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Planar N=4 SYM
• Planar N=4 SYM is our favorite playground to explore the 

structure of scattering amplitudes in gauge theories.

• Many structures have been uncovered over the last years:

➡ Singularities described by cluster algebra.

➡ Perturbative amplitudes are iterated integrals.

➡ Dynamics encoded into collinear OPE.

➡ Building blocks of OPE can be obtained from integrability.

• Very successful for six-point amplitude!

➡ Hexagon bootstrap program.

➡ Heptagon amplitude and cluster polylogarithms.

[Golden, Goncharov, 
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Hippel, McLeod, Pennington]
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Planar N=4 SYM
• Despite this progress:

• Reasons (among others):

➡ Only 6 point NMHV amplitude known.
➡ Only 6 & 7 point MHV amplitudes known.

➡ Cluster algebra infinite starting from 8 points.

➡ Non-polylogarithmic functions expected to appear for non-
MHV amplitudes.

• Aim of this talk: Present a limit where all the mathematical 
structures act in harmony.

➡ Results for many loops and legs for complicated helicity 
configurations.



Outline

• Multi-Regge Kinematics

➡ The geometry of multi-Regge kinematics

➡ Helicity flips & leading singularities

• The moduli space 

the multi-soft limit, it is easy to show that all the Uij tend to 1 in MRK. We introduce

new reduced cross ratios which have a finite multi-Regge limit,

Ũij ≡
1− Uij∏j−4

k=i−1(1− u1k)
→
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From eq. (3.4) we see that all the Uij approach 1 at different speeds in the multi-soft limit.

Indeed, the multi-soft limit is approached sequentially according to ϵ2 ≪ ϵ3 ≪ . . . ≪ ϵN−4,

where ϵi are the small parameters introduced in eq. (2.31). Since u1i = 1+O(ϵi+1), we see

that Uij = 1 +O(ϵi . . . ϵj−4), and so all the Uij approach 1 at a different speed.

We now show that the first entries of the perturbative coefficients reduce to absolute

values squared of cross ratios in CP1 (up to logarithmically divergent terms that are ab-

sorbed into the definition of the τk). Let us first look at the case where the first letter

is d logUijkl. It is sufficient to analyse the multiplicatively independent cross ratios in

eq. (3.3). They all tend to 1, except for u2i and u3i, which we may exchange for the corre-

sponding reduced cross ratios ũ2i and ũ3i. The latter reduce to absolute values squared of

cross ratios in CP1, see eq. (2.25).

Next, let us analyse the case of a letter of the type d log(1−
∏

ijkl U
nijkl

ijkl ). It is sufficient

to assume that the factors in the product are taken from eq. (3.3). If one of the factors

goes to zero in MRK, then the claim is true, because we have for example,

d log(1− un2i U) →
{
n d log u2i + d logU , if n < 0 ,

0 , if n > 0 ,
(3.5)

where U is any product of cross ratios that tend to 1 in MRK. If all the factors in the

product
∏

ijkl U
nijkl

ijkl tend to 1, then we know that one of the factors tends to one much

slower than the others. Hence, up to terms that are power-suppressed in MRK, we only

need to keep this factor. The claim then follows from eq. (3.4).

The previous discussion implies that the coefficients appearing in the perturbative

expansion of scattering amplitudes in planar N = 4 SYM are iterated integrals with singu-

larities described by the cluster algebra AN−5 ×AN−5 and whose first letters are absolute

values squared of cross ratios. As the first entries describe the branch points of the function,

we conclude that the perturbative coefficients have no branch cuts when seen as functions

of the complex points xi. In other words, these iterated integrals must define single-valued

functions on the moduli space of Riemann spheres with N − 2 marked points. In the re-

mainder of this section we review the theory of single-valued iterated integrals on M0,N−2.

We first discuss ordinary, not necessarily single-valued, iterated integrals on M0,N−2, and

we turn to the construction of their single-valued analogues at the end of the section.

3.2 Coordinate systems on M0,n

In this section we review various coordinate systems on M0,n which are useful to study

iterated integrals and the multi-Regge limit. As a geometric space, we can describe M0,n

by configurations of n distinct points on the Riemann sphere. We identify configurations
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• MHV amplitudes in multi-Regge kinematics
➡ Convolutions & Factorisation

• Non-MHV amplitudes in multi-Regge kinematics



Multi-Regge kinematics



Multi-Regge kinematics
• Definition of MRK:

• Non-trivial kinematical dependence in transverse momenta.

momenta

p± ≡ p0 ± pz , pk ≡ pk⊥ = pxk + ipyk . (2.13)

Using this decomposition, the scalar product between two four vectors p and q is given by

2p · q = p+q− + p−q+ − pq̄− p̄q . (2.14)

Without loss of generality we may choose a reference frame such that the momenta of the

initial state gluons p1, p2 lie on the z-axis with pz2 = p02, which implies p+1 = p−2 = p1 =

p2 = 0. Then the multi-Regge limit is defined as the limit where the outgoing gluons

with momenta pi, i ≥ 3, are strongly ordered in rapidity (or equivalently in the lightcone

+-coordinates) while having comparable transverse momenta,

p+3 ≫ p+4 ≫ . . . p+N−1 ≫ p+N , |p3| ≃ . . . ≃ |pN | . (2.15)

The mass-shell condition p2i = p+i p
−
i − |pi|2 = 0 implies that

p−N ≫ p−N−1 ≫ . . . p−4 ≫ p−3 . (2.16)

The ordering between the lightcone coordinates in eq. (2.15) implies the following hierarchy

between the Lorentz invariants,

s12 ≫ s3···N−1, s4···N ≫ s3···N−2, s4···N−1, s5···N ≫ · · ·
. . . ≫ s34, . . . , sN−1N ≫ −t1, · · · ,−tN−3 ,

(2.17)

with ti held fixed, where

si(i+1)...j ≡ (pi + pi+1 + . . . + pj)
2 = x2(i−1)j , (2.18)

ti+1 ≡ q2i , qi ≡ p2 + . . .+ pi+3 = x1(i+3) . (2.19)

Let us briefly sketch how the hierarchy in eq. (2.17) follows from the strong ordering in

lightcone coordinates, eq. (2.15). In MRK momentum conservation can be written in the

form

p−1 = −
N∑

i=3

p−i ≃ −p−N , p+2 = −
N∑

i=3

p+i ≃ −p−3 , 0 =
N∑

i=3

pi , (2.20)

and the two-particle invariants in MRK become

s12 = 2p1 · p2 ≃ p+3 p
−
N

s1i = 2p1 · pi ≃ −p+i p
−
N

s2i = 2p2 · pi ≃ −p+3 p
−
i

sij = 2pi · pj ≃ p+i p
−
j , 1 ≤ i < j ≤ N .

(2.21)

From the last line of eq. (2.21), it is evident that all Mandelstam invariants made of k

consecutive final state momenta sii+1...i+k ≃ sii+k will be comparable in size, and much

larger than invariants made of k − 1 consecutive momenta. This proves the hierarchy
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Figure 5: The dual coordinates in the transverse space. Dashed lines indicate the for-

ward momenta with zero transverse momentum, which are strictly speaking absent in the

transverse momentum space because they are orthogonal to it.

We also introduce the transverse cross ratios

zi ≡ 1− 1

ξi
=

(x1 − xi+3) (xi+2 − xi+1)

(x1 − xi+1) (xi+2 − xi+3)
= − qi+1 ki

qi−1 ki+1
. (2.28)

In the literature it is customary to use the variables wi ≡ −zi.

It is easy to see from Fig. 5 that the MRK setup has a natural Z2 symmetry, called

target-projectile symmetry [86, 88], which acts by reflecting all the points along the hori-

zontal symmetry axis. This symmetry acts on the points xi via

xi #→
{
x1 , if i = 1 ,

xN−i , if 2 ≤ i ≤ N − 2 .
(2.29)

On the cross ratios zi target-projectile symmetry acts by

zi #→ 1/zN−4−i . (2.30)

In the previous section we have seen that the kinematics of scattering amplitudes in

planar N = 4 SYM are naturally encoded through a configuration of N momentum twistors

in three-dimensional projective space CP3. In the remainder of this section we show that

there is a very natural geometrical interpretation of MRK in terms of momentum twistors.

More precisely, we will show that the dual conformal invariance of planar N = 4 SYM

implies that the multi-Regge limit defined in eq. (2.15) is conformally equivalent to the

strongly-ordered multi-soft limit where the momenta pi, 3 ≤ i ≤ N − 3, are soft, with pi
softer than pi+1.

Before proving the connection between the multi-Regge and soft limits, let us discuss

in more detail how to take a single soft limit in momentum twistor space. In terms of

dual coordinates, the momentum pi+1 is soft if the points xi and xi+1 coincide. As the

points xi correspond to lines in momentum twistor space, the soft limit corresponds to the

limit where the momentum twistors Zi−1, Zi and Zi+1 are aligned. In other words, to set
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➡ Dual conformal invariance in transverse 
space implies dependence on            aaa     
cross ratios:

N � 5

➡ Strong ordering in rapidities implies no 
collinear singularities, only soft:
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ki ! 0 , xi+1 ! xi+2



Multi-Regge kinematics
• In the Euclidean region, the amplitude vanishes in MRK.

• After analytic continuation to Mandelstam region, the amplitude 
does no longer vanish in the limit.

E⌫n        : BFKL eigenvalue
large           at every order.

log ⌧k

Impact factors & 
central emission blocks

p1 p2

pN p3kN−4 kN−3 kq kq−1 kp+1 kp k2 k1

Figure 6: Diagrammatic representation of the Mandelstam region [p, q]. The discontinuity

in the (kp + . . .+ kq)2 channel is indicated by the dashed line.

where AN (−,+, h1, . . . , hN−4,+,−) is the (colour-ordered) amplitude for the production

of N − 4 gluons emitted along the ladder, and ABDS
N (−,+, . . . ,+,−) is the corresponding

BDS amplitude. The function Rh1,...,hN−4
is finite, and thus dual conformally invariant.

It can easily be related to the well-known remainder and ratio functions. Since Regge

factorisation holds in the Euclidean region, the ratio in the left-hand side of eq. (2.35)

tends to a phase in this region. The exact form of this phase is immaterial in the following,

because it is simply obtained as the ratio of the corresponding tree amplitudes [91]. We

normalise the left-hand side of eq. (2.35) such that Rh1,...,hN−4
= 1 in the Euclidean region.

If we take a discontinuity corresponding to a consecutive subset of final-state momenta

kl, l ∈ [p, q] ⊆ {1, . . . , N − 4}, i.e., a discontinuity with respect to the invariant (kp +

. . . + kq)2, then Rh1,...,hN−4
is no longer trivial due to the presence of a Regge cut (see

Fig. 6) [67,68,76–78,84,88,92,93]. In terms of the dual conformal cross ratios,

Uij ≡ Ui,j+1,j,i+1 =
x2ij+1x

2
i+1j

x2ijx
2
i+1j+1

, (2.36)

taking this discontinuity corresponds to analytically continuing Upq+2 around the origin

while all other cross ratios Uij are held fixed. In the following we denote the value of the

ratio Rh1,...,hN−4
in this so-called Mandelstam region [p, q] by R[p,q]

h1,...,hN−4
. We conjecture

that R[p,q]
h1,...,hN−4

in MRK to LLA can be cast in the form of a multiple Fourier-Mellin

integral

R[p,q]
h1...hN−4

({τk, zk}p≤k≤q−1) = 1 + a iπ r[p,q],(1)h1...hN−4
(2.37)

+ a iπ (−1)q−p

⎡

⎣
q−1∏

k=p

+∞∑

nk=−∞

(
zk
z̄k

)nk/2 ∫ +∞

−∞

dνk
2π

|zk|2iνk

⎤

⎦

×

⎡

⎣−1 +
q−1∏

k=p

τ
aEνknk

k

⎤

⎦ χhp(νp, np)

⎡

⎣
q−2∏

k=p

Chk+1(νk, nk, νk+1, nk+1)

⎤

⎦ χ−hq(νq−1, nq−1) .

In this expression, we defined τk ≡ √
u2ku3k, and a is the ’t Hooft coupling. To LLA,

the value of τk is independent of k, but we prefer to keep the τk different for reasons that

will become clear in subsequent sections. The one-loop coefficients receive contributions

from both the Regge pole and cut. They are sums of logarithms whose functional form is
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q−2∏

k=p

Chk+1(νk, nk, νk+1, nk+1)

⎤

⎦ χ−hq(νq−1, nq−1) .

In this expression, we defined τk ≡ √
u2ku3k, and a is the ’t Hooft coupling. To LLA,

the value of τk is independent of k, but we prefer to keep the τk different for reasons that

will become clear in subsequent sections. The one-loop coefficients receive contributions

from both the Regge pole and cut. They are sums of logarithms whose functional form is
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Figure 6: Diagrammatic representation of the Mandelstam region [p, q]. The discontinuity

in the (kp + . . .+ kq)2 channel is indicated by the dashed line.

where AN (−,+, h1, . . . , hN−4,+,−) is the (colour-ordered) amplitude for the production

of N − 4 gluons emitted along the ladder, and ABDS
N (−,+, . . . ,+,−) is the corresponding

BDS amplitude. The function Rh1,...,hN−4
is finite, and thus dual conformally invariant.

It can easily be related to the well-known remainder and ratio functions. Since Regge
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x2ijx
2
i+1j+1
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. We conjecture
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In this expression, we defined τk ≡ √
u2ku3k, and a is the ’t Hooft coupling. To LLA,

the value of τk is independent of k, but we prefer to keep the τk different for reasons that

will become clear in subsequent sections. The one-loop coefficients receive contributions

from both the Regge pole and cut. They are sums of logarithms whose functional form is

– 13 –

2.6 Perturbative expansion of the ratio Rh1,...,hN−4

So far all the considerations were made before the perturbative expansion of the function

Rh1,...,hN−4
. If we expand the integrand in eq. (2.37) perturbatively, then at each order we

obtain logarithms of τk. The coefficients of these logarithms are the main objects of interest

in the rest of this paper. We write the perturbative expansion of the function Rh1,...,hN−4

as

Rh1,...,hN−4
(τ1, z1, . . . , τN−5, zN−5) = 1 + a iπ r(1)h1,...,hN−4

+ 2πi
∞∑

i=2

∑

i1+...+iN−5=i−1

ai
(

N−5∏

k=1

1

ik!
logik τk

)

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) .
(2.76)

The perturbative coefficients are completely known forN = 6 for both MHV and NMHV [76–

81], and for all MHV amplitudes at two loops [83–85]. Comparing the perturbative ex-

pansion to eq. (2.37), we see that the perturbative coefficients admit a representation as a

Fourier-Mellin transform,

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) =
(−1)N+1

2

[
N−5∏

k=1

+∞∑

nk=−∞

(
zk
z̄k

)nk/2 ∫ +∞

−∞

dνk
2π

|zk|2iνkEik
νknk

]

× χh1(ν1, n1)

⎡

⎣
N−6∏

j=1

Chj(νj , nj, νj+1, nj+1)

⎤

⎦ χ−hN−5(νN−5, nN−5) . (2.77)

The poles on the real axis are dealt with by the prescription already outlined in (2.42) -

(2.44).

The symmetries of the ratio Rh1,...,hN−4
discussed in the previous section induce similar

symmetries on the perturbative coefficients,

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = g
(i1,...,iN−5)
−h1,...,−hN−4

(z̄1, . . . , z̄N−5)

= g
(iN−5 ,...,i1)
−hN−4,...,−h1

(
1

zN−5
, . . . ,

1

z1

)
.

(2.78)

In the soft limits, the perturbative coefficients must reduce to lower-point functions.

The limits where either k1 or kN−4 vanish are easy to describe: the perturbative coefficients

reduce to the corresponding coefficients with the soft momentum removed, except if the

corresponding large logarithm is present, in which case the perturbative coefficient vanishes

in the limit. More precisely,

lim
z1→0

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = δi10 g
(i2,...,iN−5)
h2,...,hN−4

(z2, . . . , zN−5) ,

lim
zN−5→∞

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = δiN−50 g
(i1,...,iN−6)
h1,...,hN−5

(z1, . . . , zN−6) .
(2.79)

If kj , with j /∈ {1, N − 4} is soft, then the perturbative coefficients behave like,

lim
(zj−1,zj)→(∞,0)

zj−1zj fixed

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5)

= g
(i1,...,ij−1+ij ,...,iN−5)

h1,...,ĥj ,...,hN−4
(z1, . . . ,−zj−1zj , . . . , zN−5) .

(2.80)
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In this expression, we defined τk ≡ √
u2ku3k, and a is the ’t Hooft coupling. To LLA,

the value of τk is independent of k, but we prefer to keep the τk different for reasons that

will become clear in subsequent sections. The one-loop coefficients receive contributions

from both the Regge pole and cut. They are sums of logarithms whose functional form is
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• Here: Leading logarithmic accuracy (LLA):

Perturbative coefficient (labelled by powers of logs and helicities)



Known results at LLA
• Six-point MHV and NMHV amplitudes.

➡ Known to arbitrary loop order at LLA.

[Lipatov, Prygarin; Dixon, Drummond, Henn; Dixon, CD, Pennington; 
Pennington; Brödel, Sprenger; Bartels, Kormilitzin, Lipatov, Prygarin]

• Two-loop MHV amplitudes at LLA.

➡ Factorise into six-point amplitudes.

