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What We’re Doing

Our goal is to compute γ∗ → qq̄ and h → gg at four loops in QCD.
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What We’re Doing

Our goal is to compute γ∗ → qq̄ and h → gg at four loops in QCD.
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What We’re Doing

Our goal is to compute γ∗ → qq̄ and h → gg at four loops in QCD.
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(Yes, we do use Feynman diagrams)

Robert M. Schabinger Four-Loop QCD Form Factors And IBP Reduction



Outline
Overview And Background

A Streamlined And Fast Approach To Integral Reduction
Outlook

Form Factors And Cusp Anomalous Dimensions
The Dipole Conjecture
Calculational Method
Integral Reduction Via Integration By Parts
The Efficiency of Linear System Solving

Why We’re Doing It

Robert M. Schabinger Four-Loop QCD Form Factors And IBP Reduction



Outline
Overview And Background

A Streamlined And Fast Approach To Integral Reduction
Outlook

Form Factors And Cusp Anomalous Dimensions
The Dipole Conjecture
Calculational Method
Integral Reduction Via Integration By Parts
The Efficiency of Linear System Solving

Why We’re Doing It

The four loop cusp anomalous dimensions in QCD!
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Why We’re Doing It

The four loop cusp anomalous dimensions in QCD!
The QCD form factors in dimensional regularization satisfy a
renormalization group equation which was understood long ago

L. Magnea and G. Sterman, Phys.Rev. D42 (1990) 4222
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Why We’re Doing It

The four loop cusp anomalous dimensions in QCD!
The QCD form factors in dimensional regularization satisfy a
renormalization group equation which was understood long ago

L. Magnea and G. Sterman, Phys.Rev. D42 (1990) 4222
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At L loops, ΓL characterizes the leading IR divergences which cannot
be understood as exponentiated lower-loop contributions.
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Why We’re Doing It

The four loop cusp anomalous dimensions in QCD!
The QCD form factors in dimensional regularization satisfy a
renormalization group equation which was understood long ago

L. Magnea and G. Sterman, Phys.Rev. D42 (1990) 4222
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At L loops, ΓL characterizes the leading IR divergences which cannot
be understood as exponentiated lower-loop contributions.

=⇒ ΓL is a very important and universal quantity.
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A Dipole Formula For Gauge Theory IR Divergences?

S. Catani, Phys. Lett. B427 (1998) 161; S. Mert Aybat et. al., Phys. Rev. D74 (2006) 074004

T. Becher and M. Neubert, JHEP 0906 (2009) 081; E. Gardi and L. Magnea, JHEP 0903 (2009) 079

The IR divergences of the simplest non-Abelian gauge theory, planar
SU(Nc) N = 4 super Yang-Mills, are believed to be of the form:
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At four points, this structure has been realized explicitly at strong
coupling (L. F. Alday and J. Maldacena, JHEP 0706 (2007) 064). In a nutshell, the
dipole conjecture is the suggestion that, with minor modifications, the
above structure could hold for more general gauge theories like QCD.
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When Something Sounds Too Good To Be True...

Although some three-loop evidence was collected by Dixon
(Phys. Rev. D79 (2009) 091501) for the nf terms, it is now clear that the
dipole conjecture fails for QCD due to a Regge limit four-loop

calculation and an eikonal three-loop calculation which probe the
structure of the soft anomalous dimension matrix.

S. Caron-Huot, JHEP 1505 (2015) 093; Ø. Almelid et. al., arXiv:1507.00047
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When Something Sounds Too Good To Be True...

Although some three-loop evidence was collected by Dixon
(Phys. Rev. D79 (2009) 091501) for the nf terms, it is now clear that the
dipole conjecture fails for QCD due to a Regge limit four-loop

calculation and an eikonal three-loop calculation which probe the
structure of the soft anomalous dimension matrix.

S. Caron-Huot, JHEP 1505 (2015) 093; Ø. Almelid et. al., arXiv:1507.00047

In fact, Casimir scaling for the light-like cusp anomalous dimension

Γg
L

?
= CA/CFΓ

q
L

is still very much an open problem at four loops.
R. Boels et. al., JHEP 1302 (2013) 063; Nucl. Phys. B902 (2016) 387;

A. Grozin et. al., JHEP 1601 (2016) 140; J. Henn et. al., JHEP 1605 (2016) 066
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When Something Sounds Too Good To Be True...

Although some three-loop evidence was collected by Dixon
(Phys. Rev. D79 (2009) 091501) for the nf terms, it is now clear that the
dipole conjecture fails for QCD due to a Regge limit four-loop

calculation and an eikonal three-loop calculation which probe the
structure of the soft anomalous dimension matrix.

