
Benjamin Basso
ENS Paris

work in progress with Simon Caron-Huot and Amit Sever

Amplitudes 2016
Nordita

On the Regge limit of polygonal WLs

Monday, July 4, 16



Two important corners

Collinear limit (WL side)

Regge limit (SA side)
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pi = xi+1 � xi

=A W

[Alday,Maldacena’07]
[Drummond,Korchemsky,Sokatchev’07]

[Brandhuber,Heslop,Travaglini’07]
[Drummond,Henn,Korchemsky,Sokatchev’07]

Rich interplay

Monday, July 4, 16



1+1d background :  flux tube sourced by two parallel null lines

Collinear / OPE regime

Sum over all flux-tube eigenstates

bottom&top cusps excite the flux tube out of its ground state

Flux

Dual stringAdS radial
direction

W =
X

states 

C
bot

( )⇥ e�E( )⌧+ip( )�+im( )� ⇥ C
top

( )

[Alday,Gaiotto,Maldacena,Sever,Vieira’09]
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4 ! 2

rapidity gap

Regge / BFKL regime

[Bartels,Lipatov,Sabio Vera’08]
[Bartels,Lipatov,Prygarin’10]

- High energy scattering

- Become very interesting in Mandelstam regions

- Picture in terms of Reggeons (pole and cuts)

- Energy dependence governed BFKL eigenvalues ! = !(m, ⌫)

s!
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OPE versus BFKL

Two different pictures, two different expansions, two different kinematics

OPE

⌧

W
hex

= 1 +
X

m 6=0

(�1)meim�

+1Z

�1

dp

2⇡
µ̂m(p) eip��⌧Em(p) + . . .

leading twist dominates at large 

BFKL

⌧ + �

W  
hex

e�i⇡�0 =
1X

m=�1
(�1)meim�

+1Z

�1

d⌫

2⇡
µ̂BFKL(⌫,m) ei(��⌧)⌫+(�+⌧)!(⌫,m) + . . .

leading spin dominates at large 

Strikingly similar. Why? How far does the parallelism go?

Leading term
in one expansion , Resummation of infinitely many 

terms in the other

Both are valid at any coupling

One side (OPE) much more well understood / developed
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Flux-tube spectrum

as field insertions along a light-ray:
create/annihilate state on the flux tube

or discretized version of light-ray:
bath of covariant derivativesF = Fz� on top of the flux tube by means of a linear combination of local operators

of the form3

O = tr (Z DDDD . . . DDDD F DDDD . . .DDDD F DDDD . . .DDDD Z) (20)

where D = D� is the covariant derivative along the null direction x�.

This picture is computationally appealing since a lot is known about single-trace op-
erators in planar N = 4 SYM using the technology based on integrability. Thanks
to this mapping to the integrable spin chain, the complete spectrum of flux-tube ex-
citations and their associated dispersion relations were found at any coupling [6]. We
can also derive, from the underlying spin-chain description, the way these excitations
scatter – i.e. their S-matrices – at any coupling [26, 35]. The energies enter directly
the decomposition (1) while the S-matrices are the fundamental objects governing the
pentagon transitions. The use of integrability is then essential to our approach since it
allows us to compute these objects at finite coupling.

• Excited GKP String. Finally, it is sometimes convenient to think of the flux tube
as the (dual of the) GKP string [19]. Indeed, the string that ends on the null square
at the boundary of AdS is dual to the two-point function of the large spin operators
discussed above [36,1].4 Excitations of the flux tube are dual to ripples on this string.
For example, (20) is dual to a folded string in AdS5 with two bumps that are dual to
the gluonic excitations, while (5) involves fluctuations in the sphere S5, dual to the
scalar excitations.

The string point of view is also quite instructive. Since it is based on a two dimensional
quantum field theory, non-trivial transformations such as mirror or crossing symmetries
are conceptually simpler to grasp in this dual language.

As we see, all these descriptions are complementary and depending on the context we might
find convenient to use one or the other. Let us now focus on some features that are common
to all these descriptions.

• Since the flux is infinite and its excitations are gapped, the number of excitations N
is a conserved charge. These excitations can be of di↵erent kinds: there are fermions,
gluons, scalars and also bound states of these more fundamental fields [6]. We use a
vector of indices a = {a1, . . . , aN} to indicate what kind of particles we are considering.
For example, in (5) we have a = {Z, . . . , Z} while for (20) we get a = {F, F}. Since it is
typically clear which excitations are being discussed we will often omit the dependence
on a in most formulae.