• Aim of this talk:. Generalise the LLA results to higher loop 
orders and to arbitrary helicity configurations.

[Prygarin, Spradlin, Vergu, Volovich; Bartels, Prygarin, Lipatov]

➡ Can be expressed via single-valued harmonic polylogarithms.



The moduli space   aaaa 

The geometry of 
multi-Regge kinematics

M0,n



The moduli space   aaaaM0,n

•           = moduli space space of Riemann spheres with    marked   
aaaaaaapoints.
          = space of configurations of     points on the 
aaaaaaaRiemann sphere.

the multi-soft limit, it is easy to show that all the Uij tend to 1 in MRK. We introduce

new reduced cross ratios which have a finite multi-Regge limit,

Ũij ≡
1− Uij∏j−4

k=i−1(1− u1k)
→

∣∣∣∣∣
xi − xj−1

xi − xi+2

j−3∏

k=i+1

xk − xk+1

xk − xk+2

∣∣∣∣∣

2

. (3.4)

From eq. (3.4) we see that all the Uij approach 1 at different speeds in the multi-soft limit.

Indeed, the multi-soft limit is approached sequentially according to ϵ2 ≪ ϵ3 ≪ . . . ≪ ϵN−4,

where ϵi are the small parameters introduced in eq. (2.31). Since u1i = 1+O(ϵi+1), we see

that Uij = 1 +O(ϵi . . . ϵj−4), and so all the Uij approach 1 at a different speed.

We now show that the first entries of the perturbative coefficients reduce to absolute

values squared of cross ratios in CP1 (up to logarithmically divergent terms that are ab-

sorbed into the definition of the τk). Let us first look at the case where the first letter

is d logUijkl. It is sufficient to analyse the multiplicatively independent cross ratios in

eq. (3.3). They all tend to 1, except for u2i and u3i, which we may exchange for the corre-

sponding reduced cross ratios ũ2i and ũ3i. The latter reduce to absolute values squared of

cross ratios in CP1, see eq. (2.25).

Next, let us analyse the case of a letter of the type d log(1−
∏

ijkl U
nijkl

ijkl ). It is sufficient

to assume that the factors in the product are taken from eq. (3.3). If one of the factors

goes to zero in MRK, then the claim is true, because we have for example,

d log(1− un2i U) →
{
n d log u2i + d logU , if n < 0 ,

0 , if n > 0 ,
(3.5)

where U is any product of cross ratios that tend to 1 in MRK. If all the factors in the

product
∏

ijkl U
nijkl

ijkl tend to 1, then we know that one of the factors tends to one much

slower than the others. Hence, up to terms that are power-suppressed in MRK, we only

need to keep this factor. The claim then follows from eq. (3.4).

The previous discussion implies that the coefficients appearing in the perturbative

expansion of scattering amplitudes in planar N = 4 SYM are iterated integrals with singu-

larities described by the cluster algebra AN−5 ×AN−5 and whose first letters are absolute

values squared of cross ratios. As the first entries describe the branch points of the function,

we conclude that the perturbative coefficients have no branch cuts when seen as functions

of the complex points xi. In other words, these iterated integrals must define single-valued

functions on the moduli space of Riemann spheres with N − 2 marked points. In the re-

mainder of this section we review the theory of single-valued iterated integrals on M0,N−2.

We first discuss ordinary, not necessarily single-valued, iterated integrals on M0,N−2, and

we turn to the construction of their single-valued analogues at the end of the section.

3.2 Coordinate systems on M0,n

In this section we review various coordinate systems on M0,n which are useful to study

iterated integrals and the multi-Regge limit. As a geometric space, we can describe M0,n

by configurations of n distinct points on the Riemann sphere. We identify configurations
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• MRK is defined by a configuration of                   points in the 
transverse place, which we identify with the Riemann sphere.

n = N � 2
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k1
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x2

x3

xN−3

xN−2

Figure 5: The dual coordinates in the transverse space. Dashed lines indicate the for-

ward momenta with zero transverse momentum, which are strictly speaking absent in the

transverse momentum space because they are orthogonal to it.

We also introduce the transverse cross ratios

zi ≡ 1− 1

ξi
=

(x1 − xi+3) (xi+2 − xi+1)

(x1 − xi+1) (xi+2 − xi+3)
= − qi+1 ki

qi−1 ki+1
. (2.28)

In the literature it is customary to use the variables wi ≡ −zi.

It is easy to see from Fig. 5 that the MRK setup has a natural Z2 symmetry, called

target-projectile symmetry [86, 88], which acts by reflecting all the points along the hori-

zontal symmetry axis. This symmetry acts on the points xi via

xi #→
{
x1 , if i = 1 ,

xN−i , if 2 ≤ i ≤ N − 2 .
(2.29)

On the cross ratios zi target-projectile symmetry acts by

zi #→ 1/zN−4−i . (2.30)

In the previous section we have seen that the kinematics of scattering amplitudes in

planar N = 4 SYM are naturally encoded through a configuration of N momentum twistors

in three-dimensional projective space CP3. In the remainder of this section we show that

there is a very natural geometrical interpretation of MRK in terms of momentum twistors.

More precisely, we will show that the dual conformal invariance of planar N = 4 SYM

implies that the multi-Regge limit defined in eq. (2.15) is conformally equivalent to the

strongly-ordered multi-soft limit where the momenta pi, 3 ≤ i ≤ N − 3, are soft, with pi
softer than pi+1.

Before proving the connection between the multi-Regge and soft limits, let us discuss

in more detail how to take a single soft limit in momentum twistor space. In terms of

dual coordinates, the momentum pi+1 is soft if the points xi and xi+1 coincide. As the

points xi correspond to lines in momentum twistor space, the soft limit corresponds to the

limit where the momentum twistors Zi−1, Zi and Zi+1 are aligned. In other words, to set
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➡ a

that are related by conformal transformations. As SL(2,C) has complex dimension 3, we

immediately see that

dimC M0,n = n− 3 . (3.6)

Roughly speaking, since M0,n is SL(2,C)-invariant, a system of coordinates is given

by a set of cross ratios formed out of the points xi. There is no global coordinate system

on M0,n. One such set of cross ratios is given by the cross ratios zi defined in eq. (2.28).

We will refer to these coordinates as Fourier-Mellin coordinates. These coordinates are

well suited to write down the Fourier-Mellin transforms that describe amplitudes in MRK.

These coordinates, however, are not ideal to describe the iterated integrals on M0,n.

In ref. [41] various local systems of coordinates are discussed that are well suited to

study iterated integrals on M0,n. A particularly simple set of local coordinates are the

simplicial coordinates, obtained by using the SL(2,C) invariance to fix three of the n

points to 0, 1 and ∞, e.g.,

(x1, . . . ,xn) → (0, 1,∞, t1, . . . , tn−3) , with ti−3 =
(xi − x1)(x2 − x3)

(xi − x3)(x2 − x1)
, 4 ≤ i ≤ n . (3.7)

Note that there are 6
(n
3

)
= n(n − 1)(n − 2) different choices for simplicial coordinates,

depending on which three points we fix to (0, 1,∞). Using simplicial coordinates we can

describe M0,n (roughly speaking) as the space

{(t1, . . . , tn−3) ∈ Cn−3|ti ̸= 0, 1 and ti ̸= tj} . (3.8)

While there is in principle no reason to prefer one particular choice of simplicial coordi-

nates over the other, some choices are more suited to MRK than others. In particular, it is

useful to choose the coordinates so that they transform nicely under the symmetries of the

problem. In our case, we prefer to choose simplicial coordinates on which target-projectile

symmetry acts in a simple way. It is easy to check that the simplicial coordinate systems

with this property are defined by fixing the points (x1,xk,xN−k), 2 ≤ k ≤
⌈
N−1
2

⌉
. In

addition, for N even the set of simplicial coordinates defined by fixing (xN/2,xk,xN−k)

also has this property.

There is one particular choice of simplicial coordinates with the nice property that

in these coordinates the two-loop MHV amplitudes factorise into sums of six-point ampli-

tudes [83–85]. They are defined by

(x1, . . . ,xN−2) → (1, 0, ρ1, . . . , ρN−5,∞) . (3.9)

We refer to these coordinates as simplicial MRK coordinates. From the previous discus-

sion it follows that simplicial MRK coordinates transform nicely under target projectile

symmetry,

(ρ1, . . . , ρN−5) '→ (1/ρN−5, . . . , 1/ρ1) . (3.10)

Simplicial MRK coordinates are related to the Fourier-Mellin coordinates by

zi =
(ρi − ρi−1)(ρi+1 − 1)

(ρi − ρi+1)(ρi−1 − 1)
, (3.11)
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➡ Coordinates are collection of                        
cross ratios
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We also introduce the transverse cross ratios

zi ≡ 1− 1

ξi
=

(x1 − xi+3) (xi+2 − xi+1)

(x1 − xi+1) (xi+2 − xi+3)
= − qi+1 ki

qi−1 ki+1
. (2.28)

In the literature it is customary to use the variables wi ≡ −zi.

It is easy to see from Fig. 5 that the MRK setup has a natural Z2 symmetry, called

target-projectile symmetry [86, 88], which acts by reflecting all the points along the hori-

zontal symmetry axis. This symmetry acts on the points xi via

xi #→
{
x1 , if i = 1 ,

xN−i , if 2 ≤ i ≤ N − 2 .
(2.29)

On the cross ratios zi target-projectile symmetry acts by

zi #→ 1/zN−4−i . (2.30)

In the previous section we have seen that the kinematics of scattering amplitudes in

planar N = 4 SYM are naturally encoded through a configuration of N momentum twistors

in three-dimensional projective space CP3. In the remainder of this section we show that

there is a very natural geometrical interpretation of MRK in terms of momentum twistors.

More precisely, we will show that the dual conformal invariance of planar N = 4 SYM

implies that the multi-Regge limit defined in eq. (2.15) is conformally equivalent to the

strongly-ordered multi-soft limit where the momenta pi, 3 ≤ i ≤ N − 3, are soft, with pi
softer than pi+1.

Before proving the connection between the multi-Regge and soft limits, let us discuss

in more detail how to take a single soft limit in momentum twistor space. In terms of

dual coordinates, the momentum pi+1 is soft if the points xi and xi+1 coincide. As the

points xi correspond to lines in momentum twistor space, the soft limit corresponds to the

limit where the momentum twistors Zi−1, Zi and Zi+1 are aligned. In other words, to set

– 11 –

q0

q1

qN−5

qN−4

kN−4

kN−5

k2

k1

...
x1

x2

x3

xN−3

xN−2

Figure 5: The dual coordinates in the transverse space. Dashed lines indicate the for-

ward momenta with zero transverse momentum, which are strictly speaking absent in the

transverse momentum space because they are orthogonal to it.
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target-projectile symmetry [86, 88], which acts by reflecting all the points along the hori-

zontal symmetry axis. This symmetry acts on the points xi via

xi #→
{
x1 , if i = 1 ,

xN−i , if 2 ≤ i ≤ N − 2 .
(2.29)

On the cross ratios zi target-projectile symmetry acts by

zi #→ 1/zN−4−i . (2.30)

In the previous section we have seen that the kinematics of scattering amplitudes in

planar N = 4 SYM are naturally encoded through a configuration of N momentum twistors

in three-dimensional projective space CP3. In the remainder of this section we show that

there is a very natural geometrical interpretation of MRK in terms of momentum twistors.

More precisely, we will show that the dual conformal invariance of planar N = 4 SYM

implies that the multi-Regge limit defined in eq. (2.15) is conformally equivalent to the

strongly-ordered multi-soft limit where the momenta pi, 3 ≤ i ≤ N − 3, are soft, with pi
softer than pi+1.

Before proving the connection between the multi-Regge and soft limits, let us discuss

in more detail how to take a single soft limit in momentum twistor space. In terms of

dual coordinates, the momentum pi+1 is soft if the points xi and xi+1 coincide. As the

points xi correspond to lines in momentum twistor space, the soft limit corresponds to the

limit where the momentum twistors Zi−1, Zi and Zi+1 are aligned. In other words, to set
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➡ Singularities when points become equal 
(cf. soft): xi = xj

n

n



Figure 3: The X -coordinates for the initial quiver for Gr(4, N).
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Figure 4: The three cross ratios associated to the reggeized propagator |qi|2: u1i (left), u2i

(center) and u3i (right). Solid lines denote square distances in the numerator, and dashed lines in
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The X -coordinates of any given cluster, in particular the initial one outlined above, form

a complete set of coordinates for the kinematical dependence of the scattering amplitude

or Wilson loop.

2.2 Multi-Regge kinematics

The focus of this paper are planar colour-ordered scattering amplitudes in N = 4 SYM

in a special kinematic limit of 2-to-(N − 2)-gluon scattering, the so-called multi-Regge

kinematics (MRK) [90]. In order to define this limit, it is convenient to work in conventions

where all momenta are taken as outgoing. We define lightcone and (complex) transverse
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Indeed, we have

lim
kj→0

Rh1,...,hN−4
(τ1, z1, . . . , τN−5, zN−5) (2.81)

= 2πi
∞∑

i=2

∑

i1+...+iN−5=i−1

ai
(

N−5∏

k=1

1

ik!
logik τk

)

g
(i1,...,ij−1+ij ,...,iN−5)

h1,...,ĥj ,...,hN−4

= 2πi
∞∑

i=2

∑

i1+...+i′+...+iN−5=i−1

∑

ij−1+ij=i′

ai
(

N−5∏

k=1

1

ik!
logik τk

)

g
(i1,...,i′,...,iN−5)

h1,...,ĥj ,...,hN−4

= 2πi
∞∑

i=2

∑

i1+...+i′+...+iN−5=i−1

ai
1

i′!
logi

′
(τj−1τj)

⎛

⎜⎜⎝

N−5∏

k=1
k/∈{j−1,j}

1

ik!
logik τk

⎞

⎟⎟⎠ g
(i1,...,i′,...,iN−5)

h1,...,ĥj ,...,hN−4
,

where the last step follows from the binomial theorem,

∑

ij−1+ij=i′

1

ij−1!ij !
logij−1 τj−1 logij τj =

1

i′!
logi

′
(τj−1τj) . (2.82)

3. MRK and the moduli space of genus zero curves with marked points

3.1 MRK and the moduli space M0,N−2

In this section we argue that it is possible to describe the space of functions of scattering

amplitudes in planar N = 4 SYM in MRK. We start by noting that in MRK the only

non-trivial functional dependence is through the transverse momenta. In the previous

section we have seen that the kinematics in the transverse space is described by n ≡ N − 2

dual coordinates xi. Hence, in the multi-Regge limit the kinematics is described by a

configuration of (N − 2) points in CP1. The space of such configurations is equivalent to

the moduli space of genus zero curves with (N − 2) marked points,

ConfN−2(CP
1) ≃ M0,N−2 . (3.1)

In Section 2.1 we have seen that the cluster algebra attached to the configuration space

describing the kinematics of an amplitude is related to the singularities of the amplitude.

From the previous discussion it is thus natural to expect that amplitudes in planar N = 4

SYM in MRK can be expressed in terms of iterated integrals on M0,N−2. We now show

that this is indeed the case. More precisely, we show that the cluster algebra associated to

ConfN (CP3) in full kinematics reduces to the cluster algebra of M0,N−2.

We start from the duality between MRK and multi-soft limits discussed in Section 2.2.

We insert the parametrisation of eq. (2.31) into the cluster X -coordinates of eq. (2.12) and

we take the limit ϵi → 0. We see that all X -coordinates of the form X2j vanish in the limit,

while the others reduce to either holomorphic or anti-holomorphic cross ratios in CP1,

X1j =
(x2 − xj+2)(xj+3 − xj+4)

(x2 − xj+4)(xj+2 − xj+3)
, X2j = 0 , X3j =

(x1 − xj+1)(xj+2 − xj+3)

(x1 − xj+3)(xj+1 − xj+2)
. (3.2)
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• Two complex conjugate copies of the cluster algebra            .AN�5

•            is the cluster algebra associated to 

ConfN�2(CP1
) ' M0,N�2

AN�5

[See Spradlin’s talk]



MRK and  aaaaM0,n

• Iterated integrals on            have alphabet                      .

the multi-soft limit, it is easy to show that all the Uij tend to 1 in MRK. We introduce

new reduced cross ratios which have a finite multi-Regge limit,

Ũij ≡
1− Uij∏j−4

k=i−1(1− u1k)
→

∣∣∣∣∣
xi − xj−1

xi − xi+2

j−3∏

k=i+1

xk − xk+1

xk − xk+2

∣∣∣∣∣

2

. (3.4)

From eq. (3.4) we see that all the Uij approach 1 at different speeds in the multi-soft limit.

Indeed, the multi-soft limit is approached sequentially according to ϵ2 ≪ ϵ3 ≪ . . . ≪ ϵN−4,

where ϵi are the small parameters introduced in eq. (2.31). Since u1i = 1+O(ϵi+1), we see

that Uij = 1 +O(ϵi . . . ϵj−4), and so all the Uij approach 1 at a different speed.

We now show that the first entries of the perturbative coefficients reduce to absolute

values squared of cross ratios in CP1 (up to logarithmically divergent terms that are ab-

sorbed into the definition of the τk). Let us first look at the case where the first letter

is d logUijkl. It is sufficient to analyse the multiplicatively independent cross ratios in

eq. (3.3). They all tend to 1, except for u2i and u3i, which we may exchange for the corre-

sponding reduced cross ratios ũ2i and ũ3i. The latter reduce to absolute values squared of

cross ratios in CP1, see eq. (2.25).

