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& Planar N=4 SYM @)

® Planar N=4 SYM 1s

our favorite playground to explore the

structure of scattering amplitudes in gauge theories.

® Many structures have been uncovered over the last years:

= Singularities described by cluster algebra. [Golden, Goncharoy,

= Perturbative am

Spradlin, Vergu, Volovich]
vlitudes are iterated integrals.

= Dynamics encoc

ed into collinear OPE. [Basso, Sever, Vieira]

= Building blocks of OPE can be obtained from integrability.

® Very successful for six-point amplitude!

= Hexagon bootstrap program.

[ Dixon, CD, Drummond, Henn, van

Hippel, Mcleod, Pennington]

= Heptagon amplitude and cluster polylogarithms.

[ Golden, Spradlin; Drummond, Papathanasiou, Spradlin]



&

& Planar N=4 SYM

® Despite this progress:
= Only 6 & 7 point MHV amplitudes known.

= Only 6 point NMHYV amplitude known.
® Reasons (among others):

= (Cluster algebra infinite starting from 8 points.

= Non-polylogarithmic functions expected to appear for non-

MHYV amplitudes.

® Aim of this talk: Present a limit where all the mathematical
structures act in harmony.

= Results for many loops and legs for complicated helicity
configurations.



& Outline

® Multi-Regge Kinematics

® The moduli space Mg ,,

= The geometry of multi-Regge kinematics

® MHYV amplitudes in multi-Regge kinematics

= (Convolutions & Factorisation

® Non-MHV amplitudes in multi-Regge kinematics
= Heliaty tlips & leading singularities



Multi-Regge kinematics




(7 Multi-Regge kinematics [

® Definition of MRK:
pg >>10j1r > ...pj(]_l >>pj([, P3|~ ...~ |pn| Pk :pi—l—ipz

® Non-trivial kinematical dependence in transverse momenta.

= Dual conformal invariance in transverse
space implies dependence on N — 5

ki .
Cross raftios:
e X3
k2 o (X1 — X;43) (Xit2 — Xi41)
. P =
e (X1 — Xit1) (Xit2 — Xit3)
kN_5 ° ° ° ° ° ° °
. XN_3 = Strong ordering in rapidities implies no
Ky s collinear singularities, only soft:
o XN—-2
__________ kz — 0 p— Xi4+1 =7 Xj42



(7 Multi-Regge kinematics [

® In the FEuclidean region, the amplitude vanishes in MRK.

® After analytic continuation to Mandelstam region, the amplitude
does no longer vanish in the limit.

® Here: Leading logarithmic accuracy (LLA):

[p.q] : [pQ]() : _ (L 2k /2 T dug o

q—1 [ q—2
aliy, n —h
X1 —14+ HTk Wk th(ypanp) H Chk+l(yk7nkayk+17nk—|—1) X q(yq—17nq—1)
\ k=p ) | k=p i
En: BFKL eigenvalue Impact factors &
large log 7, at every order. central emission blocks

N—-5
. : 1
SRTE S IEE) SR DR 01 F T
1

. Zk
1=2 11+...+inN_5=1— k=1

Perturbative coefficient (labelled by powers of logs and helicities)



(? Knownresultsat LLA  [@]

® Six-point MHV and NMHYV amplitudes.

= Known to arbitrary loop order at LLLA.

= (Can be expressed via single-valued harmonic polylogarithms.

[ Lipatov, Prygarin; Dixon, Drummond, Henn; Dixon, CD, Pennington;
Pennington; Brédel, Sprenger; Bartels, Kormilitzin, Lipatov, Prygarin]

® Two-loop MHV amplitudes at LLA.

= Factorise into six-point amplitudes.

[ Prygarin, Spradlin, Vergu, Volovich; Bartels, Prygarin, Lipatov]

® Aim of this talk:. Generalise the LILA results to higher loop

orders and to arbitrary helicity configurations.



The moduli space Mg n,

The geometry of

multi-Regge kinematics




& The moduli space My 4, @

@) gﬁo,n = moduli space space of Riemann spheres with n marked
points.

= space of configurations of 1 points on the
Riemann sphere.

® MRK s defined by a configuration of n = N — 2 points in the

transverse place, which we identity with the Riemann sphere.