• The N excitations have momenta {p1, . . . , pN}. These momenta are conjugate to a
non-compact direction labelled (in each square) by � and as such they can take any

3In (20) we have two gluonic excitations F plus two scalars Z. These scalars are already present for the
vacuum (i.e., twist two) state O

vac

= tr (Z DDDD . . .DDDD Z)+ . . . since the derivatives need something
to act on. They are not dynamical, however, and can be thought as being part of the background.

4Strictly speaking, Gubser-Klebanov-Polyakov studied a folded string rotating in the middle of AdS [19].
This description is related to the one invoked here by analytic continuation [36,37,1].

12

p1 p2

flux tube states large spin operators$

Well understood....

Both pictures support integrable
structures; well described at all loops 
in the spin chain approach

Can get dispersion relations, flux tube 
S-matrix, etc. from that E = E(p)
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Pentagon OPE

vac

 1

 2

 3

vac

=
X

 i

"
Y

i

e�Ei⌧i+ipi�i+imi�i

#
⇥

P (0| 1)P ( 1| 2)P ( 2| 3)P ( 3|0)

Flux-tube states 

Pentagon transitions

[BB,Sever,Vieira’13]Much is known about OPE
at any coupling
thanks to integrability
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Pentagon OPE

All transitions are known

Main ingredients are the elementary transitions :
multi-particle transitions are believed to factorize

u

v v v1 v2

u2u1 u1 u2

P (u|v) P (u1, u2|v) P (u1, u2|v1, v2)

P ({ui}|{vi}) =
Q

i,j P (ui|vj)Q
i>j P (ui|uj)

Q
i<j P (vi|vj)

[BB,Sever,Vieira’13]
[Belitsky,Derkachov,Manashov’13]

[Belitsky’15]
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All pentagon transitions

� : scalar

 : fermion

F : gluon

= FA|B(u|v)⇥
SAB(u, v)

SAB(u� , v)
PA|B(u|v)2

[BB,Sever,Vieira‘13’14]
[BB,Caetano,Cordova,Sever,Vieira’15]

[Belitsky‘14’15]
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Pentagon OPE

All transitions are known

Simple rules generalizating all this to non-MHV amplitudes

Systematic expansion around collinear limit (euclidean)

u

v v v1 v2

u2u1 u1 u2

P (u|v) P (u1, u2|v) P (u1, u2|v1, v2)

[BB,Caetano,Cordova,Sever,Vieira’15]

[Belitsky‘14’15]

Main ingredients are the elementary transitions :
multi-particle transitions are believed to factorize

[BB,Coronado,Sever,Vieira’ to appear]
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Full 6-gluon amplitude

W
hex

=

[BB, Sever, Vieira’15]

=
X

n

1

Sn

Z
du1 . . . dun

(2⇡)n
⇧({ui})

⇧({ui}) = ⇧dyn ⇥⇧mat

⇧dyn =
Y

i

µ(ui) e
�E(ui)⌧+ip(ui)�+imi�

Y

i<j

1

|P (ui|uj)|2

(everything here is known
at any coupling)

OPE series :

Flux tube integrand :
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What about MRK limit?

What are the main ingredients?

Can we find their expression at finite coupling?

Is there a systematic expansion in that regime?

Today : see how much we can learn / guess about all that 
starting / using OPE / pentagons
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Plan

Crossing the kinematics from OPE to Regge
Review of hexagon

Application to heptagon
Regge pentagons

Conjecture for higher polygons
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The route to the Regge limit
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Passing to the real kinematics

b

o

t

t

o

m

t

o

p

- Leading twist approximation : 
bottom/top cusps are replaced by 
insertions of field strength tensor

- Insertions are spacelike 
separated

⇠ 1

e� + e��

At                            the flat cusps are null separated : a cut starts there� = ± i⇡

2

Hexagon in collinear limit

�

W
hex

= 1 +
X

m

eim�

Z
du

2⇡
µm(u)eipm(u)��Em(u)⌧

F1(�, ⌧) = g2e�⌧
⇥
�(e� + e��

) log(1 + e2�) + 2�e�
⇤
+O(g4)
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Euclidian

Passing to the real kinematics

b

o

t

t

o

m

t

o

p

t

o

p

b

o

t

t

o

m

Minkowskian

Insertions are
spacelike separated Insertions are

timelike separated

⇠ 1

e� � e��

� ! � ± i⇡

2

BFKL computes the discontinuity through the cut in the 
large            limit�

Regge/BFKL

� ! 1± i⇡

2

�

� ± i⇡

2
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Discontinuity and contour deformation