Next, let us analyse the case of a letter of the type d log(1−
∏

ijkl U
nijkl

ijkl ). It is sufficient

to assume that the factors in the product are taken from eq. (3.3). If one of the factors

goes to zero in MRK, then the claim is true, because we have for example,

d log(1− un2i U) →
{
n d log u2i + d logU , if n < 0 ,

0 , if n > 0 ,
(3.5)

where U is any product of cross ratios that tend to 1 in MRK. If all the factors in the

product
∏

ijkl U
nijkl

ijkl tend to 1, then we know that one of the factors tends to one much

slower than the others. Hence, up to terms that are power-suppressed in MRK, we only

need to keep this factor. The claim then follows from eq. (3.4).

The previous discussion implies that the coefficients appearing in the perturbative

expansion of scattering amplitudes in planar N = 4 SYM are iterated integrals with singu-

larities described by the cluster algebra AN−5 ×AN−5 and whose first letters are absolute

values squared of cross ratios. As the first entries describe the branch points of the function,

we conclude that the perturbative coefficients have no branch cuts when seen as functions

of the complex points xi. In other words, these iterated integrals must define single-valued

functions on the moduli space of Riemann spheres with N − 2 marked points. In the re-

mainder of this section we review the theory of single-valued iterated integrals on M0,N−2.

We first discuss ordinary, not necessarily single-valued, iterated integrals on M0,N−2, and

we turn to the construction of their single-valued analogues at the end of the section.

3.2 Coordinate systems on M0,n

In this section we review various coordinate systems on M0,n which are useful to study

iterated integrals and the multi-Regge limit. As a geometric space, we can describe M0,n

by configurations of n distinct points on the Riemann sphere. We identify configurations
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d log(xi � xj)

• Gauge fixing (Simplicial coordinates):
(x1, . . . ,xn) = (0, 1,1, t1, . . . , tn�3)

d log ti➡ Alphabet reduces to             ,                    ,                     .                 d log(1� ti) d log(ti � tj)

➡ Can always be evaluated in terms of multiple polylogarithms.

[Brown]

• Alphabet is linear in all simplicial coordinates.

G(a1, . . . , an; z) =

Z z

0

dt

t� a1
G(a2, . . . , an; z)

G(a; z) = log

⇣
1� z

a

⌘
G(0; z) = log z G(0, 1; z) = �Li2(z)



MRK and  aaaaM0,n

• Issues:
➡ We have two complex conjugate copies of this alphabet.

N -point scattering amplitudes in planar N=4 SYM in MRK 
are single-valued iterated integrals on                .  M0,N�2

• Generalises the 6-point SVHPL story to arbitrary numbers of 
points, loops and helicity configurations.

➡ Branch cuts are constraint by unitarity.

• Unitarity forces the iterated integrals in MRK to be single-
valued functions on                .M0,N�2

• Conclusion:

• Only polylogarithms appear in MRK!



Single-valued functions
• Single-valued polylogarithms = combinations of poylogarithms 

and their complex conjugates such that all branch cuts cancel.

• One way to construct them: A map    that assigns to each 
polylogarithm its single-valued version:

s

Let us now show how we can use the coproduct and the antipode to define single-

valued hyperlogarithms. We use the notation of Section 3.4.1 and we write LΣ for the

shuffle algebra of all hyperlogarithms with singularities in Σ, LΣ is its complex conjugate

and LΣLΣ ≃ LΣ ⊗ LΣ. Note that each of these algebras is actually a Hopf algebra for the

coproduct in eq. (3.75). Let us define a map

S̃ : LΣ → LΣ ; G(⃗a; z) $→ (−1)|⃗a| S(G(⃗a; z)) , (3.80)

where S denotes the complex conjugate of the antipode. It is easy to check that S̃ inherits

many properties from S. In particular, it is an involution and it satisfies

S̃(a · b) = S̃(b) · S̃(a) and ∆S̃ = (S̃ ⊗ S̃)τ∆ . (3.81)

Unlike the antipode, S̃ does not satisfy eq. (3.76). Rather, the equivalent equation for S̃

defines the single-valued map (see also ref. [99]),

s = µ(S̃ ⊗ id)∆ , (3.82)

i.e., we claim that G(⃗a; z) = s(G(⃗a; z)) is the single-valued analogue of G(⃗a; z). Before

proving single-valuedness, let us discuss some of the properties of the single-valued map

s. Unlike the definition of the map sΣ of Section 3.4.1, the definition (3.82) is purely

combinatorial and does not depend on the set of singularities. It is easy to see that s is

Q-linear and that it preserves the multiplication (see Appendix B for a detailed proof),

s(a · b) = s(a) · s(b) . (3.83)

We stress at this point that s is only linear with respect to rational numbers. In particular,

this means that s may act non-trivially on non-algebraic periods. Indeed, we have [99]

s(iπ) = 0 and s(ζn) = 2ζn , for n odd . (3.84)

Let us denote by LSV
Σ ⊂ LΣLΣ the image of LΣ under the map s. We use sugges-

tively the same notation as for the shuffle algebra of single-valued hyperlogarithms from

Section 3.4.1. While LΣ and LΣLΣ are Hopf algebras, the algebra LSV
Σ is not a sub-Hopf

algebra of LΣLΣ, but the Hopf algebra structure on LΣLΣ turns LSV
Σ into a graded LΣLΣ-

comodule, whose coaction agrees with the coproduct on LΣLΣ,

∆ : LSV
Σ → LSV

Σ ⊗ LΣLΣ . (3.85)

In Appendix B we show that the coaction is given by

∆s(I(a0; a⃗; z)) =
∑

∅⊆c⃗⊆b⃗⊆a⃗

s(Ic⃗(a0; b⃗; z)) ⊗
[
S̃(I(a0; c⃗; z)) I⃗b(a0; a⃗; z)

]
. (3.86)

Let us now show that G(⃗a; z) = s(G(⃗a; z)) is single-valued. Following Section 3.4.1

we denote by MσG(⃗a; z) the result of analytically continuing G(⃗a; z) along a small loop
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multiplicationµ =

� = coproduct
S̃ =

Complex conjugate of the 
antipode (up to a sign)

[cf. Brown for MZV case]

• Examples: G(~a; z) = s(G(~a; z))

We do the same for the right-hand side of eq. (B.14) and we obtain

(s1 ⊗ S̃1 ⊗ id)(τ∆1 ⊗ id)∆1(x) = ((S̃1 ⊗ id)∆1 ⊗ (S̃1 ⊗ id))(τ∆1 ⊗ id)∆1(x)

=
∑

(x)

S̃1(x1,2,1)⊗ x1,2,2 ⊗ S̃1(x1,1)⊗ x2

= (S̃1 ⊗ id⊗ S̃1 ⊗ id)(∆1 ⊗ τ)
∑

(x)

x1,2 ⊗ x2 ⊗ x1,1

= (S̃1 ⊗ id⊗ S̃1 ⊗ id)(id ⊗ id⊗ τ)(id ⊗∆1 ⊗ id)
∑

(x)

x1,2 ⊗ x2 ⊗ x1,1

= (S̃1 ⊗ id⊗ S̃1 ⊗ id)(id ⊗ id⊗ τ)
∑

(x)

x1,2 ⊗ x2,1 ⊗ x2,2 ⊗ x1,1

=
∑

(x)

S̃1(x1,2)⊗ x2,1 ⊗ S̃1(x1,1)⊗ x2,2 ,

(B.16)

and the last line agrees with eq. (B.15).

C. Explicit expression for single-valued hyperlogarithms

In this appendix we present explicit expressions of single-valued hyperlogarithms up to

weight three in terms of ordinary hyperlogarithms. We only give the results for Lyndon

words. All other cases can be reconstructed from the fact that single valued hyperloga-

rithms form a shuffle algebra.

C.1 Single-valued hyperlogarithms of weight one

G0(z) = G0(z) +G0(z̄) . (C.1)

Ga(z) = Ga(z) +Gā(z̄) . (C.2)

C.2 Single-valued hyperlogarithms of weight two

G0,a(z) = G0,a(z) +Gā,0 (z̄)−G0(a)Gā (z̄)−G0 (ā)Gā (z̄) +G0(z)Gā (z̄) . (C.3)

Ga,b(z) = Ga,b(z) +Gb̄,ā (z̄) +Gb(a)Gā (z̄) +Gb̄ (ā)Gā (z̄) (C.4)

−Ga(b)Gb̄ (z̄) +Ga(z)Gb̄ (z̄)−Gā
(
b̄
)
Gb̄ (z̄) .
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x1,2 ⊗ x2 ⊗ x1,1

= (S̃1 ⊗ id⊗ S̃1 ⊗ id)(id ⊗ id⊗ τ)
∑

(x)

x1,2 ⊗ x2,1 ⊗ x2,2 ⊗ x1,1

=
∑

(x)

S̃1(x1,2)⊗ x2,1 ⊗ S̃1(x1,1)⊗ x2,2 ,

(B.16)

and the last line agrees with eq. (B.15).

C. Explicit expression for single-valued hyperlogarithms

In this appendix we present explicit expressions of single-valued hyperlogarithms up to

weight three in terms of ordinary hyperlogarithms. We only give the results for Lyndon

words. All other cases can be reconstructed from the fact that single valued hyperloga-

rithms form a shuffle algebra.

C.1 Single-valued hyperlogarithms of weight one

G0(z) = G0(z) +G0(z̄) . (C.1)

Ga(z) = Ga(z) +Gā(z̄) . (C.2)

C.2 Single-valued hyperlogarithms of weight two

G0,a(z) = G0,a(z) +Gā,0 (z̄)−G0(a)Gā (z̄)−G0 (ā)Gā (z̄) +G0(z)Gā (z̄) . (C.3)

Ga,b(z) = Ga,b(z) +Gb̄,ā (z̄) +Gb(a)Gā (z̄) +Gb̄ (ā)Gā (z̄) (C.4)

−Ga(b)Gb̄ (z̄) +Ga(z)Gb̄ (z̄)−Gā
(
b̄
)
Gb̄ (z̄) .
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Single-valued functions

• Preserves multiplication: 

Let us now show how we can use the coproduct and the antipode to define single-

valued hyperlogarithms. We use the notation of Section 3.4.1 and we write LΣ for the

shuffle algebra of all hyperlogarithms with singularities in Σ, LΣ is its complex conjugate

and LΣLΣ ≃ LΣ ⊗ LΣ. Note that each of these algebras is actually a Hopf algebra for the

coproduct in eq. (3.75). Let us define a map

S̃ : LΣ → LΣ ; G(⃗a; z) $→ (−1)|⃗a| S(G(⃗a; z)) , (3.80)

where S denotes the complex conjugate of the antipode. It is easy to check that S̃ inherits

many properties from S. In particular, it is an involution and it satisfies

S̃(a · b) = S̃(b) · S̃(a) and ∆S̃ = (S̃ ⊗ S̃)τ∆ . (3.81)

Unlike the antipode, S̃ does not satisfy eq. (3.76). Rather, the equivalent equation for S̃

defines the single-valued map (see also ref. [99]),

s = µ(S̃ ⊗ id)∆ , (3.82)

i.e., we claim that G(⃗a; z) = s(G(⃗a; z)) is the single-valued analogue of G(⃗a; z). Before

proving single-valuedness, let us discuss some of the properties of the single-valued map

s. Unlike the definition of the map sΣ of Section 3.4.1, the definition (3.82) is purely

combinatorial and does not depend on the set of singularities. It is easy to see that s is

Q-linear and that it preserves the multiplication (see Appendix B for a detailed proof),

s(a · b) = s(a) · s(b) . (3.83)

We stress at this point that s is only linear with respect to rational numbers. In particular,

this means that s may act non-trivially on non-algebraic periods. Indeed, we have [99]

s(iπ) = 0 and s(ζn) = 2ζn , for n odd . (3.84)

Let us denote by LSV
Σ ⊂ LΣLΣ the image of LΣ under the map s. We use sugges-

tively the same notation as for the shuffle algebra of single-valued hyperlogarithms from

Section 3.4.1. While LΣ and LΣLΣ are Hopf algebras, the algebra LSV
Σ is not a sub-Hopf

algebra of LΣLΣ, but the Hopf algebra structure on LΣLΣ turns LSV
Σ into a graded LΣLΣ-

comodule, whose coaction agrees with the coproduct on LΣLΣ,

∆ : LSV
Σ → LSV

Σ ⊗ LΣLΣ . (3.85)

In Appendix B we show that the coaction is given by

∆s(I(a0; a⃗; z)) =
∑

∅⊆c⃗⊆b⃗⊆a⃗

s(Ic⃗(a0; b⃗; z)) ⊗
[
S̃(I(a0; c⃗; z)) I⃗b(a0; a⃗; z)

]
. (3.86)

Let us now show that G(⃗a; z) = s(G(⃗a; z)) is single-valued. Following Section 3.4.1

we denote by MσG(⃗a; z) the result of analytically continuing G(⃗a; z) along a small loop
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• Preserves functional equations. 

(oriented counterclockwise) encircling the singularity σ ∈ Σ (and no other singularity). In

order to show that G(⃗a; z) is single-valued, we need show that

MσG(⃗a; z) = G(⃗a; z) , ∀σ ∈ Σ , (3.87)

or equivalently

DiscσG(⃗a; z) = 0 , ∀σ ∈ Σ , (3.88)

where the discontinuity operator is Discσ = Mσ−id. The proof that G(⃗a; z) is single-valued
proceeds by induction in the weight. If |⃗a| = 1, we have

G(a; z) = G(a; z) + S̃(G(a; z)) = log
∣∣∣1−

z

a

∣∣∣
2
, (3.89)

and this function is manifestly single-valued. Let us now assume that all functions G are

single-valued up to a certain weight n, and let us show that a function G(⃗a; z) of weight

n + 1 is still single-valued. Since the discontinuity operator only acts in the first factor

of the coproduct, ∆Discσ = (Discσ ⊗ id)∆, the graded comodule structure of LSV
Σ implies

that

∆Discσ(G(⃗a; z)) = (Discσ ⊗ id)∆(G(a; z)) = DiscσG(⃗a; z) ⊗ 1 . (3.90)

From eq. (3.76) we obtain

0 = µ(id⊗ S)∆Discσ(G(⃗a; z)) = Discσ(G(⃗a; z)) · S(1) = Discσ(G(⃗a; z)) , (3.91)

and so G(⃗a; z) is single-valued.
So far we have shown that s respects the multiplication and that the resulting functions

are single-valued. We now show that the functions G(⃗a; z) agree with the single-valued

realisation ρSV of HLΣ, see Section 3.4.1. In order to see this we need to prove that the

single-valued map commutes with holomorphic differentiation,

∂z s = s ∂z , (3.92)

This follows immediately from the fact that derivatives only act in the second factor of the

coproduct, ∆∂z = (id⊗ ∂z)∆. We obtain,

s ∂z = µ(S̃ ⊗ id)∆∂z = µ(S̃ ⊗ ∂z)∆ = ∂zs− µ(∂zS̃ ⊗ id)∆ , (3.93)

where the last step follows from the Leibniz rule, ∂zµ = µ(∂z⊗ id+id⊗∂z). The claim then

follows upon noting that S̃(G(⃗a; z)) is always anti-holomorphic, and so ∂zS̃ = 0. Hence,

we have shown that G(a, b⃗; z) and G(a, b⃗; z) behave in the same way under holomorphic

differentiation,

∂z G(a, b⃗; z) =
1

z − a
G(⃗b; z) . (3.94)

Moreover, it is easy to check that G(a, b⃗; z) vanishes as z → 0, and so the functions G(⃗a; z)
coincide with the single-valued realisation of HLΣ defined in Section 3.4.1. Note, however,

that the single-valued map does not commute with anti-holomorphic derivatives, ∂̄zs ̸=
(s∂z)∗.
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• Commutes with holomorphic differentiation:

• Antipode corresponds to complex conjugation:

Single-valued hyperlogarithms naturally have both anti-holomorphic and holomorphic

parts. Hence, they carry a natural action of complex conjugation. We can again de-

compose a complex conjugated single-valued hyperlogarithm into standard single-valued

hyperlogarithms,

G(⃗a; z̄) =
∑

b⃗

ca⃗,⃗b G(⃗b; z) . (3.95)

Note that the fact that complex conjugation acts non-trivially on single-valued hyperlog-

arithms (in the sense that the complex conjugate of an single-valued hyperlogarithm is a

linear combination of single-valued hyperlogarithms) is at the origin of why s does not com-

mute with anti-holomorphic derivatives. In Appendix B we show that the action of complex

conjugation on single-valued hyperlogarithms is encoded in the map S̃. If s̄ denotes the

complex conjugate of s, we find

s̄ = s S̃ . (3.96)

As an example, we have

G(ā, b̄; z̄) = s̄(G(a, b; z)) = G(b, a; z) + G(b; a)G(a; z) − G(a; b)G(b; z) . (3.97)

In the same way, we can also easily compute anti-holomorphic derivatives, because we can

reduce the anti-holomorphic derivative to a holomorphic one via the map S̃. For example,

we find,

∂̄zG(a, b; z) =
1

z̄ − ā
G(b; a) + 1

z̄ − b̄
(G(a; z) − G(a; b)) . (3.98)

We conclude this section by commenting on functional equations for single-valued hy-

perlogarithms. We can of course obtain functional equations by expressing single-valued

hyperlogarithms in terms of ordinary hyperlogarithms, and then applying functional equa-

tions to the latter. There is, however, a simpler way to obtain functional equations for

single-valued hyperlogarithms: assume we are given a relation between ordinary hyper-

logarithms. We can then act with s on it, and we obtain a relation among single-valued

hyperlogarithms. Since the action of s is, essentially, to replace G by G, we conclude that

single-valued hyperlogarithms satisfy the same identities as ordinary hyperlogarithms. Note

that eq. (3.84) is crucial for this to work. Let us consider an example to see how this works:

we start from the following relation among ordinary hyperlogarithms of weight three (valid

on some branch for the logarithm),

G

(
0, 1, 1;

1

z

)
= −G(0, 0, 0; z) +G(0, 0, 1; z) +G(0, 1, 0; z) −G(0, 1, 1; z)

+ iπ [G(0, 0; z) −G(0, 1; z)] +
π2

2
G(0; z) + ζ3 −

iπ3

6
.

