and
final state involves taking monodromies around 2z = {O, 1, OO}



COMPUTING IR SINGULARITIES AT 3-LOOPS

Classes of three-loop webs connecting four Wilson lines

Single connected subgraph

Each web depends on all six angles -
can form conformally-invariant
cross ratios (cicrs)

Two connected subgraphs
Depends on 7145 723, 724, 734 only.

Cannot form cicrs - yields products
of logs for near lightlike kinematics

Three connected subgraphs
(multiple gluon exchanges)

Depends on 3 angles only!
Cannot form cicrs - yields products

of logs for near lightlike kinematics



DUAL MOMENTUM BOX INTEGRAL

p1 pz
p4 p3
Parametrise the positions Define auxiliary momenta p; = z; — ;1
along the Wilson lines by a?ff = ﬁf“ S; The z integral is a 4-mass Box(p1, p2, p3, pa)

Cug =T{TETETS {fabedee(%s’Ym — y14723) + FOU O (y19y34 — Y13724) + L2 FPU (Y19Y34 — 714723)}

111 2

Wy, :gS N4 Clg / dsidsadssdsy Box(xy — x4, 20 — 1,23 — To, T4 — T3)
0
( . ) =\ ( (él__cj‘g ) Integration over A yields an overall 1/€ UV pole.
54 (1-c)(1—b) Remaining integrations can be done in 4 dimensions.



CONNECTED THREE-LOOP WEBS WITH TWO
3-GLUON VERTICES

A similar mapping - but with a diagonal box

p1 pz

Py P
We extract the asymptotic near-lightlike behaviour using Mellin-Barnes techniques.
The remaining MB integral is three-fold, and can be converted into an iterated
parameter integral and expressed in terms of multiple polylogarithms:

Wig and W42 have non-trivial kinematic dependence in the limit 37 — 0

o Vg VRl (6@ ' BJ) (Bk: . Bl) p1234 = 22
Pijkl — =

Yit Vi (Bi - Br)(Bj - Bi) prazz = (1 — 2)(1 — 2)




CONNECTED WEBS: RESULTS AND
BOSE SYMMETRY

3,—1 Qg 3 a c abe rcde = —
wé(lzg ) = (E) T{T,T;Tq [f befele (22 — 2 - 2)
1

ade rbce = ace rbde =
- fode phee (1 — zz) 4 foco (1—z—z)}z_Z

g1(Z, Z, {'Yij})

Yij Yer  (Bi- Bj) Bk - Bi) p1234 = 2Z

Pijkl = = B
T i (Bi BBy B praz2 = (1 —2)(1 — 2)
B, B,
The permutation symmetry of the colour factors is mapped onto the kinematics
91(2,Z, {745 }) is symmetric In((1-2) (1-2) )
under these transformations forefige 31

Z»1-Z 2« 4 2 3Z—>1/Z

In((1-2) (1-2) / 2 Z )
_f

ade bce Z —>Z/(Z—1) facefbde



SUMMING THE CONNECTED WeEBS RESULTS

B,

3,—1 Qg 3 a c abe pcde = =
wé(Lg ) = <E) T{T5T5T] [f befele (22 — 2 - 2)
1

ade rbce = ace rbde =
 fode fee (1= 22) + oo e (1 — 2 — 5) | —

91(27 z, {f)/ij})

(37_1)
W(12)(34)

22— 2 —Z }

. _ > 91(27'27{7%'3'}

cancels in the sum!

We obtain a pure function of uniform weight 5 ( V=4 SYM property).



HOW [I§ RESCALING SYMMETRY REALISED
IN THE LIGHTLIKE LIMIT?

After applying Jacobi Identity one finds

— as 3 Qa C aae ce con. — aoe cae con. —
B = (E> TngTngf[f de fhee Freom (2, 2, {yiz }) + fCfele Fy (z,z,{%j})}

and the functions separate:
Fn " (2,2, }) = Fa (2, 2) + Q77" ({log(vij) })

w

a polylogarithmic function depending on a function involving purely logarithmic
conformally invariant cross ratios. dependence on individual cusp angles.

Rescaling symmetry implies that the quadrupole contribution to the light-like

soft anomalous dimension would depend exclusively on {z, Z}!

So far put aside non-connected webs, and webs connecting fewer than 4 lines.
All these, in the light-like asymptotics, involve only logarithms, In(7:;).