OPE contour :

After shifting

- Contour along real 
line in rapidity plane

- There is an infinite 
tower of Zhukowski 
cuts both in lower and 
upper half planes

eip(u)� ! e⇡u⇥eip(u)�� ! �� i⇡

2

Singularity at 

� = � i⇡

2

The integral becomes marginally convergent
�

� i⇡

2

�i
|m|
2

� 2g �i
|m|
2

+ 2g

u
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Discontinuity and contour deformation

Move to left side of cut

Move to right side of cut

�i
|m|
2

� 2g �i
|m|
2

+ 2g

u

�i
|m|
2

� 2g �i
|m|
2

+ 2g

u
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Discontinuity and contour deformation

Difference = 
discontinuity

Main message : the discontinuity through the cut is 
controlled by the same OPE integrand but with a 
vertical (inverse Laplace like) contour

�i
|m|
2

� 2g �i
|m|
2

+ 2g

u
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Discontinuity and contour deformation

Regge limit has to do 
with enhancement of 
discontinuity in limit

To study this regime we must rotate the contour to 
lower/upper half plane

Problem : Must avoid infinite sequence of cuts there

Remedy : Redefine the OPE integrand such that this 
sequence of cuts terminates

Freedom : Vertical contour allows us to add/remove 
exponentially small terms at large rapidity

This give rise to a new object : the sister trajectory

� ! ±1
�i

|m|
2

� 2g �i
|m|
2

+ 2g

u

[BB,Caron-Huot,Sever’14]
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Sister map

One loop example : Take energy 

 (1 +
|m|
2

+ iu) +  (1 +
|m|
2

� iu)� 2 (1)

Use reflection property and drop exponentially small terms

 (1 +
|m|
2

± iu) !  (� |m|
2

⌥ iu)± i⇡ +O(e�2⇡u)

It gives rise to the sister energy in lower/upper half plane

 (1 +
|m|
2

± iu) +  (� |m|
2

± iu)⌥ i⇡

with infinite sequence of cuts (here poles) in upper/lower plane
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Sister map

It is easy to generalize that to all loops since the flux tube data is 
expressed in terms of psi-function and its derivatives

After map : all loop sister dispersion relation

Ě`(u) = `+
i⇡

2
�cusp +

1Z

0

dt

t


K(t)

e�iut�`t/2 � 2

2
+K(�t)

e�iut+`t/2

2

�

p̌`(u) = 2u+
⇡

2
�cusp � i

1Z

0

dt

t


K(t)

e�iut+`t/2

2
�K(�t)

e�iut�`t/2

2

�

Before map : all loop dispersion relation for flux tube gluon

K(t) =
2

1� e�t

X

n�1

(2n)�2nJ2n(2gt)�
2

et � 1

X

n�1

(2n� 1)�2n�1J2n�1(2gt)

E`(u) = `+

1Z

0

dt

t
K(t)

⇣
cos(ut)e�`t/2 � 1

⌘

p`(u) = 2u+

1Z

0

dt

t
K(�t) sin(ut)e�`t/2

(kernel of BES 
equation)

[BB,Caron-Huot,Sever’14]

[BB’10]
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Sister map

It is easy to generalize that to all loops since the flux tube data is 
expressed in terms of psi-function and its derivatives

It allows us to write an all loop integral representation for 
the discontinuity

The integrand is just the sister version of the OPE one

u

�i
|m|
2

� 2g �i
|m|
2

+ 2g

u

�i
|m|
2

� 2g �i
|m|
2

+ 2g

Comment : so far all steps can be done order by order in PT
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From sister to BFKL
- OPE for discontinuity (sister trajectory : energy, measure etc.)

e�|m|(⌧��)(1 + e�2� + . . .)

- BFKL integral

(leading twist, all
conformal spins)

(leading spin, all 
dimensions)

- They operate in different regimes but they should agree in 
the overlap of their respective domains of validity

e�|m|(⌧��)(1 + e�2(⌧��) + . . .)

Cross-over : ⌧ ⇠ � � 1

Wl
hex

=
X

m

(�1)meim�

+1Z

�1

dp

2⇡
µ̂l
|m|(p)e

i�p�⌧ ˇE|m|(p) + . . .

It captures terms of the type

Wl
hex

= e
1
2 i⇡(��⌧)�cusp

X

m

(�1)meim�

+1Z

�1

d⌫

2⇡
µ̂
BFKL

(⌫,m)ei(��⌧)⌫e(�+⌧)!(m,⌫) + . . .