(3.99)

We can act on both sides with s, and we obtain,

G
(
0, 1, 1;

1

z

)
= −G(0, 0, 0; z) + G(0, 0, 1; z) + G(0, 1, 0; z) − G(0, 1, 1; z) + 2ζ3 . (3.100)

This is indeed a valid identity among single-valued hyperlogarithms. We stress the impor-

tance of eq. (3.84) in order for this to be true.
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• Does not commute with anti-holomorphic differentiation:
➡ Example:
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Convolutions
• Master formula:

2.6 Perturbative expansion of the ratio Rh1,...,hN−4

So far all the considerations were made before the perturbative expansion of the function

Rh1,...,hN−4
. If we expand the integrand in eq. (2.37) perturbatively, then at each order we

obtain logarithms of τk. The coefficients of these logarithms are the main objects of interest

in the rest of this paper. We write the perturbative expansion of the function Rh1,...,hN−4

as

Rh1,...,hN−4
(τ1, z1, . . . , τN−5, zN−5) = 1 + a iπ r(1)h1,...,hN−4

+ 2πi
∞∑

i=2

∑

i1+...+iN−5=i−1

ai
(

N−5∏

k=1

1

ik!
logik τk

)

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) .
(2.76)

The perturbative coefficients are completely known forN = 6 for both MHV and NMHV [76–

81], and for all MHV amplitudes at two loops [83–85]. Comparing the perturbative ex-

pansion to eq. (2.37), we see that the perturbative coefficients admit a representation as a

Fourier-Mellin transform,

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) =
(−1)N+1

2

[
N−5∏

k=1

+∞∑

nk=−∞

(
zk
z̄k

)nk/2 ∫ +∞

−∞

dνk
2π

|zk|2iνkEik
νknk

]

× χh1(ν1, n1)

⎡

⎣
N−6∏

j=1

Chj(νj , nj, νj+1, nj+1)

⎤

⎦ χ−hN−5(νN−5, nN−5) . (2.77)

The poles on the real axis are dealt with by the prescription already outlined in (2.42) -

(2.44).

The symmetries of the ratio Rh1,...,hN−4
discussed in the previous section induce similar

symmetries on the perturbative coefficients,

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = g
(i1,...,iN−5)
−h1,...,−hN−4

(z̄1, . . . , z̄N−5)

= g
(iN−5 ,...,i1)
−hN−4,...,−h1

(
1

zN−5
, . . . ,

1

z1

)
.

(2.78)

In the soft limits, the perturbative coefficients must reduce to lower-point functions.

The limits where either k1 or kN−4 vanish are easy to describe: the perturbative coefficients

reduce to the corresponding coefficients with the soft momentum removed, except if the

corresponding large logarithm is present, in which case the perturbative coefficient vanishes

in the limit. More precisely,

lim
z1→0

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = δi10 g
(i2,...,iN−5)
h2,...,hN−4

(z2, . . . , zN−5) ,

lim
zN−5→∞

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = δiN−50 g
(i1,...,iN−6)
h1,...,hN−5

(z1, . . . , zN−6) .
(2.79)

If kj , with j /∈ {1, N − 4} is soft, then the perturbative coefficients behave like,

lim
(zj−1,zj)→(∞,0)

zj−1zj fixed

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5)

= g
(i1,...,ij−1+ij ,...,iN−5)

h1,...,ĥj ,...,hN−4
(z1, . . . ,−zj−1zj , . . . , zN−5) .

(2.80)
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➡ Fourier-Mellin transform:

half νk−1 plane (or the lower half νk plane). Finally the shift (2.44) takes the pole slightly

into the upper half νq−1 plane.

Equation (2.37) can be written as an inverse multiple Fourier-Mellin transform. The

(inverse) Fourier-Mellin transform of a function F (ν, n) is defined as

f(z) = F [F (ν, n)] =
+∞∑

n=−∞

(z
z̄

)n/2 ∫ +∞

−∞

dν

2π
|z|2iν F (ν, n) , (2.45)

where z ∈ C. This integral transform is invertible, and its inverse is given by

F−1[f(z)] =

∫
d2z

π
z−1−iν−n/2 z̄−1−iν+n/2 f(z) , (2.46)

with the usual metric on the complex plane

d2z = −dz ∧ dz̄

2i
= dx ∧ dy = r dr ∧ dϕ , for z = x+ iy = reiϕ . (2.47)

The Fourier-Mellin transform has the property that it maps ordinary products into convo-

lutions. More precisely, if F [F ] = f and F [G] = g, then

F [F ·G] = F [F ] ∗ F [G] = f ∗ g , (2.48)

where the convolution is defined by

(f ∗ g)(z) =
1

π

∫
d2w

|w|2
f(w) g

( z
w

)
. (2.49)

A proof of the convolution theorem for the Fourier-Mellin transform is given in Appendix A.

It is easy to see that the convolution product is associative and commutative, and the

distribution π δ(2)(1− z) is a neutral element.

We conclude this section by quoting some properties of the Fourier-Mellin space func-

tions that enter eq. (2.37). For nk = 0, the BFKL eigenvalue and the central emission

block have the following properties [61,63,72,90,94–96],

lim
ν→0

Eν0 = 0 , (2.50)

lim
ν→0

C±(ν, 0, µ,m) = χ±(µ,m) , (2.51)

lim
µ→0

C±(ν, n, µ, 0) = −χ∓(ν, n) , (2.52)

Resν=µC
±(ν, n, µ, n) = (−1)n i . (2.53)

Note that Eν0 vanishes quadratically as ν → 0 due to its symmetry under ν ↔ −ν. As we
will see shortly, the above relations guarantee that eq. (2.37) has the correct soft behaviour.

In order to prove the last relation (2.53), we need the following identity,

sinπ(n2 + iν)

sinπ(n2 − iν)
= (−1)n+1 , n ∈ Z . (2.54)
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• FM transform maps products to convolutions:

half νk−1 plane (or the lower half νk plane). Finally the shift (2.44) takes the pole slightly
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dν
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|z|2iν F (ν, n) , (2.45)
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• Translates into a recursion in the number of loops:

4.2 Higher-point MHV amplitudes and the factorisation theorem

The six-point example from the previous section shows that we can bypass the evaluation

of the Fourier-Mellin integrals and the multiple sums, and we can entirely work with con-

volutions and Stokes’ theorem. This procedure can of course be extended to amplitudes

with more external legs in a straightforward way. In particular, we obtain the recursion

g
(i1,...,ik+1,...,iN−5)
+...+ (z1, . . . , zN−5) = E(zk) ∗ g

(i1,...,iN−5)
+...+ (z1, . . . , zN−5) . (4.16)

In the previous equation the convolution is carried out only over the variable zk, even

though this is not manifest in the notation. In general, it will always be clear which is the

variable that enters the convolution integral. The starting point of the recursion is the two-

loop MHV remainder function in MRK, which is known at LLA for an arbitrary number

N of external legs [83, 84], cf. eq. (3.12). While a direct evaluation of the Fourier-Mellin

transform in terms of multiple sums becomes prohibitive because the number of sums

increases with the number of external legs, the recursion (4.16) requires the evaluation of

a single convolution integral at every loop order, independently of the number of external

legs. This is one of the key properties why the convolution integral combined with Stokes’

theorem gives rise to an efficient algorithm to compute scattering amplitudes in MRK.

In practice, however, if we try to evaluate the convolution integral in terms of residues

as we have done for the six-point MHV amplitude, then we have to face a conundrum: The

convolution and the BFKL eigenvalue are naturally written in terms of the Fourier-Mellin

coordinate zk. The residues, however, are most easily computed in simplicial coordinates,

where the poles in g
(i1,...,iN−5)
+...+ manifest themselves simply as points where simplicial co-

ordinates become equal to 0, 1,∞ or to each other. In general, the change of variables

from the Fourier-Mellin coordinates to simplicial coordinates is highly non-linear, and will

introduce complicated Jacobians. In addition, it will obscure the simple form of the BFKL

eigenvalue. This problem arises for the first time for seven points, because for the six-point

amplitude the simplicial and Fourier-Mellin coordinate systems coincide.

In some cases it is possible to identify a set of coordinates which share the good

properties of the simplicial and Fourier-Mellin coordinates even at higher points. We have

seen in Section 3.2 that there is always a (non unique) system of simplicial coordinates based

at zk with the property that t(k)k = zk. This system of coordinates has already some of the

properties we want: it leaves the BFKL eigenvalue unchanged, because t(k)k = zk. However,

the change of coordinates may introduce a non-trivial Jacobian, because in general zk−2,

zk−1 and zk will depend on the new integration variable t(k)k . There is, however, a special

case where the Jacobian is trivial: If we perform a convolution with respect to z1, and we

change variables to simplicial coordinates based at z1, only z1 will depend on t(1)1 , and so

the Jacobian is 1. A similar argument can be made for zN−5, using a slightly different

set of simplicial coordinates. Alternatively, we know that we can exchange the roles of z1
and zN−5 using target-projectile symmetry, so it is sufficient to consider z1. Hence, if we

perform a convolution with respect to the first or last cross ratio z1 or zN−5, we can find

a set of simplicial coordinates with the right properties: it leaves the BFKL eigenvalue

unchanged, it has a unit Jacobian, and at the same time it exposes all the singularities

– 44 –

E(z) = F [E⌫n] = � z + z̄

2|1� z|2



Stokes’ theorem & residues
• Single-valuedness implies that the integral can easily be 

performed in terms of Stokes’ theorem.

➡ All singularities are isolated.

➡ Can integrate over the boundary 
of the punctured complex plane.

they are related to derivatives in z-space,

z ∂zF
[
χ+(ν, n)F (ν, n)

]
= F [F (ν, n)] . (4.3)

A similar relation holds when replacing z by z̄ and χ+ by χ−. The Fourier-Mellin transform

of the LO BFKL eigenvalue is then given by

E(z) ≡ F [Eνn] = z z̄ ∂z ∂̄zF
[
χ+(ν, n)Eνn χ

−(ν, n)
]
= − z + z̄

2 |1− z|2
. (4.4)

Next we discuss how we can evaluate the convolution integral. We assume for now that

in the multi-Regge limit we can express the amplitude to all loop orders in terms of single-

valued hyperlogarithms (This will be proven later in Section 6). In ref. [106] it was shown

that convolution integrals of this type can be computed using residues. To see how this

works, consider a function f(z) that consists of single-valued hyperlogarithms and rational

functions with singularities at z = ai and z = ∞. Close to any of these singularities, f can

be expanded into a series of the form

f(z) =
∑

k,m,n

caik,m,n logk
∣∣∣∣1−

z

ai

∣∣∣∣
2

(z − ai)
m (z̄ − āi)

n , z → ai ,

f(z) =
∑

k,m,n

c∞k,m,n logk
1

|z|2
1

zm
1

z̄n
, z → ∞ .

(4.5)

The holomorphic residue of f at the point z = a is then defined as the coefficient of the

simple holomorphic pole without logarithmic singularities,

Resz=af(z) ≡ ca0,−1,0 . (4.6)

In ref. [106] it was shown that the integral of f over the whole complex plane, if it exists,

can be computed in terms of its holomorphic residues. More precisely, if F is an anti-

holomorphic primitive of f , ∂̄zF = f , then
∫

d2z

π
f(z) = Resz=∞F (z)−

∑

i

Resz=aiF (z) . (4.7)

This result is essentially an application of Stokes’ theorem to the punctured complex plane.

Note that the anti-holomorphic primitive is only defined up to an arbitrary holomorphic

function. It was shown in ref. [98] that every single-valued hyperlogarithm has a single-

valued primitive, and the sum of residues is independent on the choice of the primitive [106].

It is clear that we can repeat the previous argument by reversing the roles of holomorphic

and anti-holomorphic functions.

As a pedagogical example, let us illustrate how this works on the two-loop remainder

function in MRK. Using the convolution theorem, we can write

F
[
χ+(ν, n)Eνn χ

−(ν, n)
]
= F

[
χ+(ν, n)χ−(ν, n)

]
∗ E(z)

=

∫
d2w

π

[
1

2
G0(w) − G1(w)

]
w̄z +wz̄

2 |w|2 |w − z|2
︸ ︷︷ ︸

=f(w)

. (4.8)
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• Convolution appearing in the loop recursion reduces to a 
simple residue computation.

• Start of the recursion: Two-loop MHV amplitude:

Let us discuss the implications of this result. First, eq. (4.19) implies that we can compute

all MHV amplitudes by performing convolutions over the left-most variable z1. Indeed,

assume that we know all MHV amplitude with up to N legs. Then we can write

g
(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(0,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

g
(2,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

(4.20)

and so on. The amplitude in the left-hand side is a known lower-point amplitude. At the

beginning of this section we have argued that we can always easily perform convolutions

over z1 by going to simplicial coordinates based at z1, because the change of variable has

unit Jacobian and leaves the BFKL eigenvalue unchanged. Hence, we conclude that every

MHV amplitude can be recursively constructed in this way, and we have thus obtained an

efficient algorithm to compute scattering amplitudes in MRK.

Next, let us discuss the implications of the factorisation theorem for the structure of

MHV amplitudes. Indeed, since the sum of all indices is related to the loop number, we

see that for a fixed number of loops there is a maximal number of non-zero indices, and

so there is only a finite number of different perturbative coefficients at every loop order.

This generalises the factorisation observed for the two-loop MHV amplitude in MRK to

LLA [83–85]. Indeed, if all indices are zero except for one, say ia, then eq. (4.19) reduces

to

g(0,...,0,ia,0,...,0)+...+ (ρ1, . . . , ρN−5) = g(ia)++ (ρa) , (4.21)

and so at two loops the amplitude completely factorises, in agreement with ref. [83–85],

R(2)
+...+ =

∑

1≤i≤N−5

log τi g
(1)
++(ρi) . (4.22)

As anticipated in ref. [84], the amplitude does no longer factorise completely beyond two

loops. However, we find that at every loop order only a finite number of different functions

appear. For example, at three-loop order at most two indices are non-zero, and so we have

R(3)
+...+ =

1

2

∑

1≤i≤N−5

log2 τi g
(2)
++(ρi) +

∑

1≤i<j≤N−5

log τi log τj g
(1,1)
+++(ρi, ρj) . (4.23)

The only new function that appears at three loops that is not determined by the six-point

amplitude is g(1,1)++ , which is determined by the three-loop seven-point MHV amplitude. At

four loops we have

R(4)
+...+ =

1

6

∑

1≤i≤N−5

log3 τi g
(3)
++(ρi)

+
1

2

∑

1≤i<j≤N−5

[
log2 τi log τj g

(2,1)
+++(ρi, ρj) + log τi log

2 τj g
(1,2)
+++(ρi, ρj)

]

+
∑

1≤i<j<k≤N−5

log τi log τj log τk g
(1,1,1)
++++(ρi, ρj , ρk) .

(4.24)
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Factorisation
• Convolutions imply a factorisation theorem!

of g
(i1,...,iN−5)
+...+ in a very simple form. The algorithm to evaluate the recursion (4.16) for

the first or last cross ratio is then clear: in order to perform the convolution over z1, we

change coordinates to the simplicial coordinates based at z1, and we evaluate the integral

in terms of residues. The change of coordinates requires the use of functional equations

among single-valued polylogarithms, which can be obtained using the techniques described

in Section 3.4.

While the previous considerations answer the question of how to perform convolutions

with respect to the first or last cross ratio, we still need to discuss the remaining cases.

In the following, we argue that all amplitudes can be constructed by convoluting over the

first or last cross ratio only. We only discuss from now on the case of z1; the case of

zN−5 is similar by target-projectile symmetry. The proof of this claim relies on a certain

factorisation theorem which we present in the following.

In order to state the factorisation theorem, it is useful to introduce the following

graphical representation for the perturbative coefficients,

g
(i1,...,iN−5)
h1...hN−4

(ρ1, . . . , ρN−5) =

ρ1 i1

ρN−5 iN−5

hN−4

hN−5

h2

h1

1

0

∞

(4.17)

We work with the simplicial MRK coordinates ρk defined in Section 3.2. Every face of

the dual graph is associated with a point xk (cf. Fig 5), and we work in a coordinate

patch where (x1,x2,xN−2) = (1, 0,∞). Every outgoing line is labeled by its helicity hk.

In addition, to every face we do not only associate its coordinate ρk but also the index ik.