S. Caron-Huot, JHEP 1505 (2015) 093; Ø. Almelid et. al., arXiv:1507.00047

In fact, Casimir scaling for the light-like cusp anomalous dimension

Γg
L

?
= CA/CFΓ

q
L

is still very much an open problem at four loops.
R. Boels et. al., JHEP 1302 (2013) 063; Nucl. Phys. B902 (2016) 387;

A. Grozin et. al., JHEP 1601 (2016) 140; J. Henn et. al., JHEP 1605 (2016) 066

=⇒ new approaches to multi-loop calculations are required!
see Smirnov’s talk based on J. Henn et. al., JHEP 1403 (2014) 088 and paper above
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How To Survive The Calculation

Use a decent-sized cluster to do numerator algebra
(∼ 50,000 diagrams)

Crunch lots of integral reductions for up to twelve line integrals
allowing for up to 6 inverse propagators (this talk)

Use the reductions to write the raw integrand as a linear
combination of scalar master integrals

Construct an alternative basis of finite integrals and rewrite
everything in terms of it using the reductions (talk last year)

Evaluate all finite master integrals using either
HyperInt (ask Erik Panzer about his cool program) or FIESTA 4
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Integration By Parts Reduction

F. Tkachov, Phys. Lett. B100 (1981) 65; K. Chetyrkin and F. Tkachov, Nucl. Phys. B192 (1981) 159

It is well-known that one can generate recurrence relations by
considering families of Feynman integrals and then integrating by
parts in d spacetime dimensions, e.g.

0 =

∫

ddq

(2π)d
∂

∂qµ

(

qµ
(q2 −m2)

a

)

=

∫

ddq

(2π)d

(

d

(q2 −m2)a
−

2aq2

(q2 −m2)
a+1

)

= (d− 2a)I(a)− 2am2I(a+ 1)

In this case, the recurrence relation can be directly solved. Usually,
one employs Laporta’s algorithm (S. Laporta, Int. J. Mod. Phys. A15 (2000) 5087)
to reduce some particular integrals to masters using linear algebra.
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The Complexity of Gaussian Elimination

It is widely believed that the computational complexity of
Gaussian elimination is O

(

n3
)

for n× n rational matrices.

This is far too simplistic and is true only if each arithmetic
operation takes essentially the same amount of time.

In a finite field, the “grade school” algorithm does have O
(

n3
)

complexity but, even over the rational numbers, the situation is
much worse because the numerators and denominators of the
rational numbers typically increase in size after every operation.

Intermediate expression swell is a severe problem for the grade
school Gaussian elimination algorithm and can lead to run-times
and run-time storage requirements which are exponential in n!
X. G. Fang and G. Havas, ISSAC ’97, 28, (1997)
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And It Gets Worse...

The linear systems that one obtains from Laporta’s algorithm
will always have polynomial entries at the outset and this
introduces additional complications.

Avoiding unrecognized zeros during the course of the elimination
procedure requires a very large number of polynomial greatest
common divisor (GCD) computations.

These operations actually account for a substantial fraction of
the total run-time of most currently available integration by
parts reduction codes.

Intermediate expression swell manifests itself in the degrees of
the polynomial numerators and denominators of the rational
functions that appear at intermediate stages of the reduction.
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And It Gets Worse...

The linear systems that one obtains from Laporta’s algorithm
will always have polynomial entries at the outset and this
introduces additional complications.

Avoiding unrecognized zeros during the course of the elimination
procedure requires a very large number of polynomial greatest
common divisor (GCD) computations.

These operations actually account for a substantial fraction of
the total run-time of most currently available integration by
parts reduction codes.

Intermediate expression swell manifests itself in the degrees of
the polynomial numerators and denominators of the rational
functions that appear at intermediate stages of the reduction.

Luckily for us, an enormous amount of mathematical
research has been devoted to ameliorating these problems!
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The General Idea

To save time, we restrict ourselves in this talk to linear systems with
coefficients in Q. Let us stress, however, that a univariate rational
function version is implemented.

As we will see, the core of our improved linear system solver can
be straightforwardly worked out for any Euclidean domain.

Map system to “machine-sized” prime fields and row reduce over
them to avoid intermediate expression swell.

Sew the solutions together by “Chinese remaindering.”

Reconstruct the rational null space vectors of interest using the
rational reconstruction algorithm.