It captures terms of the type

⌧ large

⌧ + � large
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From sister to BFKL

[BB,Caron-Huot,Sever’14]Follow saddle from sister to BFKL regime

sister

BFKL

OPE BFKL twist suppressedenergy suppressed

Equivalently : wrap contour around the cut and move it to 2nd sheet

�

⌧
=

1

i

dĚ

dp
(p⇤)

⌧ � �

⌧ + �
=

1

i

d!

d⌫
(⌫⇤)

⌫⇤ =
1

2

⇥
p⇤ � iĚ(p⇤)

⇤
� ⇡

2
�cusp

!(⌫⇤) =
i

2

⇥
p⇤ + iĚ(p⇤)

⇤
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From sister to BFKL

At finite coupling 
it is easy to 

navigate between 
the two picturessister

BFKL

!(u,m) =

1Z

0

dt

t

✓
K(t)� K(�t) +K(t)

2

cos(ut)e�|m|t/2
◆

⌫(u,m) = 2u+

1Z

0

dt

t

K(�t)�K(t)

2

sin(ut)e�|m|t/2

Give BFKL eigenvalue from the sister flux tube energy to all loops

K = BES kernel

Follow saddle from sister to BFKL regime
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Chew-Frautschi plot

�⌫2

!

collinear regime

BFKL regime
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Same applies to measure a.k.a 
impact factor

µOPE
m (u) ! µl

m(u) ! µBFKL
m (u)

From sister to BFKL

At finite coupling 
it is easy to 

navigate between 
the two pictures

Follow saddle from sister to BFKL regime
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�!(⌫,m) = 2g2
⇢
� 2|m|
⌫2 +m2

+  

✓
1 +

|m|+ i⌫

2

◆
+  

✓
1 +

|m|� i⌫

2

◆
� 2 (1)

�
+O(g4)

+ higher loop matches

- Weak coupling

[Bartels,Lipatov,Sabio Vera’08],[Fadin,Lipatov],
[Dixon,Duhr,Pennington’12],[Dixon,Drummond,Duhr,Pennington’14]

- Finite coupling

!(⌫ = ±⇡

2
�cusp,m = 0) = 0constraint from 

collinear limit )
[Caron-Huot]

- Strong coupling
!(⌫) =

p
�

2⇡
(

p
2� log(1 +

p
2)) +O(1)

[Bartels,Kotanski,Schomerus,Sprenger]

Tests
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Adjoint eigenvalues at finite coupling

Eigenvalues :

Intercepts :
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4

1

1

4

BFKL

OPE

Summary

Two-step analytic continuation

In external momenta                                          OPE for discontinuity1. ⌧, �, �
In flux tube momentum p : crossing the cut between Regge and OPE2.

)

= 1 +
X

m 6=0

(�1)meim�

+1Z

�1

dp

2⇡
µ̂m(p) eip��⌧Em(p) + . . .

= �2⇡i
1X

m=�1
(�1)meim�

+1Z

�1

d⌫

2⇡
µ̂BFKL(⌫,m) ei(��⌧)⌫+(�+⌧)!(⌫,m) + . . .

See [Bartels et al.],[Hatsuda]
for related ideas

See [Drummond,Papathanasiou]
for a direct path at function level
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Higher polygons
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Z
dudv

(2⇡)2
µ(u)µ(v)e�ip(u)�1+ip(v)�2P (u� i0|v + i0)

Heptagon
OPE pentagon transition

Gluon transition

P (u|v) = �
( 12 � iu)�(iu� iv)( 12 + iv)

g2�( 12 + iu)�( 12 � iv)

Position space

+e�2��1
log

e2�2
�
e2�1

+ 1

�

e2�1
+ e2�2

+ e2�1+2�2
+ (�1 $ �2)

P (�1|�2) =
e�1+�2

2

log

�
e2�1

+ 1

� �
e2�2

+ 1

�

e2�1
+ e2�2

+ e2�1+2�2
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Heptagon

�i ! �i �
i⇡

2

Double discontinuity

u

v

Sister map both
and take Regge limit

�i ! �1
⌧i ! 1 ⌧i + �i fixed

u

v

We get the Regge pentagon a.k.a 
central emission vertex at an coupling known at weak coupling from 

[Bartels,Kormilitzin,Lipatov,Prygarin’12]
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Regge pentagon

Structure is essentially the same as for pentagon transitions

Few important properties :

P (u|v) ⇠ 1

iµ(u)(u� v)