In the following we will not show the points 0, 1 and ∞ explicitly. Using this graphical

representation of the perturbative coefficients the factorisation theorem takes the simple

form

ρc ic

ρb 0

ρa ia

h

h
=

ρc ic

ρa ia
h (4.18)

In other words, whenever the graph representing a perturbative coefficient contains a face

with index ib = 0 and the lines adjacent to this face have the same helicity, then this

perturbative coefficient is equal to the coefficient where this face has been deleted. We

stress that the factorisation theorem holds for arbitrary helicity configurations and is not

restricted to MHV amplitudes. In Section 4.3 we will prove eq. (4.18) in the special case

of MHV amplitudes, and we defer the proof in the non-MHV case to Section 5.

Before turning to the proof of the factorisation theorem, we discuss its implications for

MHV amplitudes. In that particular case, the factorisation theorem implies that we can

drop all the faces labeled by a zero,

g
(0,...,0,ia1 ,0,...,0,ia2 ,0,...,0,iak ,0,...,0)
+...+ (ρ1, . . . , ρN−5) = g

(ia1 ,ia2 ,...,iak)
+...+ (ρia1 , ρia2 , . . . , ρiak ) . (4.19)
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of MHV amplitudes, and we defer the proof in the non-MHV case to Section 5.

Before turning to the proof of the factorisation theorem, we discuss its implications for
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• Factorisation theorem:

• N.B.: Factorisation is not restricted to MHV!
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that are related by conformal transformations. As SL(2,C) has complex dimension 3, we

immediately see that

dimC M0,n = n− 3 . (3.6)

Roughly speaking, since M0,n is SL(2,C)-invariant, a system of coordinates is given

by a set of cross ratios formed out of the points xi. There is no global coordinate system

on M0,n. One such set of cross ratios is given by the cross ratios zi defined in eq. (2.28).

We will refer to these coordinates as Fourier-Mellin coordinates. These coordinates are

well suited to write down the Fourier-Mellin transforms that describe amplitudes in MRK.

These coordinates, however, are not ideal to describe the iterated integrals on M0,n.

In ref. [41] various local systems of coordinates are discussed that are well suited to

study iterated integrals on M0,n. A particularly simple set of local coordinates are the

simplicial coordinates, obtained by using the SL(2,C) invariance to fix three of the n

points to 0, 1 and ∞, e.g.,

(x1, . . . ,xn) → (0, 1,∞, t1, . . . , tn−3) , with ti−3 =
(xi − x1)(x2 − x3)

(xi − x3)(x2 − x1)
, 4 ≤ i ≤ n . (3.7)

Note that there are 6
(n
3

)
= n(n − 1)(n − 2) different choices for simplicial coordinates,

depending on which three points we fix to (0, 1,∞). Using simplicial coordinates we can

describe M0,n (roughly speaking) as the space

{(t1, . . . , tn−3) ∈ Cn−3|ti ̸= 0, 1 and ti ̸= tj} . (3.8)

While there is in principle no reason to prefer one particular choice of simplicial coordi-

nates over the other, some choices are more suited to MRK than others. In particular, it is

useful to choose the coordinates so that they transform nicely under the symmetries of the

problem. In our case, we prefer to choose simplicial coordinates on which target-projectile

symmetry acts in a simple way. It is easy to check that the simplicial coordinate systems

with this property are defined by fixing the points (x1,xk,xN−k), 2 ≤ k ≤
⌈
N−1
2

⌉
. In

addition, for N even the set of simplicial coordinates defined by fixing (xN/2,xk,xN−k)

also has this property.

There is one particular choice of simplicial coordinates with the nice property that

in these coordinates the two-loop MHV amplitudes factorise into sums of six-point ampli-

tudes [83–85]. They are defined by

(x1, . . . ,xN−2) → (1, 0, ρ1, . . . , ρN−5,∞) . (3.9)

We refer to these coordinates as simplicial MRK coordinates. From the previous discus-

sion it follows that simplicial MRK coordinates transform nicely under target projectile

symmetry,

(ρ1, . . . , ρN−5) '→ (1/ρN−5, . . . , 1/ρ1) . (3.10)

Simplicial MRK coordinates are related to the Fourier-Mellin coordinates by

zi =
(ρi − ρi−1)(ρi+1 − 1)

(ρi − ρi+1)(ρi−1 − 1)
, (3.11)

– 24 –

of g
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among single-valued polylogarithms, which can be obtained using the techniques described

in Section 3.4.

While the previous considerations answer the question of how to perform convolutions

with respect to the first or last cross ratio, we still need to discuss the remaining cases.

In the following, we argue that all amplitudes can be constructed by convoluting over the

first or last cross ratio only. We only discuss from now on the case of z1; the case of

zN−5 is similar by target-projectile symmetry. The proof of this claim relies on a certain

factorisation theorem which we present in the following.

In order to state the factorisation theorem, it is useful to introduce the following

graphical representation for the perturbative coefficients,

g
(i1,...,iN−5)
h1...hN−4

(ρ1, . . . , ρN−5) =

ρ1 i1

ρN−5 iN−5

hN−4

hN−5

h2

h1

1

0

∞

(4.17)

We work with the simplicial MRK coordinates ρk defined in Section 3.2. Every face of

the dual graph is associated with a point xk (cf. Fig 5), and we work in a coordinate

patch where (x1,x2,xN−2) = (1, 0,∞). Every outgoing line is labeled by its helicity hk.

In addition, to every face we do not only associate its coordinate ρk but also the index ik.

In the following we will not show the points 0, 1 and ∞ explicitly. Using this graphical

representation of the perturbative coefficients the factorisation theorem takes the simple

form

ρc ic

ρb 0

ρa ia

h

h
=

ρc ic

ρa ia
h (4.18)

In other words, whenever the graph representing a perturbative coefficient contains a face

with index ib = 0 and the lines adjacent to this face have the same helicity, then this

perturbative coefficient is equal to the coefficient where this face has been deleted. We

stress that the factorisation theorem holds for arbitrary helicity configurations and is not

restricted to MHV amplitudes. In Section 4.3 we will prove eq. (4.18) in the special case

of MHV amplitudes, and we defer the proof in the non-MHV case to Section 5.

Before turning to the proof of the factorisation theorem, we discuss its implications for

MHV amplitudes. In that particular case, the factorisation theorem implies that we can

drop all the faces labeled by a zero,

g
(0,...,0,ia1 ,0,...,0,ia2 ,0,...,0,iak ,0,...,0)
+...+ (ρ1, . . . , ρN−5) = g

(ia1 ,ia2 ,...,iak)
+...+ (ρia1 , ρia2 , . . . , ρiak ) . (4.19)

– 45 –



Factorisation for MHV
• For MHV amplitudes, the factorisation implies that we can 

drop all 0’s:

• Consequence: At L loops an MHV amplitudes in MRK at LLA 
is determined by amplitudes with at most (L+4) external legs.

of g
(i1,...,iN−5)
+...+ in a very simple form. The algorithm to evaluate the recursion (4.16) for

the first or last cross ratio is then clear: in order to perform the convolution over z1, we

change coordinates to the simplicial coordinates based at z1, and we evaluate the integral

in terms of residues. The change of coordinates requires the use of functional equations

among single-valued polylogarithms, which can be obtained using the techniques described

in Section 3.4.

While the previous considerations answer the question of how to perform convolutions

with respect to the first or last cross ratio, we still need to discuss the remaining cases.

In the following, we argue that all amplitudes can be constructed by convoluting over the

first or last cross ratio only. We only discuss from now on the case of z1; the case of

zN−5 is similar by target-projectile symmetry. The proof of this claim relies on a certain

factorisation theorem which we present in the following.

In order to state the factorisation theorem, it is useful to introduce the following

graphical representation for the perturbative coefficients,

g
(i1,...,iN−5)
h1...hN−4

(ρ1, . . . , ρN−5) =

ρ1 i1

ρN−5 iN−5

hN−4

hN−5

h2

h1

1

0

∞

(4.17)

We work with the simplicial MRK coordinates ρk defined in Section 3.2. Every face of

the dual graph is associated with a point xk (cf. Fig 5), and we work in a coordinate

patch where (x1,x2,xN−2) = (1, 0,∞). Every outgoing line is labeled by its helicity hk.

In addition, to every face we do not only associate its coordinate ρk but also the index ik.

In the following we will not show the points 0, 1 and ∞ explicitly. Using this graphical

representation of the perturbative coefficients the factorisation theorem takes the simple

form

ρc ic

ρb 0

ρa ia

h

h
=

ρc ic

ρa ia
h (4.18)

In other words, whenever the graph representing a perturbative coefficient contains a face

with index ib = 0 and the lines adjacent to this face have the same helicity, then this

perturbative coefficient is equal to the coefficient where this face has been deleted. We

stress that the factorisation theorem holds for arbitrary helicity configurations and is not

restricted to MHV amplitudes. In Section 4.3 we will prove eq. (4.18) in the special case

of MHV amplitudes, and we defer the proof in the non-MHV case to Section 5.

Before turning to the proof of the factorisation theorem, we discuss its implications for

MHV amplitudes. In that particular case, the factorisation theorem implies that we can

drop all the faces labeled by a zero,

g
(0,...,0,ia1 ,0,...,0,ia2 ,0,...,0,iak ,0,...,0)
+...+ (ρ1, . . . , ρN−5) = g

(ia1 ,ia2 ,...,iak)
+...+ (ρia1 , ρia2 , . . . , ρiak ) . (4.19)
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Let us discuss the implications of this result. First, eq. (4.19) implies that we can compute

all MHV amplitudes by performing convolutions over the left-most variable z1. Indeed,

assume that we know all MHV amplitude with up to N legs. Then we can write

g
(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(0,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

g
(2,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

(4.20)

and so on. The amplitude in the left-hand side is a known lower-point amplitude. At the

beginning of this section we have argued that we can always easily perform convolutions

over z1 by going to simplicial coordinates based at z1, because the change of variable has

unit Jacobian and leaves the BFKL eigenvalue unchanged. Hence, we conclude that every

MHV amplitude can be recursively constructed in this way, and we have thus obtained an

efficient algorithm to compute scattering amplitudes in MRK.

Next, let us discuss the implications of the factorisation theorem for the structure of

MHV amplitudes. Indeed, since the sum of all indices is related to the loop number, we

see that for a fixed number of loops there is a maximal number of non-zero indices, and

so there is only a finite number of different perturbative coefficients at every loop order.

This generalises the factorisation observed for the two-loop MHV amplitude in MRK to

LLA [83–85]. Indeed, if all indices are zero except for one, say ia, then eq. (4.19) reduces

to

g(0,...,0,ia,0,...,0)+...+ (ρ1, . . . , ρN−5) = g(ia)++ (ρa) , (4.21)

and so at two loops the amplitude completely factorises, in agreement with ref. [83–85],

R(2)
+...+ =

∑

1≤i≤N−5

log τi g
(1)
++(ρi) . (4.22)

As anticipated in ref. [84], the amplitude does no longer factorise completely beyond two

loops. However, we find that at every loop order only a finite number of different functions

appear. For example, at three-loop order at most two indices are non-zero, and so we have

R(3)
+...+ =

1

2

∑

1≤i≤N−5

log2 τi g
(2)
++(ρi) +

∑

1≤i<j≤N−5

log τi log τj g
(1,1)
+++(ρi, ρj) . (4.23)

The only new function that appears at three loops that is not determined by the six-point

amplitude is g(1,1)++ , which is determined by the three-loop seven-point MHV amplitude. At

four loops we have

R(4)
+...+ =

1

6

∑

1≤i≤N−5

log3 τi g
(3)
++(ρi)

+
1

2

∑

1≤i<j≤N−5

[
log2 τi log τj g

(2,1)
+++(ρi, ρj) + log τi log

2 τj g
(1,2)
+++(ρi, ρj)

]

+
∑

1≤i<j<k≤N−5

log τi log τj log τk g
(1,1,1)
++++(ρi, ρj , ρk) .

(4.24)
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• Three loops:

Let us discuss the implications of this result. First, eq. (4.19) implies that we can compute

all MHV amplitudes by performing convolutions over the left-most variable z1. Indeed,

assume that we know all MHV amplitude with up to N legs. Then we can write

g
(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(0,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

g
(2,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

(4.20)

and so on. The amplitude in the left-hand side is a known lower-point amplitude. At the

beginning of this section we have argued that we can always easily perform convolutions

over z1 by going to simplicial coordinates based at z1, because the change of variable has

unit Jacobian and leaves the BFKL eigenvalue unchanged. Hence, we conclude that every

MHV amplitude can be recursively constructed in this way, and we have thus obtained an

efficient algorithm to compute scattering amplitudes in MRK.

Next, let us discuss the implications of the factorisation theorem for the structure of

MHV amplitudes. Indeed, since the sum of all indices is related to the loop number, we

see that for a fixed number of loops there is a maximal number of non-zero indices, and

so there is only a finite number of different perturbative coefficients at every loop order.

This generalises the factorisation observed for the two-loop MHV amplitude in MRK to

LLA [83–85]. Indeed, if all indices are zero except for one, say ia, then eq. (4.19) reduces

to

g(0,...,0,ia,0,...,0)+...+ (ρ1, . . . , ρN−5) = g(ia)++ (ρa) , (4.21)

and so at two loops the amplitude completely factorises, in agreement with ref. [83–85],

R(2)
+...+ =

∑

1≤i≤N−5

log τi g
(1)
++(ρi) . (4.22)

As anticipated in ref. [84], the amplitude does no longer factorise completely beyond two

loops. However, we find that at every loop order only a finite number of different functions

appear. For example, at three-loop order at most two indices are non-zero, and so we have

R(3)
+...+ =

1

2

∑

1≤i≤N−5

log2 τi g
(2)
++(ρi) +

∑

1≤i<j≤N−5

log τi log τj g
(1,1)
+++(ρi, ρj) . (4.23)

The only new function that appears at three loops that is not determined by the six-point

amplitude is g(1,1)++ , which is determined by the three-loop seven-point MHV amplitude. At

four loops we have

R(4)
+...+ =

1

6

∑

1≤i≤N−5

log3 τi g
(3)
++(ρi)

+
1

2

∑

1≤i<j≤N−5

[
log2 τi log τj g

(2,1)
+++(ρi, ρj) + log τi log

2 τj g
(1,2)
+++(ρi, ρj)

]

+
∑

1≤i<j<k≤N−5

log τi log τj log τk g
(1,1,1)
++++(ρi, ρj , ρk) .

(4.24)
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Factorisation for MHV
• Four loops:

Let us discuss the implications of this result. First, eq. (4.19) implies that we can compute

all MHV amplitudes by performing convolutions over the left-most variable z1. Indeed,

assume that we know all MHV amplitude with up to N legs. Then we can write

g
(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(0,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

g
(2,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

(4.20)

and so on. The amplitude in the left-hand side is a known lower-point amplitude. At the

beginning of this section we have argued that we can always easily perform convolutions

over z1 by going to simplicial coordinates based at z1, because the change of variable has

unit Jacobian and leaves the BFKL eigenvalue unchanged. Hence, we conclude that every

MHV amplitude can be recursively constructed in this way, and we have thus obtained an

efficient algorithm to compute scattering amplitudes in MRK.

Next, let us discuss the implications of the factorisation theorem for the structure of

MHV amplitudes. Indeed, since the sum of all indices is related to the loop number, we

see that for a fixed number of loops there is a maximal number of non-zero indices, and

so there is only a finite number of different perturbative coefficients at every loop order.

This generalises the factorisation observed for the two-loop MHV amplitude in MRK to

LLA [83–85]. Indeed, if all indices are zero except for one, say ia, then eq. (4.19) reduces

to

g(0,...,0,ia,0,...,0)+...+ (ρ1, . . . , ρN−5) = g(ia)++ (ρa) , (4.21)

and so at two loops the amplitude completely factorises, in agreement with ref. [83–85],

R(2)
+...+ =

∑

1≤i≤N−5

log τi g
(1)
++(ρi) . (4.22)

As anticipated in ref. [84], the amplitude does no longer factorise completely beyond two

loops. However, we find that at every loop order only a finite number of different functions

appear. For example, at three-loop order at most two indices are non-zero, and so we have

R(3)
+...+ =

1

2

∑

1≤i≤N−5

log2 τi g
(2)
++(ρi) +

∑

1≤i<j≤N−5

log τi log τj g
(1,1)
+++(ρi, ρj) . (4.23)

The only new function that appears at three loops that is not determined by the six-point

amplitude is g(1,1)++ , which is determined by the three-loop seven-point MHV amplitude. At

four loops we have

R(4)
+...+ =

1

6

∑

1≤i≤N−5

log3 τi g
(3)
++(ρi)

+
1

2

∑

1≤i<j≤N−5

[
log2 τi log τj g

(2,1)
+++(ρi, ρj) + log τi log

2 τj g
(1,2)
+++(ρi, ρj)

]

+
∑

1≤i<j<k≤N−5

log τi log τj log τk g
(1,1,1)
++++(ρi, ρj , ρk) .

(4.24)
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• We have computed all MHV building blocks up to five loops.

➡ Explicit analytic results for all MHV amplitudes in MRK at 
LLA up to five loops!