- dim@ f)ﬁo’n =n—3

k1

. x3 = (Coordinates are collectionof n —3=N -5

. ka Cross ratios L (%1 — Xit3) (Kigo — Xis1)
: i =

kn—s (Xl — Xi—l—l) (Xi—|—2 — Xz‘+3)

«w_. ™ Singularities when points become equal
XN (ct. soft): x; = x;




Cluster algebra picture @

Xll —_—> X]_Q —_— e eeeene ) X].(N—S)
(1235) (1456) (1236) (1245) (1567) (123N —1)(12N —=3N —2)(1IN —2 N — 1 N)
(1256) (1345) > 11235)(1267)(1456) > - (123N —2)(12N —1N)(IN—3N —2N — 1)
XS]_ > XSQ —_—  ceeccee —_— XS(N_5)
vy = (K2 = %42) (Rjs = Kja) Xy = (1 = Xj41) (X540 — }fﬁtg)lk]
T (X2~ Xjra) (X2 — Xjirs) (31 — % 3) 3T — Xj+2)

® Two complex conjugate copies of the cluster algebra An_5.

® An_5is the cluster algebra associated to

COIlfN_Q (Cpl) ~ S)JTO,N_Q



& MRK and 9 ,, @

® [terated integrals on Mg ,, have alphabet dlog(x; — x;).

® Gauge fixing (Simplicial coordinates): [Brown]
(X17 c . ,Xn) — (O, 1, OO,tl, - . ,tn_g)
= Alphabet reduces to dlogt;, dlog(1 —t;), dlog(t; —t;).

® Alphabet is linear in all ssmplicial coordinates.

= (Can always be evaluated in terms of multiple polylogarithms.

G(al,...,an;z):/ at G(ag,...,an;2)
0

t—CLl

G(a;z) = log (1 — E) G(0;z) =log z G(0,1;2) = —Liy(2)

a



& MRK and 9 ,, @

® Issues:

= We have two complex conjugate copies of this alphabet.

= Branch cuts are constraint by unitarity.

® Unitarity forces the iterated integrals in MRK to be single-
valued functions on My y_3o.

® Conclusion:

N -point scattering amplitudes in planar N=4 SYM in MRK

are single-valued iterated integrals on g nv_2.

® Generalises the 6-point SVHPL story to arbitrary numbers of
points, loops and helicity configurations.

® Only polylogarithms appear in MRK!



&

(? Single-valued functions

® Single-valued polylogarithms = combinations of poylogarithms
and their complex conjugates such that all branch cuts cancel.

® One way to construct them: A map s that assigns to each

polylogarithm its single-valued version:
S — Iu(g X 1d)A [cf. Brown for MZV case]

U= multiplication Complex conjugate of the

> = antipode (up to a sign)

A = coproduct

® Examples: G(a;2) =s(G(d;z))

>~ 12

Gu(2) = Gu(2) + Ga(Z) = log |1 _Z

a

Gab(2) = Gap(2) + Gp 5 (2) + Gp(a)Ga (2) + G (a) Ga (2)
— Ga(b)Gy (2) + Gal2)Gy (2) — Ga (b) Gy ()



(7 Single-valued functions  [@]

® Preserves multiplication: s(a-b) = s(a) - s(b)
® Preserves functional equations.

® Commutes with holomorphic differentiation: 9,s =s9,

® Antipode corresponds to complex conjugation: s = 8.5

= [xample:
G(a,b; z) = 5(G(a,b; 2))
=G(b,a;z) + G(b;a)G(a;z) — G(a;b) G(b; 2)

® Does not commute with anti-holomorphic differentiation:

g Example:

8.G(a,b;2) = —— G(ba) + ——(Glas 2) — Gla: b))

Z—a zZ—0b




MHYV amplitudes
in MRK

Convolutions
&

Factorisation




@ Convolutions @

® Master formula:

(41,..,tN—5) .
I ) Ry 2N—5) =

N—6
x X" (wi,m) | ] €™ (vy,m5, 501, m541)
i

N—-5 +00 n /2 “+00
(—1)N+1 ZE\ dvy, vy, i
> I > s pl A

k=1 np=—0o0

— 00

X N5 (un_s, nv—5) .

—+ 00

= Fourier-Mellin transform: F[F(v,n)] = ) (E)H/Q / T 2|2 F(v,n)

z oo 2T

n=——oo

® M transform maps products to convolutions:

1 d?w

R

wJ |w]?

® Translates into a recursion in the number of loops:

(’il,...,’ik—|—1,...,iN_5)

gy .+ (217 R 7ZN—5) — g(zk) *Jy 4+

= F [Eyn] =

(il""’iN_5)(z ey ZN—5)

Z+ Z
2|11 — z|?




(7 Stokes’ theorem & residues (@]

® Single-valuedness implies that the integral can easily be
performed 1n terms of Stokes’ theorem.