- Decoupling pole

- Reggeon zeroes for mode zero

lim
⌫(u)!⇡

2 �cusp

P (u|v) = 0

lim
⌫(v)!�⇡

2 �cusp

P (u|v) = 0

tree⇥ exp


bilinears in  functions and derivatives

⇤
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Regge picture
Diagram

Heptagon gives 
pentagon 
transition
a.k.a central 
emission vertex

µ(u)⇥ P (u|v)⇥ µ(v)

Hexagon gives 
measure a.k.a 
impact factor

µ(u)

Diagram
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Higher polygons

Linear sequence

Diagram

µ(u)⇥ P (u|v)⇥ µ(v)⇥ P (v|w)⇥ µ(w)⇥ P (w|z)⇥ µ(z)

recent discussions : 
[Bargheer’16],

[Del Duca et al.’16]
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Conjectures for higher cuts

Multi-cut transition

Conjecture (following factorization of OPE transitions) :

Q
i,j P (ui|vj)Q

i<j P (ui|uj)
Q

i>j P (vi|vj)
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Conjectures for higher cuts

Example of a sequence with up to 3 Reggeons

Diagram

P (u|v1)P (u|v2)⇥
1

P (v1|v2)P (v2|v1)
⇥ P (v1|w)P (v2|w)⇥ P (w|z)

Integrand
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Weak coupling estimate
- A blob (measure) costs one loop

- A link (transition) costs minus one loop

- A linear sequence has N blobs and N-1 links : it thus appears at 
one loop

Generalization : if n-1 is the max number of Reggeons in the 
sequence, then the diagram starts at n loops

Caveat : Generically true up to mode zero contributions 

Mode zero measure has pole at ⌫ = ±⇡�cusp/2

(integrated with a Feynman 
like prescription)

- Residue at the pole relates to one
Reggeon contribution (OPE vacuum)
- It produces disconnected terms 
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Possible tests of this conjecture

String coupling saddle point for higher n-gon : looks doable; we 
could test the factorizability and the presence or not of new stuff 
(bound states of n>2 Reggeons)

First higher cut effect at weak coupling : 2 loop 8 points; 
comparison with Simon’s symbol? or with a function?

Direct weak coupling analysis using integrable spin chain?

Integrable system is very similar to the one for the flux tube : 
expect structure of multi-particle wave functions and 
pentagons transitions to be the same

Consistency checks : Is the factorized ansatz compatible with 
everything we know (collinear / soft limits, transcendentality, 
etc.)?

[Bartels,Lipatov,Prygarin’11]

[Belitsky,Derkachov,Manashov’14]
[BB,Sever,Vieira’13]

heptagon strong coupling study : 
[Bartels,Schomerus,Sprenger’14]

recent progress :  [Bargheer,Papathanasiou,Schomerus’15],
[Bargheer’16],[Broedel,Sprenger,Torres Orjuela’16],

[Del Duca et al.’16]
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Derivation from OPE?

OPE best formulated / understood for a zig-zag sequence :

P (u|v)⇥ P (w|v)⇥ P (w|z)⇥ P (z|t)⇥ . . .

Not obvious if that configuration admits higher cut 
version (i.e. that we stack more Reggeons in middle 
channels)

To find higher cuts we must explore other discontinuities....

u

v

w

z
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Generalization to non-MHV amplitudes

NMHV form factors :

(these are zero-modes of the pentagon bootstrap)

- They do not change the weak coupling counting

- They break symmetry between positive and negative 
mode numbers

- Mode zero quantities are unaffected - they are the same 
for MHV and non MHV

[BB,Caetano,Cordova,Sever,Vieira’15]
[Belitsky‘14’15]

P (u|v) ! x

+
x

�

y

+
y

� P (u|v)

In the Regge domain :
P (u|v) ! x

+
y

�

x

�
y

+
P (u|v)

[BB,Sever,Vieira’13]
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Conclusion

Regge and OPE regimes are the two sides of a same story

BFKL and collinear eigenvalues the two “branches” of a same 
function

This only becomes manifest and fully tractable at finite coupling

Crossing the kinematics then becomes equivalent to crossing a cut 
in internal momentum / rapidity plane
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Conclusion

Many questions remain : Completeness of states? Can new 
states appear for n>=8? Can we go all the way from 
collinear to Regge for higher n-gon? Are there Regge 
islands we cannot reach?

Clear route from OPE to Regge; OPE / Regge dictionnary

Following it we derive the eigenvalue, impact factor and emission 
vertex directly from the OPE / pentagon data at any coupling

Pushing the analogy further hints at higher cuts with totally 
factorized structure, like for multiparticle pentagon transitions
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THANK YOU!
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