[Parallel work by Brödel and Spenger on 7-point 
amplitude through 5 loops, and

by Bargheer on 7-point MHV symbol at three loops.]
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Helicity flips
• Master formula:

2.6 Perturbative expansion of the ratio Rh1,...,hN−4

So far all the considerations were made before the perturbative expansion of the function

Rh1,...,hN−4
. If we expand the integrand in eq. (2.37) perturbatively, then at each order we

obtain logarithms of τk. The coefficients of these logarithms are the main objects of interest

in the rest of this paper. We write the perturbative expansion of the function Rh1,...,hN−4

as

Rh1,...,hN−4
(τ1, z1, . . . , τN−5, zN−5) = 1 + a iπ r(1)h1,...,hN−4

+ 2πi
∞∑

i=2

∑

i1+...+iN−5=i−1

ai
(

N−5∏

k=1

1

ik!
logik τk

)

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) .
(2.76)

The perturbative coefficients are completely known forN = 6 for both MHV and NMHV [76–

81], and for all MHV amplitudes at two loops [83–85]. Comparing the perturbative ex-

pansion to eq. (2.37), we see that the perturbative coefficients admit a representation as a

Fourier-Mellin transform,

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) =
(−1)N+1

2

[
N−5∏

k=1

+∞∑

nk=−∞

(
zk
z̄k

)nk/2 ∫ +∞

−∞

dνk
2π

|zk|2iνkEik
νknk

]

× χh1(ν1, n1)

⎡

⎣
N−6∏

j=1

Chj(νj , nj, νj+1, nj+1)

⎤

⎦ χ−hN−5(νN−5, nN−5) . (2.77)

The poles on the real axis are dealt with by the prescription already outlined in (2.42) -

(2.44).

The symmetries of the ratio Rh1,...,hN−4
discussed in the previous section induce similar

symmetries on the perturbative coefficients,

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = g
(i1,...,iN−5)
−h1,...,−hN−4

(z̄1, . . . , z̄N−5)

= g
(iN−5 ,...,i1)
−hN−4,...,−h1

(
1

zN−5
, . . . ,

1

z1

)
.

(2.78)

In the soft limits, the perturbative coefficients must reduce to lower-point functions.

The limits where either k1 or kN−4 vanish are easy to describe: the perturbative coefficients

reduce to the corresponding coefficients with the soft momentum removed, except if the

corresponding large logarithm is present, in which case the perturbative coefficient vanishes

in the limit. More precisely,

lim
z1→0

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = δi10 g
(i2,...,iN−5)
h2,...,hN−4

(z2, . . . , zN−5) ,

lim
zN−5→∞

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = δiN−50 g
(i1,...,iN−6)
h1,...,hN−5

(z1, . . . , zN−6) .
(2.79)

If kj , with j /∈ {1, N − 4} is soft, then the perturbative coefficients behave like,

lim
(zj−1,zj)→(∞,0)

zj−1zj fixed

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5)

= g
(i1,...,ij−1+ij ,...,iN−5)

h1,...,ĥj ,...,hN−4
(z1, . . . ,−zj−1zj , . . . , zN−5) .

(2.80)
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c

• It is easy to flip helicities in FM space:

Proof of the factorisation theorem for MHV amplitudes. The factorisation the-

orem for MHV amplitudes, eq. (4.19), now follows from Claims 1 and 2. Assume that

eq. (4.19) holds for all perturbative MHV coefficients up to a certain number N −1 of legs,

and let us show that it still holds for coefficients with one more leg. We denote the pertur-

bative coefficient with one more leg by g
(i1,...,iN−5)
+...+ (ρ1, . . . , ρN−5) and we label the non-zero

elements in (i2, . . . , iN−5) by ia1 , . . . , iak , 2 ≤ aj ≤ N − 5. If i1 = 0, then Claim 1 implies

that we can drop the first index. The resulting function is an (N − 1)-point amplitude,

where eq. (4.19) applies. So we have

g
(0,i2,...,iN5

)
+...+ (ρ1, . . . , ρN−5) = g

(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) = g

(ia1 ,...,iak)
+...+ (ρa1 , . . . , ρak) , (4.41)

in agreement with eq. (4.19). If i1 ̸= 0, we write the amplitude as a convolution using the

recursion (4.16). For the sake of the example, consider the case i1 = 1. We have,

g
(1,i2,...,iN5

)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(0,i2,...,iN5
)

+...+ (ρ2, . . . , ρN−5)

= E(z1) ∗ g
(ia1 ,...,iak)
+...+ (ρa1 , . . . , ρak) ,

(4.42)

where we have used the fact that we know that eq. (4.19) holds for i1 = 0. From Claim 2

we know that the result of the convolution will only depend on (ρ1, ρa1 , . . . , ρak). The only

thing left to show is that the function F in Claim 2 is precisely the perturbative coefficient

g
(1,ia1 ,...,iak )
+...+ . This follows immediately upon noting that the convolution integral used to

compute g
(1,ia1 ,...,iak)
+...+ is exactly the same as the one in eq. (4.42), up to a relabelling of the

variables. Repeating exactly the same argument for i1 > 1, we see that eq. (4.19) holds in

general.

5. Non-MHV amplitudes in MRK

5.1 Helicity-flip operations

So far we have only considered MHV amplitudes. In this section we generalise all the

results from the previous section to non-MHV amplitudes. In particular, we extend the

factorisation theorem (4.18) to the non-MHV case. We start by introducing an additional

concept before we are ready to prove the factorisation theorem for non-MHV amplitudes.

Let us start by analysing what happens if we start from an MHV amplitude and we

flip the helicity on an impact factor. In Fourier-Mellin space, this amounts to replacing

χ+(ν, n) by χ−(ν, n),

F
[
χ+(ν, n)F (ν, n)

]
−→ F

[
χ−(ν, n)F (ν, n)

]

= F
[
χ−(ν, n)/χ+(ν, n)

]
∗ F

[
χ+(ν, n)F (ν, n)

]
(5.1)

= F
[
iν + n

2

iν − n
2

]
∗ F

[
χ+(ν, n)F (ν, n)

]
.

We see that flipping the helicity on an impact factor amounts to convoluting with the

universal helicity-flip kernel

H(z) ≡ F
[
iν + n

2

iν − n
2

]
. (5.2)
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Proof of the factorisation theorem for MHV amplitudes. The factorisation the-

orem for MHV amplitudes, eq. (4.19), now follows from Claims 1 and 2. Assume that

eq. (4.19) holds for all perturbative MHV coefficients up to a certain number N −1 of legs,

and let us show that it still holds for coefficients with one more leg. We denote the pertur-

bative coefficient with one more leg by g
(i1,...,iN−5)
+...+ (ρ1, . . . , ρN−5) and we label the non-zero

elements in (i2, . . . , iN−5) by ia1 , . . . , iak , 2 ≤ aj ≤ N − 5. If i1 = 0, then Claim 1 implies

that we can drop the first index. The resulting function is an (N − 1)-point amplitude,

where eq. (4.19) applies. So we have

g
(0,i2,...,iN5

)
+...+ (ρ1, . . . , ρN−5) = g

(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) = g

(ia1 ,...,iak)
+...+ (ρa1 , . . . , ρak) , (4.41)

in agreement with eq. (4.19). If i1 ̸= 0, we write the amplitude as a convolution using the

recursion (4.16). For the sake of the example, consider the case i1 = 1. We have,

g
(1,i2,...,iN5

)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(0,i2,...,iN5
)

+...+ (ρ2, . . . , ρN−5)

= E(z1) ∗ g
(ia1 ,...,iak)
+...+ (ρa1 , . . . , ρak) ,

(4.42)

where we have used the fact that we know that eq. (4.19) holds for i1 = 0. From Claim 2

we know that the result of the convolution will only depend on (ρ1, ρa1 , . . . , ρak). The only

thing left to show is that the function F in Claim 2 is precisely the perturbative coefficient

g
(1,ia1 ,...,iak )
+...+ . This follows immediately upon noting that the convolution integral used to

compute g
(1,ia1 ,...,iak)
+...+ is exactly the same as the one in eq. (4.42), up to a relabelling of the

variables. Repeating exactly the same argument for i1 > 1, we see that eq. (4.19) holds in

general.

5. Non-MHV amplitudes in MRK

5.1 Helicity-flip operations

So far we have only considered MHV amplitudes. In this section we generalise all the

results from the previous section to non-MHV amplitudes. In particular, we extend the

factorisation theorem (4.18) to the non-MHV case. We start by introducing an additional

concept before we are ready to prove the factorisation theorem for non-MHV amplitudes.

Let us start by analysing what happens if we start from an MHV amplitude and we

flip the helicity on an impact factor. In Fourier-Mellin space, this amounts to replacing

χ+(ν, n) by χ−(ν, n),

F
[
χ+(ν, n)F (ν, n)

]
−→ F

[
χ−(ν, n)F (ν, n)

]

= F
[
χ−(ν, n)/χ+(ν, n)

]
∗ F

[
χ+(ν, n)F (ν, n)

]
(5.1)

= F
[
iν + n

2

iν − n
2

]
∗ F

[
χ+(ν, n)F (ν, n)

]
.

We see that flipping the helicity on an impact factor amounts to convoluting with the

universal helicity-flip kernel

H(z) ≡ F
[
iν + n

2

iν − n
2

]
. (5.2)
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The functional form of H(z) can easily be obtained by performing explicitly the Fourier-

Mellin transform. The integrand has only a simple pole at iν = n/2, and so we find

H(z) = H(1/z) = − z

(1− z)2
. (5.3)

Note that helicity-flip kernel is an involution, i.e., flipping the helicity twice on the same

impact factor returns the original helicity configuration, and so

H(z) ∗H(z̄) = F [1] = π δ(2)(1− z) . (5.4)

Similarly, if we flip the helicity on one of the central emission blocks and use eq. (2.57),

we obtain

F
[
C+(ν, n, µ,m)F (ν, n, µ,m)

]
−→ F

[
C−(ν, n, µ,m)F (ν, n, µ,m)

]

= F
[
C−(ν, n, µ,m)

C+(ν, n, µ,m)

]
∗ F

[
C+(ν, n, µ,m)F (ν, n, µ,m)

]

= F
[
χ+(ν, n)χ−(µ,m)

χ−(ν, n)χ+(µ,m)

]
∗ F

[
C+(ν, n, µ,m)F (ν, n, µ,m)

]

= H(z̄1) ∗H(z2) ∗F
[
C+(ν, n, µ,m)F (ν, n, µ,m)

]
.

(5.5)

We see that the flipping of the helicity on a central emission block is controlled by the same

kernels as for the impact factor. As a consistency check, the helicity flip kernels allow us

to show that MHV and MHV amplitudes are identical,

R−...−(z1, . . . , zN−5) = H(z1) ∗R+−...−(z1, . . . , zN−5)

= H(z1) ∗H(z̄1) ∗H(z2) ∗R++−...−(z1, . . . , zN−5)

= H(z2) ∗R++−...−(z1, . . . , zN−5)

= . . .

= H(zN−5) ∗R+...+−(z1, . . . , zN−5)

= H(zN−5) ∗H(z̄N−5) ∗R+...+(z1, . . . , zN−5)

= R+...+(z1, . . . , zN−5) .

(5.6)

Let us conclude this section by making a comment about some classes of non-MHV

amplitudes with a special property. In ref. [84] it was argued that flipping the helicity on

an impact factor to produce an NMHV amplitude from an MHV amplitude is equivalent

to differentiating in the holomorphic variable and integrating in the anti-holomorphic one.

Let us see how this arises from the helicity-flip kernel. We have

R−+...+(z1, . . . , zN−5) = H(z1) ∗R+...+(z1, . . . , zN−5)

= −
∫

d2w

π

z1
w̄(w − z1)2

R+...+(w, z2 . . . , zN−5) .
(5.7)

We can evaluate eq. (5.7) in terms of residues. Let us denote by F the anti-holomorphic

primitive,

F (w, z2 . . . , zN−5) ≡
∫

dw̄

w̄
R++...+(w, z2 . . . , zN−5) . (5.8)
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➡ Helicity flip kernel:

• Flipping helicities on central emission blocks is similar.



Helicity flips
• Helicity flip kernel has a double pole: 

➡ Acts as a ‘derivative’ in residue computation.
➡ Produces rational prefactors (leading singularities).

Proof of the factorisation theorem for MHV amplitudes. The factorisation the-
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bative coefficient with one more leg by g
(i1,...,iN−5)
+...+ (ρ1, . . . , ρN−5) and we label the non-zero
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that we can drop the first index. The resulting function is an (N − 1)-point amplitude,

where eq. (4.19) applies. So we have

g
(0,i2,...,iN5

)
+...+ (ρ1, . . . , ρN−5) = g

(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) = g

(ia1 ,...,iak)
+...+ (ρa1 , . . . , ρak) , (4.41)

in agreement with eq. (4.19). If i1 ̸= 0, we write the amplitude as a convolution using the

recursion (4.16). For the sake of the example, consider the case i1 = 1. We have,

g
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)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g
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)
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+...+ (ρa1 , . . . , ρak) ,

(4.42)

where we have used the fact that we know that eq. (4.19) holds for i1 = 0. From Claim 2

we know that the result of the convolution will only depend on (ρ1, ρa1 , . . . , ρak). The only

thing left to show is that the function F in Claim 2 is precisely the perturbative coefficient

g
(1,ia1 ,...,iak )
+...+ . This follows immediately upon noting that the convolution integral used to

compute g
(1,ia1 ,...,iak)
+...+ is exactly the same as the one in eq. (4.42), up to a relabelling of the
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Let us see how this arises from the helicity-flip kernel. We have
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= −
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We can evaluate eq. (5.7) in terms of residues. Let us denote by F the anti-holomorphic
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➡ Non-MHV amplitudes are not pure functions!

• Factorisation theorem still holds for non-MHV amplitudes.
➡ Unlike MHV, there is an infinite number building blocks 

already at two loops.
➡ Irreducible building blocks: alternating helicities (-+-+-+…).

is indeed the case, and so we obtain a new non-MHV building block with a vanishing index,

R(2)
−++ = log τ1 g

(1)
−+(ρ1) + log τ2 g

(0,1)
−++(ρ1, ρ2) . (5.17)

Hence, the simple factorisation observed for MHV amplitudes, eq. (4.19), is no longer valid

for non-MHV amplitudes.

As a consequence, unlike for MHV amplitudes, the number of building blocks is no

longer finite at each loop order in the non-MHV case. As eq. (4.19) is no longer valid

for non-MHV amplitudes, the number of different coefficients is no longer bounded. In

particular, unless there is another mechanism at work that waits yet to be uncovered,

there should be an infinite tower of different non-MHV coefficients already at two loops,

because the factorisation theorem does not allow us to reduce the coefficients corresponding

to alternating helicities to simpler functions.

We have computed explicitly all non-MHV amplitudes up to eight external legs and four

loops. Analytic results for the independent helicity configurations are shown in Appendix D

up to three loops for six and seven external legs and up to two loops for eight external legs.

Results up to four loops and eight points are included as ancillary material in computer-

readable form with the arXiv submission. We have checked that in all cases our results have

the correct soft limits and symmetry properties. These results are sufficient to compute all

two-loop NMHV amplitudes. If hi = −1 and all other helicities are positive, we obtain

R(2)
+...−...+ = log τi−1 g

(1,0)
+−+(ρi−1, ρi) + log τi g

(0,1)
+−+(ρi−1, ρi)

+
∑

1≤j<i−1

log τj g
(1,0,0)
++−+(ρj , ρi−1, ρi)

+
∑

i<j≤N−5

log τj g
(0,0,1)
+−++(ρi−1, ρi, ρj) .

(5.18)

The previous formula is not valid for i ∈ {1, 2, N − 5, N − 6}, in which case we have

R(2)
−+... = log τ1 g

(1)
−+(ρ1) +

N−5∑

j=2

log τj g
(0,1)
−++(ρ1, ρj) ,

R(2)
+−+... = log τ1 g

(1,0)
+−+(ρ1, ρ2) + log τ2 g

(0,1)
+−+(ρ1, ρ2) +

N−5∑

j=3

log τj g
(0,0,1)
+−++(ρ1, ρ2, ρj) ,

(5.19)

and the remaining cases can be obtained from target-projectile symmetry.

5.3 Leading singularities of scattering amplitudes in MRK

In the previous section we have shown how we can compute non-MHV amplitudes via

convolution with the universal helicity flip kernel H. Due to the double pole in the helicity

flip kernel, non-MHV amplitudes are no longer pure, but the transcendental functions

are multiplied by rational prefactors. This is in agreement with the expectation for the

structure of scattering amplitudes in full kinematics, where these coefficients are identified

with the leading singularities of the amplitudes [107]. In this section we present a way to
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• Example:



An algorithm
• All MRK amplitudes at LLA can be computed via a 

sequence of the following three elementary operations:

➡ Add particles with the same helicity without BFKL 
eigenvalue insertion, e.g.,

➡ Flip helicity with helicity flip kernel:

➡ Increase loop number with BFKL eigenvalue:

• We have explicitly computed all non-MHV amplitudes up to 
four loops and eight legs.

3. Adding more particles to the left with index zero and equal helicities.

In particular this implies that every non-MHV amplitude can be constructed from a NMHV

helicity configuration of the from −+ . . .+ by successive application of these three elemen-

tary operations (we can always assume the rightmost helicity to be hN−4 = +1). It is

evident that we can reach a similar conclusion by adding more particles to the right and

convoluting with E(zN−5) and H(zN−5).