Any kinematic dependence which isn’t rescaling invariant must cancel out!



COLOUR CONSERVATION

Colour conservation for n Wilson lines: (T, + Ty + T35 +...T,) [H) =0
Considering the diagrams that connect 4 lines

G4(17 2,3, 4) - TclngTngll (fabedeeH4[(17 2)7 (37 4)] + facefbdeH4[(17 3)7 (2’ 4)] + fadefbceH4[(17 4)7 (27 3)])
with permutation symmetry Hyl(i,7), (k1)) = —Hy4l(4,1), (k,1)] = Hyl(k, 1), (¢,7)]
Applying colour conservation to eliminate T, — the 4-line result may be expressed as

G4(1727374) - _%fabedee Z {TfaT?}T?Ti (H4[(i7j)7(k74)] +H4[(i7k)7(j74)])

(i,4,k)€(1,2,3)
J<k

B

Colour conservation relates
4- and 3-line colour factors:

Diagrams connecting fewer Wilson lines are also relevant for A, !

[thanks to Simon Caron-Huot]



WEBS WITH THREE LINES

So we also computed all three-line diagrams:

Colour basis:  f*°f°* {T¢, T¢} TST, contributes to A,
N, fabchTst icrlpoles. do I.wt c.on.tnbute
in the lightlike limit

Sum of all webs connecting lines (1,2,3):

Gs(1,2,3) = tripole + f*°f >~ {T¢,T{} T)T; Hsli, {4, k}]

(Z7j7k)€(17273)
i<k




WEBS WITH TWO LINES

Colour conservation on 3 lines relates to 2 lines, so we also computed 2-line diagrams:

5 B B B, B
34 33 ﬁ4 ﬁs 4
Colour basis: ~ f**f* {T¢, T¢} {T% TS} contributes to A,
T; - T; dipole does not contribute

Sum of all webs connecting lines (1,2):

Ga(1,2) = dipole — fo* f4 {14, T} { T4, T5 } 1(1,2)




COLOUR CONSERVATION: CONTRIBUTIONS
FROM WEBS CONNECTING 2 OR 3 LINES

Considering the diagrams that connect any subset of 2 or 3 lines out of four,
B, B 3

B, B, B, B,
and eliminating T4 using (T; + Te+ T35+ Ty) [H) =0 we find

Ga(1,2,3,4) + G3(1,2,3,4) = dipoles + f** fo%* [ > AT T TITS UG, {5k} 4)

(4,3,k)€(1,2,3)
i<k
1 . e - .
— 5 > ATETAT) TS (Hsli (5, 0] + Halj (4,6 + 4, {5.4)])
1<i<j<3

where we defined
Hsli, {j, k}] = Hz[i, {j, k}] + Ha[{3, j}] + Ha[{3, k}]

U@.? {]7 k}v 4) = I_{3[i7 {]a k}] o 1:13[7;7 {]7 4}] o HS[ia {k? 4}] o ﬁ3[47 {17]}] o FI?) [47 {i’ k}] + H3[47 {]a k}]



COLOUR CONSERVATION: CONTRIBUTIONS
FROM WEBS CONNECTING 2 OR 3 LINES

Considering the diagrams that connect any subset of 2 or 3 lines out of four,
B, B B,

B, B, B,
and eliminating T4 using (T; + Te+ T35+ Ty) [H) =0 we find

Ga(1,2,3,4) + G3(1,2,3,4) = dipoles + f** fo%* [ > AT T TITS UG, {5k} 4)

(i,9,k)€(1,2,3)
i<k
1 — _— . _ .
=5 > AL T T T (Hali, (5,41 + Halj {4,1}) + Hal4, {5, i}])
1<:<;5<3

{T¢, T} TT; U(i,{j,k},4) can combine with 4-line diagrams to form CICRs.

{T¢, T¢}{T2, TS} (Hsli, {4, 4}] + Hs[j, {4,1}] + Hs[4,{j,i}]) cannot form CICRs...
Can only be consistent with rescaling symmetry if the sum conspires to be
constant Hs[i, {j, k}] + Hs[j, {k,i}] + Hslk,{j,i}] = 3C — which indeed holds!



SURPRISE WITH THREE LINES

Consider now the soft anomalous dimension for three coloured lines, subject to
the colour-conservation constraint: (T1 + Ty + T3) [H) =0.