Robert M. Schabinger Four-Loop QCD Form Factors And IBP Reduction
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The Image Of A Rational Number Under The

Canonical Homomorphism of Z onto Zm

First, one needs to figure out how to map rational numbers
down to elements of Zm in a faithful manner:

φm(a/b) = φm(a)φm(1/b)

Robert M. Schabinger Four-Loop QCD Form Factors And IBP Reduction
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The Image Of A Rational Number Under The

Canonical Homomorphism of Z onto Zm

First, one needs to figure out how to map rational numbers
down to elements of Zm in a faithful manner:

φm(a/b) = φm(a)φm(1/b)

Given m and b such that GCD(m, b) = 1, we see that

1 = s m+ t b

⇒ 1/b ≡ t mod m
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The Image Of A Rational Number Under The

Canonical Homomorphism of Z onto Zm

First, one needs to figure out how to map rational numbers
down to elements of Zm in a faithful manner:

φm(a/b) = φm(a)φm(1/b)

Given m and b such that GCD(m, b) = 1, we see that

1 = s m+ t b

⇒ 1/b ≡ t mod m

=⇒ the extended Euclidean algorithm solves the problem
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The Extended Euclidean Algorithm

Begin with (g0, s0, t0) = (a, 1, 0) and (g1, s1, t1) = (b, 0, 1)

qi = gi−1 quotient gi

gi+1 = gi−1 − qigi

si+1 = si−1 − qisi

ti+1 = ti−1 − qiti

The algorithm terminates when gk+1 = 0 for some k. At that point

sk a+ tk b = gk = GCD(a, b)

Robert M. Schabinger Four-Loop QCD Form Factors And IBP Reduction
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What About Going The Other Way?

Mapping our rational linear systems to prime fields is not going to
help unless we have some way to invert the map φm(z).

gi = sim+ tiu for all i

when one applies the extended Euclidean algorithm to u and m > 0.

If, as will usually be the case, (m, ti) = 1 for all i,

gi/ti ≡ u mod m for all i

which implies that, typically, φ−1
m (z) cannot be defined.

Robert M. Schabinger Four-Loop QCD Form Factors And IBP Reduction
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Rational Reconstruction

P. S. Wang, SYMSAC ’81, ACM Press, 212 (1981);

P. S. Wang et. al. SIGSAM Bulletin 16, No. 2, 2 (1982)

Remarkably, under appropriate conditions,
the map φm(z) does have an inverse.

For a given rational number, a/b, one can
invert φm(z) if m > 2 max{a2, b2}.

In this situation, the unique solution to the
rational reconstruction problem is given by:

a

b
=

gj
tj

where gj is the first gi in the extended Euclidean algorithm to violate

|gi| > ⌊
√

m/2⌋
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Linear System Solving Over Q

We now have all the ingredients we need to describe a fast and
memory-efficient algorithm for the solution of linear systems over Q.

On a computer cluster, select some number of cores, nc, likely to
be larger than the length of the nastiest integer expected in the
result (measured in machine words).

On each core, choose a largish machine-sized prime
(e.g. 264 − 59), pi, take the image of the linear system modulo pi,
and then solve the system nc times in parallel.

In this fashion, a solution, ki, is generated on each core modulo
the corresponding pi and these solutions can be sewn together
using the Chinese remainder algorithm to produce a lifted
solution, K, modulo p1 · · · pnc

.

Finally, we can attempt a rational reconstruction on the
coefficients. If the procedure succeeds we are done. Otherwise,
we have to compute additional samples and then try once again.

see e.g. M. Kauers, Nuclear Physics B (Proc. Suppl.), 183, 245 (2008)
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How Well Does The Algorithm Actually Perform?

Despite the maturity of the subject, it is surprisingly difficult to
find a working public implementation. Manuel Kauers’s
Mathematica package LinearSystemSolver.m is the only
example known to us.

A new code, provisionally called FinRed, was painstakingly
developed by my collaborator Andreas von Manteuffel to achieve
near-optimal scaling behavior and memory usage.

Unlike Reduze 2, the parallelization is rather trivial since all
finite field samples are completely independent of one another.

On an old desktop, all of the rank five three-loop form factor
reductions run in the time it takes to go get a hot dog.

We could compute all rank four massless two-loop 2 → 2 integral
reductions at a particular phase space point in about 20 seconds.

Four-loop form factor reductions are under way, first results
coming soon to a conference near you.
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Overall, our IBP algorithm seems strong enough to significantly
ameliorate one of the biggest performance bottlenecks to calculating
the four-loop cusp anomalous dimensions in QCD. Several obvious
improvements and further applications come to mind:

The syzgzy-based approach to integration by parts,
J. Gluza et. al., Phys.Rev. D83 (2011) 045012, has recently been developed to
the point where applications look like they are just around the
corner. The work discussed in Zhang’s talk (based on a paper
with K. Larsen, Phys.Rev. D93 (2016) no.4, 041701) appears to be of
immense practical value and must be investigated further.

In fact the “numerical unitarity” idea of H. Ita, arXiv:1510.05626, may
be realizable by combining their method with ours.

A tool like the one described here can be used to solve problems
where a big ansatz must be constrained and then fit.
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