Let us illustrate this procedure on a short example. Note that in the following we

consider all convolutions to be over z1 and we see all the simplicial MRK coordinates ρi as

functions of the zi. The perturbative coefficient g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) can be constructed

in the following way: We start with the perturbative coefficient g(1,2)+++(ρ1, ρ2) and flip its

leftmost helicity ,

g(1,2)+++(ρ1, ρ2) → g(1,2)−++(ρ1, ρ2) = H(z1) ∗ g(1,2)+++(ρ1, ρ2) . (5.36)

Next, we add additional particles with index zero and negative helicity to the left and we

use the factorization theorem to remove zero indices,

g(1,2)−++(ρ1, ρ2) → g(0,0,1,2)−−−++(ρ1, . . . , ρ4) = g(1,2)−++(ρ3, ρ4) . (5.37)

Note that this operation is equivalent to simply shifting the indices of all the simplicial

MRK coordinates. Next, we increase the first index by convolution with E(z1) and perform

another shift in simplicial MRK coordinates to add one more external particle,

g(0,0,1,2)−−−++(ρ1, . . . , ρ4) → g(2,0,1,2)−−−++(ρ1, . . . , ρ4) = E(z1) ∗ E(z1) ∗ g(0,0,1,2)−−−++(ρ1, . . . , ρ4)

→ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) = g(2,0,1,2)−−−++(ρ2, . . . , ρ5) .
(5.38)

Then we flip the first helicity and perform one more shift in simplicial MRK coordinates,

g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) → g(0,2,0,1,2)+−−−++(ρ1, . . . , ρ5) = H(z̄1) ∗ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5)

→ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = g(0,2,0,1,2)+−−−++(ρ2, . . . , ρ6) .
(5.39)

Finally, we arrive at the desired perturbative coefficient by increasing the first index by

one unit,

g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) → g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = E(z1) ∗ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) . (5.40)

Let us now turn to the proof of the structure of the leading singularities in MRK. More

precisely, we will proof that the building blocks in eq. (5.25) exhaust all rational prefactors

of non-MHV amplitudes in MRK for any number of particles and any loop order.

As a warm-up, let us consider the case of a NMHV amplitude where the first gluon

emitted along the ladder has a negative helicity, and all other gluons have a positive helicity.

We can construct this amplitude by starting from an MHV amplitude and then we flip the

first helicity, cf. eq. (5.9). As MHV amplitudes are pure functions, the anti-holomorphic

primitive will itself be pure. If we work in simplicial coordinates based at z1, where t1 = z1,

we can write eq. (5.9) in the form

g(i1,...,in)−+···+ (ρ1, . . . , ρn) = t1∂t1

∫
dt̄1

1

t̄1
g(i1,...,in)+···+ (ρ1, . . . , ρn) , (5.41)
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3. Adding more particles to the left with index zero and equal helicities.

In particular this implies that every non-MHV amplitude can be constructed from a NMHV
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we can write eq. (5.9) in the form

g(i1,...,in)−+···+ (ρ1, . . . , ρn) = t1∂t1

∫
dt̄1

1

t̄1
g(i1,...,in)+···+ (ρ1, . . . , ρn) , (5.41)
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3. Adding more particles to the left with index zero and equal helicities.

In particular this implies that every non-MHV amplitude can be constructed from a NMHV

helicity configuration of the from −+ . . .+ by successive application of these three elemen-

tary operations (we can always assume the rightmost helicity to be hN−4 = +1). It is

evident that we can reach a similar conclusion by adding more particles to the right and

convoluting with E(zN−5) and H(zN−5).

Let us illustrate this procedure on a short example. Note that in the following we

consider all convolutions to be over z1 and we see all the simplicial MRK coordinates ρi as

functions of the zi. The perturbative coefficient g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) can be constructed

in the following way: We start with the perturbative coefficient g(1,2)+++(ρ1, ρ2) and flip its

leftmost helicity ,

g(1,2)+++(ρ1, ρ2) → g(1,2)−++(ρ1, ρ2) = H(z1) ∗ g(1,2)+++(ρ1, ρ2) . (5.36)

Next, we add additional particles with index zero and negative helicity to the left and we

use the factorization theorem to remove zero indices,

g(1,2)−++(ρ1, ρ2) → g(0,0,1,2)−−−++(ρ1, . . . , ρ4) = g(1,2)−++(ρ3, ρ4) . (5.37)

Note that this operation is equivalent to simply shifting the indices of all the simplicial

MRK coordinates. Next, we increase the first index by convolution with E(z1) and perform

another shift in simplicial MRK coordinates to add one more external particle,

g(0,0,1,2)−−−++(ρ1, . . . , ρ4) → g(2,0,1,2)−−−++(ρ1, . . . , ρ4) = E(z1) ∗ E(z1) ∗ g(0,0,1,2)−−−++(ρ1, . . . , ρ4)

→ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) = g(2,0,1,2)−−−++(ρ2, . . . , ρ5) .
(5.38)

Then we flip the first helicity and perform one more shift in simplicial MRK coordinates,

g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) → g(0,2,0,1,2)+−−−++(ρ1, . . . , ρ5) = H(z̄1) ∗ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5)

→ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = g(0,2,0,1,2)+−−−++(ρ2, . . . , ρ6) .
(5.39)

Finally, we arrive at the desired perturbative coefficient by increasing the first index by

one unit,

g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) → g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = E(z1) ∗ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) . (5.40)

Let us now turn to the proof of the structure of the leading singularities in MRK. More

precisely, we will proof that the building blocks in eq. (5.25) exhaust all rational prefactors

of non-MHV amplitudes in MRK for any number of particles and any loop order.

As a warm-up, let us consider the case of a NMHV amplitude where the first gluon

emitted along the ladder has a negative helicity, and all other gluons have a positive helicity.

We can construct this amplitude by starting from an MHV amplitude and then we flip the

first helicity, cf. eq. (5.9). As MHV amplitudes are pure functions, the anti-holomorphic

primitive will itself be pure. If we work in simplicial coordinates based at z1, where t1 = z1,

we can write eq. (5.9) in the form

g(i1,...,in)−+···+ (ρ1, . . . , ρn) = t1∂t1

∫
dt̄1

1

t̄1
g(i1,...,in)+···+ (ρ1, . . . , ρn) , (5.41)
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3. Adding more particles to the left with index zero and equal helicities.

In particular this implies that every non-MHV amplitude can be constructed from a NMHV

helicity configuration of the from −+ . . .+ by successive application of these three elemen-

tary operations (we can always assume the rightmost helicity to be hN−4 = +1). It is

evident that we can reach a similar conclusion by adding more particles to the right and

convoluting with E(zN−5) and H(zN−5).

Let us illustrate this procedure on a short example. Note that in the following we

consider all convolutions to be over z1 and we see all the simplicial MRK coordinates ρi as

functions of the zi. The perturbative coefficient g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) can be constructed

in the following way: We start with the perturbative coefficient g(1,2)+++(ρ1, ρ2) and flip its

leftmost helicity ,

g(1,2)+++(ρ1, ρ2) → g(1,2)−++(ρ1, ρ2) = H(z1) ∗ g(1,2)+++(ρ1, ρ2) . (5.36)

Next, we add additional particles with index zero and negative helicity to the left and we

use the factorization theorem to remove zero indices,

g(1,2)−++(ρ1, ρ2) → g(0,0,1,2)−−−++(ρ1, . . . , ρ4) = g(1,2)−++(ρ3, ρ4) . (5.37)

Note that this operation is equivalent to simply shifting the indices of all the simplicial

MRK coordinates. Next, we increase the first index by convolution with E(z1) and perform

another shift in simplicial MRK coordinates to add one more external particle,

g(0,0,1,2)−−−++(ρ1, . . . , ρ4) → g(2,0,1,2)−−−++(ρ1, . . . , ρ4) = E(z1) ∗ E(z1) ∗ g(0,0,1,2)−−−++(ρ1, . . . , ρ4)

→ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) = g(2,0,1,2)−−−++(ρ2, . . . , ρ5) .
(5.38)

Then we flip the first helicity and perform one more shift in simplicial MRK coordinates,

g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) → g(0,2,0,1,2)+−−−++(ρ1, . . . , ρ5) = H(z̄1) ∗ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5)

→ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = g(0,2,0,1,2)+−−−++(ρ2, . . . , ρ6) .
(5.39)

Finally, we arrive at the desired perturbative coefficient by increasing the first index by

one unit,

g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) → g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = E(z1) ∗ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) . (5.40)

Let us now turn to the proof of the structure of the leading singularities in MRK. More

precisely, we will proof that the building blocks in eq. (5.25) exhaust all rational prefactors

of non-MHV amplitudes in MRK for any number of particles and any loop order.

As a warm-up, let us consider the case of a NMHV amplitude where the first gluon

emitted along the ladder has a negative helicity, and all other gluons have a positive helicity.

We can construct this amplitude by starting from an MHV amplitude and then we flip the

first helicity, cf. eq. (5.9). As MHV amplitudes are pure functions, the anti-holomorphic

primitive will itself be pure. If we work in simplicial coordinates based at z1, where t1 = z1,

we can write eq. (5.9) in the form

g(i1,...,in)−+···+ (ρ1, . . . , ρn) = t1∂t1

∫
dt̄1

1

t̄1
g(i1,...,in)+···+ (ρ1, . . . , ρn) , (5.41)
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3. Adding more particles to the left with index zero and equal helicities.

In particular this implies that every non-MHV amplitude can be constructed from a NMHV

helicity configuration of the from −+ . . .+ by successive application of these three elemen-

tary operations (we can always assume the rightmost helicity to be hN−4 = +1). It is

evident that we can reach a similar conclusion by adding more particles to the right and

convoluting with E(zN−5) and H(zN−5).

Let us illustrate this procedure on a short example. Note that in the following we

consider all convolutions to be over z1 and we see all the simplicial MRK coordinates ρi as

functions of the zi. The perturbative coefficient g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) can be constructed

in the following way: We start with the perturbative coefficient g(1,2)+++(ρ1, ρ2) and flip its

leftmost helicity ,

g(1,2)+++(ρ1, ρ2) → g(1,2)−++(ρ1, ρ2) = H(z1) ∗ g(1,2)+++(ρ1, ρ2) . (5.36)

Next, we add additional particles with index zero and negative helicity to the left and we

use the factorization theorem to remove zero indices,

g(1,2)−++(ρ1, ρ2) → g(0,0,1,2)−−−++(ρ1, . . . , ρ4) = g(1,2)−++(ρ3, ρ4) . (5.37)

Note that this operation is equivalent to simply shifting the indices of all the simplicial

MRK coordinates. Next, we increase the first index by convolution with E(z1) and perform

another shift in simplicial MRK coordinates to add one more external particle,

g(0,0,1,2)−−−++(ρ1, . . . , ρ4) → g(2,0,1,2)−−−++(ρ1, . . . , ρ4) = E(z1) ∗ E(z1) ∗ g(0,0,1,2)−−−++(ρ1, . . . , ρ4)

→ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) = g(2,0,1,2)−−−++(ρ2, . . . , ρ5) .
(5.38)

Then we flip the first helicity and perform one more shift in simplicial MRK coordinates,

g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) → g(0,2,0,1,2)+−−−++(ρ1, . . . , ρ5) = H(z̄1) ∗ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5)

→ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = g(0,2,0,1,2)+−−−++(ρ2, . . . , ρ6) .
(5.39)

Finally, we arrive at the desired perturbative coefficient by increasing the first index by

one unit,

g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) → g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = E(z1) ∗ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) . (5.40)

Let us now turn to the proof of the structure of the leading singularities in MRK. More

precisely, we will proof that the building blocks in eq. (5.25) exhaust all rational prefactors

of non-MHV amplitudes in MRK for any number of particles and any loop order.

As a warm-up, let us consider the case of a NMHV amplitude where the first gluon

emitted along the ladder has a negative helicity, and all other gluons have a positive helicity.

We can construct this amplitude by starting from an MHV amplitude and then we flip the

first helicity, cf. eq. (5.9). As MHV amplitudes are pure functions, the anti-holomorphic

primitive will itself be pure. If we work in simplicial coordinates based at z1, where t1 = z1,

we can write eq. (5.9) in the form

g(i1,...,in)−+···+ (ρ1, . . . , ρn) = t1∂t1

∫
dt̄1

1

t̄1
g(i1,...,in)+···+ (ρ1, . . . , ρn) , (5.41)

– 58 –

3. Adding more particles to the left with index zero and equal helicities.

In particular this implies that every non-MHV amplitude can be constructed from a NMHV

helicity configuration of the from −+ . . .+ by successive application of these three elemen-

tary operations (we can always assume the rightmost helicity to be hN−4 = +1). It is

evident that we can reach a similar conclusion by adding more particles to the right and

convoluting with E(zN−5) and H(zN−5).

Let us illustrate this procedure on a short example. Note that in the following we

consider all convolutions to be over z1 and we see all the simplicial MRK coordinates ρi as

functions of the zi. The perturbative coefficient g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) can be constructed

in the following way: We start with the perturbative coefficient g(1,2)+++(ρ1, ρ2) and flip its

leftmost helicity ,

g(1,2)+++(ρ1, ρ2) → g(1,2)−++(ρ1, ρ2) = H(z1) ∗ g(1,2)+++(ρ1, ρ2) . (5.36)

Next, we add additional particles with index zero and negative helicity to the left and we

use the factorization theorem to remove zero indices,

g(1,2)−++(ρ1, ρ2) → g(0,0,1,2)−−−++(ρ1, . . . , ρ4) = g(1,2)−++(ρ3, ρ4) . (5.37)

Note that this operation is equivalent to simply shifting the indices of all the simplicial

MRK coordinates. Next, we increase the first index by convolution with E(z1) and perform

another shift in simplicial MRK coordinates to add one more external particle,

g(0,0,1,2)−−−++(ρ1, . . . , ρ4) → g(2,0,1,2)−−−++(ρ1, . . . , ρ4) = E(z1) ∗ E(z1) ∗ g(0,0,1,2)−−−++(ρ1, . . . , ρ4)

→ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) = g(2,0,1,2)−−−++(ρ2, . . . , ρ5) .
(5.38)

Then we flip the first helicity and perform one more shift in simplicial MRK coordinates,

g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) → g(0,2,0,1,2)+−−−++(ρ1, . . . , ρ5) = H(z̄1) ∗ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5)

→ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = g(0,2,0,1,2)+−−−++(ρ2, . . . , ρ6) .
(5.39)

Finally, we arrive at the desired perturbative coefficient by increasing the first index by

one unit,

g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) → g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = E(z1) ∗ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) . (5.40)

Let us now turn to the proof of the structure of the leading singularities in MRK. More

precisely, we will proof that the building blocks in eq. (5.25) exhaust all rational prefactors

of non-MHV amplitudes in MRK for any number of particles and any loop order.

As a warm-up, let us consider the case of a NMHV amplitude where the first gluon

emitted along the ladder has a negative helicity, and all other gluons have a positive helicity.

We can construct this amplitude by starting from an MHV amplitude and then we flip the

first helicity, cf. eq. (5.9). As MHV amplitudes are pure functions, the anti-holomorphic

primitive will itself be pure. If we work in simplicial coordinates based at z1, where t1 = z1,

we can write eq. (5.9) in the form

g(i1,...,in)−+···+ (ρ1, . . . , ρn) = t1∂t1

∫
dt̄1

1

t̄1
g(i1,...,in)+···+ (ρ1, . . . , ρn) , (5.41)
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3. Adding more particles to the left with index zero and equal helicities.

In particular this implies that every non-MHV amplitude can be constructed from a NMHV

helicity configuration of the from −+ . . .+ by successive application of these three elemen-

tary operations (we can always assume the rightmost helicity to be hN−4 = +1). It is

evident that we can reach a similar conclusion by adding more particles to the right and

convoluting with E(zN−5) and H(zN−5).

Let us illustrate this procedure on a short example. Note that in the following we

consider all convolutions to be over z1 and we see all the simplicial MRK coordinates ρi as

functions of the zi. The perturbative coefficient g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) can be constructed

in the following way: We start with the perturbative coefficient g(1,2)+++(ρ1, ρ2) and flip its

leftmost helicity ,

g(1,2)+++(ρ1, ρ2) → g(1,2)−++(ρ1, ρ2) = H(z1) ∗ g(1,2)+++(ρ1, ρ2) . (5.36)

Next, we add additional particles with index zero and negative helicity to the left and we

use the factorization theorem to remove zero indices,

g(1,2)−++(ρ1, ρ2) → g(0,0,1,2)−−−++(ρ1, . . . , ρ4) = g(1,2)−++(ρ3, ρ4) . (5.37)

Note that this operation is equivalent to simply shifting the indices of all the simplicial

MRK coordinates. Next, we increase the first index by convolution with E(z1) and perform

another shift in simplicial MRK coordinates to add one more external particle,

g(0,0,1,2)−−−++(ρ1, . . . , ρ4) → g(2,0,1,2)−−−++(ρ1, . . . , ρ4) = E(z1) ∗ E(z1) ∗ g(0,0,1,2)−−−++(ρ1, . . . , ρ4)

→ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) = g(2,0,1,2)−−−++(ρ2, . . . , ρ5) .
(5.38)

Then we flip the first helicity and perform one more shift in simplicial MRK coordinates,

g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) → g(0,2,0,1,2)+−−−++(ρ1, . . . , ρ5) = H(z̄1) ∗ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5)

→ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = g(0,2,0,1,2)+−−−++(ρ2, . . . , ρ6) .
(5.39)

Finally, we arrive at the desired perturbative coefficient by increasing the first index by

one unit,

g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) → g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = E(z1) ∗ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) . (5.40)

Let us now turn to the proof of the structure of the leading singularities in MRK. More

precisely, we will proof that the building blocks in eq. (5.25) exhaust all rational prefactors

of non-MHV amplitudes in MRK for any number of particles and any loop order.