. » . ® |
= All singularities are isolated. ®
= (Can integrate over the boundary g
®
of the punctured complex plane. ®
/@f(z) = Res F(z)—ZRes F(z) 0, F =
- — 2=00 . z=a; LI = {S ) ]
¢ chnetz

® Convolution appearing in the loop recursion reduces to a
simple residue computation.

® Start of the recursion: Two-loop MHV amplitude:

2) (1) | [ Prygarin, Spradlin, Vergu, Volovich;
7:‘)“-|-----|- — Z lOg Ti 94+ + (IO Z) Bartels, Prygarin, Lipatov; Bargheer,
1<i<N-5 Schomerus, Papathanasiou]
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Factorisation @

® Convolutions imply a factorisation theorem!

® [actorisation theorem:

Pa ta

py O

Pc 1c

h

h

S

Pa la
— h
Pc tc

o (pi—pi-1)(piv1 — 1)
2] —

B —s (pi — pit1)(pi-1 — 1)

[Del Duca, Druc, Drummond,

CD ,Dulat, Marzucca,
Papathanasiou, Verbeek;

Sec also recent WOI'k by Bargheer on

7-point MHYV three-loop symbol]

® N .B.: Factorisation 1s not restricted to MHV!



()  Factorisation for MHV @

® FFor MHV amplitudes, the factorisation implies that we can
drop all O’s:

(0,.-+,0,ia1,0,--+,0,ia5,05---,0,ia; ,0,...,0) (iaq siag - s iak)(

9t 4 (P15 PN=5) = g4+ Piay s Piays -+ s Pia, )

® Consequence: At L loops an MHV amplitudes in MRK at LLLA
1s determined by amplitudes with at most (LL+4) external legs.

® Two loops: Reduces to known factorisation:

) !
RSL.)..+ = Z log 7 gii(pz-)
1<i<N-5

® Three loops:

3 1 2 1,1
RY , = 5 > log?T 97 (pi) + > logT; log T g\ (pis ) -
1<i<N—5 1<i<j<N—5
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Factorisation for MHV @

® Four loops:

1
Rf.)..Jr = Z 10g3ng(+3)+(pi)

1<i<N—5

6
1 2.1 1,2
+ 2 Z {10852 7; log 7; gsr+4)r(/0z‘a p;) +log i log® 7; gSﬁ“)F(pi’ ’Oj)}
1<i<GSN-=5

11,1
+ > log logri log i g\ (i pj k)

1<i<j<k<N-5

® We have computed all MHV building blocks up to five loops.

= Explicit analytic results for all MHV amplitudes in MRK at

LLA up to five loops!

[ Parallel work by Brédel and Spenger on 7-point
amplitude through 5 loops, and

by Bargheer on 7-point MHV symbol at three loops.]



Non-MHYV amplitudes
in MRK

Helicity flips
&

leading singularities




& Helicity flips

® Master formula:

(41,..,tN—5)

(—1)N+1 Zle & de 17 :
Ini,eshn—a (Zl """ ZN_5) - 2 H Z % g‘zk‘% kEZlan

k=1 npy=—00 T
oy ;
x X" (v, my) H C" (v;,nj,vis1,nj41) | X "V=5(un_5,nN_5).
=1

® It s easy to fhip helicities in FM space:
Fx"(v,n) F(v,n)] — F[x" (v,n) F(v,n)]

= F )/ )] < F [ m) Fvm)]
_ F ngl « F [xH(w,n) Fr,n)] .
= Helicity flip kernel:
M =[5 | = -

® Flipping helicities on central emission blocks 1s similar.



& Helicity flips @)

(1—-2)°

® Heliaity flip kernel has a double pole:  #(2) = —
= Acts as a ‘derivative’ in residue computation.
= Produces rational prefactors (leading singularities).
= Non-MHYV amplitudes are not pure functions!

® [Factorisation theorem still holds for non-MHYV amplitudes.

= Unlike MHYV, there 1s an infinite number building blocks
already at two loops.

= [rreducible building blocks: alternating helicities (-+-+-+...).

® Example:
N-5
2 1 0,1
R, =logmi g™ (o) + > log 7 0% (o1, py)
j=2

N—-5
1,0 0,1 0,0,1
E|___)|_(,017 ,02) + log T2 gg_——)|—(1017 102) - Z log T gg|———|——)|— (1017 P2, p])

j=3

2
RSL)_JF = log T g



& An algorithm @

® All MRK amplitudes at LILA can be computed via a

sequence of the following three elementary operations:
= Flip helicity with helicity flip kernel:

1,2 1,2 1,2
gngm)L — g(——|——)|— = H(z1) * gg——F—)F

= Add particles with the same helicity without BFKL

eigenvalue insertion, e.g.,

(1,2) (0,0,1,2) _ (1,2)
g—++ 7 9——++ T 91+

= [ncrease loop number with BFKL eigenvalue:

0,0,1,2 2,0,1,2 0,0,1,2
g0ty gBOL2 o)« E(zy) # g 0012

® We have explicitly computed all non-MHV amplitudes up to
four loops and eight legs.