Given that no conformal cross ratios can be formed, the expectation was:
no corrections beyond the dipole formula, i.e. A3z = 0.

Summing all 2- and 3-line webs we get, instead, a non-zero constant:

Az =—16 (Z—;)S (Cs + 2Ca(3) fo0e fede Z {T{, T{} TIT

(4,3,k)€(1,2,3)
j<k



THE COLLINEAR LIMIT

112 o

Mo, (p1,p2,{pj }; 1) — SP (p1,p2; ) Mp—1 (P, {p;}; u)// b,
P

In particular, IR singularities of the splitting amplitude are those present in
n-parton scattering (with 1 || 2) and not in (n-1)-parton scattering;:
Becher & Neubert (2009)
FSp — F’I’L — Fn_l Dixon, EG & Magnea (2010)

The expectation (see e.g. [Feige & Schwartz 1403.6472]) is that the splitting
amplitude depends exclusively on the variables of the collinear pair.
This is automatically realised by the dipole formula for the singularities.



THE COLLINEAR LIMIT AT 3 LOOPS

At three loops there are diagrams that could introduce correlation between
collinear partons and the rest of the process:

dip.
Tsp(p1,pa; i) = Tgw (p1,p2; 1) + Asp

But through intricate cancellations the correction is a constant depending
only on the colour degrees of freedom of the collinear pair:

Og

Asp = (An — An—1)|1||2 =24 <47r

)3 (C5 + 2C2C3) [fabefcde {Tclla Ti} {Tga Tg} + %CiTl - To

. @. Almelid, C. Duhr, EG 1507.00047 (v2)
Conclusion:

The splitting amplitudes singularities are independent of the rest of the process.
Consistent with expectations!




HIGH-ENERGY (REGGE) LIMIT

Expanding A4 at large s/ (-t) we get no log-enhanced terms, just a constant.
This can be contrasted with dedicated calculations of the high-energy limit.

The Regge limit is dominated by t-channel gluon exchange. Leading logs of (-t/s)
are summed through Reggeization:

1 1/ s \°W P —— —— p
3
— —s — | —
t t ( —t> S > ¥t
P —> —— 54
The gluon Regge pole is
(t) _ 1 (T 4T )2 - d_)‘QA ( ( )\2 )) Korchemskaya and Korchemsky (1996)
@ N 4 2 3 0 A2 TE\%s ) € Del Duca, Duhr, EG, Magnea & White (2011)

which is fully consistent with the dipole formula. This consideration excludes
any quadrupole contribution a‘z log" (—t/s) with m > 2 for the Re part.

ia? log?(—t/s) is excluded by an explicit two Reggeon calculation
Caron-Huot 1309.6521

a2 ln(—t/s) is excluded by a dedicated three Reggeon calculation.

Caron-Huot, EG, Vernazza - to appear



CONCLUSIONS

IR singularities of massless scattering amplitudes are now known to 3-loops.

As expected, the first correction to the dipole formula occurs at three loops.
For three partons it is a constant, while for four or more, a quadrupole
interaction correlating simultaneously colour and kinematics of 4 patrons.

The quadrupole term is expressed in terms of single-valued harmonic
polylogarithms of weight 5, depending on{z, z} . These variables are simple
algebraic functions of conformally-invariant cross ratios, and they manifest
the symmetries and analytic structure of the quadruple interaction.

Splitting amplitudes receive a kinematic-independent correction beyond the
dipole formula at 3-loop, but remains independent of the rest of the process!

Regge limit: consistency with known results at LL and NLL and new
predictions at NNLL and beyond.



THE STRUCTURE OF THE SOFT ANOMALOUS
DIMENSION: MASSLESS VS, MASSIVE PARTONS

T; - T; / planar fee TYTIT, feve fete TETO T T
massless| known @ 3-loop ) forbidden 3-loop done! ***
(& Nf planar 4-loop™) to all loops

massive ) ]
known @ 3-loop™* known @ 2-loops sta.rts @ 3-loop
progress @ 3-loop - in progress

* Henn, A. Smirnov, V. Smirnov & Steinhauser (2016) N lid, Duhr, EG - 1507.00047 (v2)
melil uhr, - . A%
** Grozin, Henn, Korchemsky & Marquard (2015) ’ ’