& Analytic structure @)

® Convolutions with helicity flip kernel preserve the weight.

- Example:

Z
Ry +=H(z1) *Ryqy. . 4+ H(z) = - (1 —2)?
dw
— z1f9z1 / TR++...+("U7 R v vy ZN—5)
W zZ+ z
weight -1 weight +1 g(z) — 2|1 . Z|2

® Convolutions with BFKL eigenvalue increase the weight by 1.

= BFKL eigenvalues has simple holomorphic and anti-
holomorphic poles!

= Anti-holomorphic primitive increases the weight by 1.

= Simple holomorphic pole does not lower the weight.



& Leading singularities @)

® One can analyse the convolution integral and obtain an upper
bound on leading singularities for a given helicity conﬁguration!

h1

P11 +++""'++"++““‘++++““‘
ho
1
PN_5 iN_5 o Holomorphic y
o Anti-holomorphic } interface

® Interfaces = places where helicity flips kernels were inserted.
® Rule for leading singularities:

= At each interface a we can insert at most one (anti-)
holomorphic cross ratio

(Xp — Xa)(Xc — X1)
(Xb — Xc)(Xa — Xl)

Rbac —




& Leading singularities @)

® Rule for leading singularities:

= At each interface @ we can insert at most one (anti-)
holomorphic cross ratio Rpqc.

= Ranges of b and ¢ restricted as follows:

+ + +H— - —|+ +H+ +‘— - —‘+ +|+ +‘ —————
b «a C

® Asymmetry reflects the fact that there are non linear
relations among the cross ratios:

Ro3c + Ra3q Rage = Rose Rage + Ro34 Rage

= FEffect can appear for the first time with 3 interfaces: (+-+-)

= [t does indeed appear!



& Leading singularities @)

O Example:

(41,32,i3) (41,i2,i3) (41,12,i3)

gy 22 (pr, p2, p3) = ay U2 (p1, pa, p3) + Raza by 27 (p1, p2, p3)
+ Ross b(zl 205) " (p1, P2, p3) + Rase béﬁ?’“ﬁ (p1, P2, p3) + Rase bizf_?ﬁ) (P1, P2, P3)
+ Ros4 R3se C%Jr’f’_?;z (p1, P2, p3) + Raga Rase C(Z 2:43) L (p1, P2, P3)
+ Rass Rsse Céﬂ?f’l (p1, P2, p3) + Razs Rase C(Zl’ 2" 3) L (p1,p2,P3)

= R236 does not appear, because we have only two interfaces!

Holomorphic

2 3
Anti-holomorphic I_|_ I _ +
3

|
Ol N Bl Ot

0
I Holomorphic
6

4
!
!
4



& Analytic structure @)

® Pole structure of LS 1s Ry, 1s not random !

(Xb — Xa)(Xc — Xl)
(X6 — Xc)(Xa — X1)

Rbac —

® There 1s no pole 1n soft limit, because b < a < c.

= No weight drop in soft limit!

® Soft limits of NMHYV amplitudes can be MHYV, 1.e., pure.

g Example:

ggfl_’f) = aﬁi? + Rasa bY’i’fl + R345 bgiﬁ + Ro3s Rsus Cg“ﬁfl

= |n the limit all rational factors disappear:

lim Rbac =0 lim Rbac =1

Xb_>Xa, Xc_>Xa



(7 Conclusion & Outlook  [@]

N-point scattering amplitudes in planar N=4 SYM in MRK

are single-valued iterated integrals on My v _2.

® (Consequences:

= Convolutions can be computed using Stokes’ theorem.
= Algorithmic construction of all MRK amplitudes at LILLA.
= (Classification of leading singularities in MRK at LILA.

= All amplitudes have uniform weight.

= Explicit results for all MHV amplitudes up to 5 loops, and
all non-MRK amplitude with up to 8 legs and 4 loops.



(7 Conclusion & Outlook  [@]

® Generalisation beyond LLA?

= Formalism is general!

= BFKL eigenvalue & impact factor known to all orders from
integrability.

= (Central emission block only known to LO.

= Multi-Reggeon bound state exchanges? [See Bassos talk]

® Are there other cases where we can ‘control’ the geometry?

= Amplitudes in 2D kinematics?

= [mits where the cluster algebras are all of finite type?
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