As a warm-up, let us consider the case of a NMHV amplitude where the first gluon

emitted along the ladder has a negative helicity, and all other gluons have a positive helicity.

We can construct this amplitude by starting from an MHV amplitude and then we flip the

first helicity, cf. eq. (5.9). As MHV amplitudes are pure functions, the anti-holomorphic

primitive will itself be pure. If we work in simplicial coordinates based at z1, where t1 = z1,

we can write eq. (5.9) in the form

g(i1,...,in)−+···+ (ρ1, . . . , ρn) = t1∂t1

∫
dt̄1

1

t̄1
g(i1,...,in)+···+ (ρ1, . . . , ρn) , (5.41)
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3. Adding more particles to the left with index zero and equal helicities.

In particular this implies that every non-MHV amplitude can be constructed from a NMHV

helicity configuration of the from −+ . . .+ by successive application of these three elemen-

tary operations (we can always assume the rightmost helicity to be hN−4 = +1). It is

evident that we can reach a similar conclusion by adding more particles to the right and

convoluting with E(zN−5) and H(zN−5).

Let us illustrate this procedure on a short example. Note that in the following we

consider all convolutions to be over z1 and we see all the simplicial MRK coordinates ρi as

functions of the zi. The perturbative coefficient g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) can be constructed

in the following way: We start with the perturbative coefficient g(1,2)+++(ρ1, ρ2) and flip its

leftmost helicity ,

g(1,2)+++(ρ1, ρ2) → g(1,2)−++(ρ1, ρ2) = H(z1) ∗ g(1,2)+++(ρ1, ρ2) . (5.36)

Next, we add additional particles with index zero and negative helicity to the left and we

use the factorization theorem to remove zero indices,

g(1,2)−++(ρ1, ρ2) → g(0,0,1,2)−−−++(ρ1, . . . , ρ4) = g(1,2)−++(ρ3, ρ4) . (5.37)

Note that this operation is equivalent to simply shifting the indices of all the simplicial

MRK coordinates. Next, we increase the first index by convolution with E(z1) and perform

another shift in simplicial MRK coordinates to add one more external particle,

g(0,0,1,2)−−−++(ρ1, . . . , ρ4) → g(2,0,1,2)−−−++(ρ1, . . . , ρ4) = E(z1) ∗ E(z1) ∗ g(0,0,1,2)−−−++(ρ1, . . . , ρ4)

→ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) = g(2,0,1,2)−−−++(ρ2, . . . , ρ5) .
(5.38)

Then we flip the first helicity and perform one more shift in simplicial MRK coordinates,

g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) → g(0,2,0,1,2)+−−−++(ρ1, . . . , ρ5) = H(z̄1) ∗ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5)

→ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = g(0,2,0,1,2)+−−−++(ρ2, . . . , ρ6) .
(5.39)

Finally, we arrive at the desired perturbative coefficient by increasing the first index by

one unit,

g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) → g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = E(z1) ∗ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) . (5.40)

Let us now turn to the proof of the structure of the leading singularities in MRK. More

precisely, we will proof that the building blocks in eq. (5.25) exhaust all rational prefactors

of non-MHV amplitudes in MRK for any number of particles and any loop order.

As a warm-up, let us consider the case of a NMHV amplitude where the first gluon

emitted along the ladder has a negative helicity, and all other gluons have a positive helicity.

We can construct this amplitude by starting from an MHV amplitude and then we flip the

first helicity, cf. eq. (5.9). As MHV amplitudes are pure functions, the anti-holomorphic

primitive will itself be pure. If we work in simplicial coordinates based at z1, where t1 = z1,

we can write eq. (5.9) in the form

g(i1,...,in)−+···+ (ρ1, . . . , ρn) = t1∂t1

∫
dt̄1

1

t̄1
g(i1,...,in)+···+ (ρ1, . . . , ρn) , (5.41)
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3. Adding more particles to the left with index zero and equal helicities.

In particular this implies that every non-MHV amplitude can be constructed from a NMHV

helicity configuration of the from −+ . . .+ by successive application of these three elemen-

tary operations (we can always assume the rightmost helicity to be hN−4 = +1). It is

evident that we can reach a similar conclusion by adding more particles to the right and

convoluting with E(zN−5) and H(zN−5).

Let us illustrate this procedure on a short example. Note that in the following we

consider all convolutions to be over z1 and we see all the simplicial MRK coordinates ρi as

functions of the zi. The perturbative coefficient g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) can be constructed

in the following way: We start with the perturbative coefficient g(1,2)+++(ρ1, ρ2) and flip its

leftmost helicity ,

g(1,2)+++(ρ1, ρ2) → g(1,2)−++(ρ1, ρ2) = H(z1) ∗ g(1,2)+++(ρ1, ρ2) . (5.36)

Next, we add additional particles with index zero and negative helicity to the left and we

use the factorization theorem to remove zero indices,

g(1,2)−++(ρ1, ρ2) → g(0,0,1,2)−−−++(ρ1, . . . , ρ4) = g(1,2)−++(ρ3, ρ4) . (5.37)

Note that this operation is equivalent to simply shifting the indices of all the simplicial

MRK coordinates. Next, we increase the first index by convolution with E(z1) and perform

another shift in simplicial MRK coordinates to add one more external particle,

g(0,0,1,2)−−−++(ρ1, . . . , ρ4) → g(2,0,1,2)−−−++(ρ1, . . . , ρ4) = E(z1) ∗ E(z1) ∗ g(0,0,1,2)−−−++(ρ1, . . . , ρ4)

→ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) = g(2,0,1,2)−−−++(ρ2, . . . , ρ5) .
(5.38)

Then we flip the first helicity and perform one more shift in simplicial MRK coordinates,

g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5) → g(0,2,0,1,2)+−−−++(ρ1, . . . , ρ5) = H(z̄1) ∗ g(0,2,0,1,2)−−−−++(ρ1, . . . , ρ5)

→ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = g(0,2,0,1,2)+−−−++(ρ2, . . . , ρ6) .
(5.39)

Finally, we arrive at the desired perturbative coefficient by increasing the first index by

one unit,

g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) → g(1,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) = E(z1) ∗ g(0,0,2,0,1,2)++−−−++(ρ1, . . . , ρ6) . (5.40)

Let us now turn to the proof of the structure of the leading singularities in MRK. More

precisely, we will proof that the building blocks in eq. (5.25) exhaust all rational prefactors

of non-MHV amplitudes in MRK for any number of particles and any loop order.

As a warm-up, let us consider the case of a NMHV amplitude where the first gluon

emitted along the ladder has a negative helicity, and all other gluons have a positive helicity.

We can construct this amplitude by starting from an MHV amplitude and then we flip the

first helicity, cf. eq. (5.9). As MHV amplitudes are pure functions, the anti-holomorphic

primitive will itself be pure. If we work in simplicial coordinates based at z1, where t1 = z1,

we can write eq. (5.9) in the form

g(i1,...,in)−+···+ (ρ1, . . . , ρn) = t1∂t1

∫
dt̄1

1

t̄1
g(i1,...,in)+···+ (ρ1, . . . , ρn) , (5.41)
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weight +1 

Analytic structure

• Convolutions with helicity flip kernel preserve the weight.
➡ Example:

R�+...+ = H(z1) ⇤R++...+

Proof of the factorisation theorem for MHV amplitudes. The factorisation the-

orem for MHV amplitudes, eq. (4.19), now follows from Claims 1 and 2. Assume that

eq. (4.19) holds for all perturbative MHV coefficients up to a certain number N −1 of legs,

and let us show that it still holds for coefficients with one more leg. We denote the pertur-

bative coefficient with one more leg by g
(i1,...,iN−5)
+...+ (ρ1, . . . , ρN−5) and we label the non-zero

elements in (i2, . . . , iN−5) by ia1 , . . . , iak , 2 ≤ aj ≤ N − 5. If i1 = 0, then Claim 1 implies

that we can drop the first index. The resulting function is an (N − 1)-point amplitude,

where eq. (4.19) applies. So we have

g
(0,i2,...,iN5

)
+...+ (ρ1, . . . , ρN−5) = g

(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) = g

(ia1 ,...,iak)
+...+ (ρa1 , . . . , ρak) , (4.41)

in agreement with eq. (4.19). If i1 ̸= 0, we write the amplitude as a convolution using the

recursion (4.16). For the sake of the example, consider the case i1 = 1. We have,

g
(1,i2,...,iN5

)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(0,i2,...,iN5
)

+...+ (ρ2, . . . , ρN−5)

= E(z1) ∗ g
(ia1 ,...,iak)
+...+ (ρa1 , . . . , ρak) ,

(4.42)

where we have used the fact that we know that eq. (4.19) holds for i1 = 0. From Claim 2

we know that the result of the convolution will only depend on (ρ1, ρa1 , . . . , ρak). The only

thing left to show is that the function F in Claim 2 is precisely the perturbative coefficient

g
(1,ia1 ,...,iak )
+...+ . This follows immediately upon noting that the convolution integral used to

compute g
(1,ia1 ,...,iak)
+...+ is exactly the same as the one in eq. (4.42), up to a relabelling of the

variables. Repeating exactly the same argument for i1 > 1, we see that eq. (4.19) holds in

general.

5. Non-MHV amplitudes in MRK

5.1 Helicity-flip operations

So far we have only considered MHV amplitudes. In this section we generalise all the

results from the previous section to non-MHV amplitudes. In particular, we extend the

factorisation theorem (4.18) to the non-MHV case. We start by introducing an additional

concept before we are ready to prove the factorisation theorem for non-MHV amplitudes.

Let us start by analysing what happens if we start from an MHV amplitude and we

flip the helicity on an impact factor. In Fourier-Mellin space, this amounts to replacing

χ+(ν, n) by χ−(ν, n),

F
[
χ+(ν, n)F (ν, n)

]
−→ F

[
χ−(ν, n)F (ν, n)

]

= F
[
χ−(ν, n)/χ+(ν, n)

]
∗ F

[
χ+(ν, n)F (ν, n)

]
(5.1)

= F
[
iν + n

2

iν − n
2

]
∗ F

[
χ+(ν, n)F (ν, n)

]
.

We see that flipping the helicity on an impact factor amounts to convoluting with the

universal helicity-flip kernel

H(z) ≡ F
[
iν + n

2

iν − n
2

]
. (5.2)
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The functional form of H(z) can easily be obtained by performing explicitly the Fourier-

Mellin transform. The integrand has only a simple pole at iν = n/2, and so we find

H(z) = H(1/z) = − z

(1− z)2
. (5.3)

Note that helicity-flip kernel is an involution, i.e., flipping the helicity twice on the same

impact factor returns the original helicity configuration, and so

H(z) ∗H(z̄) = F [1] = π δ(2)(1− z) . (5.4)

Similarly, if we flip the helicity on one of the central emission blocks and use eq. (2.57),

we obtain

F
[
C+(ν, n, µ,m)F (ν, n, µ,m)

]
−→ F

[
C−(ν, n, µ,m)F (ν, n, µ,m)

]

= F
[
C−(ν, n, µ,m)

C+(ν, n, µ,m)

]
∗ F

[
C+(ν, n, µ,m)F (ν, n, µ,m)

]

= F
[
χ+(ν, n)χ−(µ,m)

χ−(ν, n)χ+(µ,m)

]
∗ F

[
C+(ν, n, µ,m)F (ν, n, µ,m)

]

= H(z̄1) ∗H(z2) ∗F
[
C+(ν, n, µ,m)F (ν, n, µ,m)

]
.

(5.5)

We see that the flipping of the helicity on a central emission block is controlled by the same

kernels as for the impact factor. As a consistency check, the helicity flip kernels allow us

to show that MHV and MHV amplitudes are identical,

R−...−(z1, . . . , zN−5) = H(z1) ∗R+−...−(z1, . . . , zN−5)

= H(z1) ∗H(z̄1) ∗H(z2) ∗R++−...−(z1, . . . , zN−5)

= H(z2) ∗R++−...−(z1, . . . , zN−5)

= . . .

= H(zN−5) ∗R+...+−(z1, . . . , zN−5)

= H(zN−5) ∗H(z̄N−5) ∗R+...+(z1, . . . , zN−5)

= R+...+(z1, . . . , zN−5) .

(5.6)

Let us conclude this section by making a comment about some classes of non-MHV

amplitudes with a special property. In ref. [84] it was argued that flipping the helicity on

an impact factor to produce an NMHV amplitude from an MHV amplitude is equivalent

to differentiating in the holomorphic variable and integrating in the anti-holomorphic one.

Let us see how this arises from the helicity-flip kernel. We have

R−+...+(z1, . . . , zN−5) = H(z1) ∗R+...+(z1, . . . , zN−5)

= −
∫

d2w

π

z1
w̄(w − z1)2

R+...+(w, z2 . . . , zN−5) .
(5.7)

We can evaluate eq. (5.7) in terms of residues. Let us denote by F the anti-holomorphic

primitive,

F (w, z2 . . . , zN−5) ≡
∫

dw̄

w̄
R++...+(w, z2 . . . , zN−5) . (5.8)
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Then R−+...+ is obtained by summing over all the holomorphic residues of F . As MHV

amplitudes are a pure functions, they have no poles, and so F has no poles either. Fur-

thermore, it is easy to check that there is no pole at infinity, and so the only residue we

need to take into account comes from the double pole at w = z1 in eq. (5.7),

R−+...+(z1, . . . , zN−5) = Resw=z1
z1 F (w, z2 . . . , zN−5)

(w − z1)2

= z1 ∂z1F (z1, z2 . . . , zN−5)

= z1∂z1

∫
dw̄

w̄
R++...+(w, z2 . . . , zN−5) .

(5.9)

We see that we recover the rule of ref. [84], but with the differentiation and integration

given in the reversed order. While this may look like a minor difference, it is crucial in order

to get the complete result. In principle, we need to include a boundary condition when

computing the anti-holomorphic primitive. However, if the operations of differentiation and

integration are performed in the order shown in eq. (5.9), then no boundary condition is

needed, because the residue is independent of the choice of the anti-holomorphic primitive.

This is, however, not the case if the two operations are performed in the order given in

ref. [84], where one needs to include non-trivial boundary information already for six points.

It is of course tantalising to speculate if this simple rule generalises and all non-MHV

amplitudes can be computed by this simple differentiation-integration rule without having

to include any boundary information. It turns out that this is not the case, because

in general the amplitude in the integrand of the convolution integral (5.7) is not a pure

function, but may itself have additional poles whose residues need to be taken into account

when performing the convolution with the helicity-flip kernel. An explicit counter-example

to the simple differentiation-integration rule without boundary terms can be constructed

from an eight-point NNMHV amplitude.

Although the simple rule does not hold in general, there are some special cases where

it does apply. Besides the case of R−+...+ discussed above, we have identified the follow-

ing special case in which we can apply the simple differentiation-integration rule without

boundary terms: Consider an amplitude whose helicity configuration is given by

hi =

{
−1 , if a ≤ i ≤ b ,

+1 , otherwise .
(5.10)

This amplitude can be written as

R+...+−...−+...+ = H(z̄a−1) ∗H(zb) ∗R+...+ . (5.11)

Let us first discuss the convolution with H(zb). We can repeat exactly the same argument

as for R−+...+ and we conclude that

H(zb) ∗R+...+ = zb ∂zb

∫
dz̄b
z̄b

R+...+ . (5.12)

Next we want to perform the convolution of this function with H(z̄a−1). The function

H(zb) ∗ R+...+ will have poles, but all of them are holomorphic because they arise from

– 52 –

weight -1 

• Convolutions with BFKL eigenvalue increase the weight by 1.

➡ BFKL eigenvalues has simple holomorphic and anti-
holomorphic poles!

E(z) = F [E⌫n] = � z + z̄

2|1� z|2E(z) = F [E⌫n] = � z + z̄

2|1� z|2

➡ Anti-holomorphic primitive increases the weight by 1.

➡ Simple holomorphic pole does not lower the weight.



Leading singularities
• One can analyse the convolution integral and obtain an upper 

bound on leading singularities for a given helicity configuration!

+ + + - - - - + + - + + - - - + + + + - - - -

of g
(i1,...,iN−5)
+...+ in a very simple form. The algorithm to evaluate the recursion (4.16) for

the first or last cross ratio is then clear: in order to perform the convolution over z1, we

change coordinates to the simplicial coordinates based at z1, and we evaluate the integral

in terms of residues. The change of coordinates requires the use of functional equations

among single-valued polylogarithms, which can be obtained using the techniques described

in Section 3.4.

While the previous considerations answer the question of how to perform convolutions

with respect to the first or last cross ratio, we still need to discuss the remaining cases.

In the following, we argue that all amplitudes can be constructed by convoluting over the

first or last cross ratio only. We only discuss from now on the case of z1; the case of

zN−5 is similar by target-projectile symmetry. The proof of this claim relies on a certain

factorisation theorem which we present in the following.

In order to state the factorisation theorem, it is useful to introduce the following

graphical representation for the perturbative coefficients,

g
(i1,...,iN−5)
h1...hN−4

(ρ1, . . . , ρN−5) =

ρ1 i1

ρN−5 iN−5

hN−4

hN−5

h2

h1

1

0

∞

(4.17)

We work with the simplicial MRK coordinates ρk defined in Section 3.2. Every face of

the dual graph is associated with a point xk (cf. Fig 5), and we work in a coordinate

patch where (x1,x2,xN−2) = (1, 0,∞). Every outgoing line is labeled by its helicity hk.

In addition, to every face we do not only associate its coordinate ρk but also the index ik.

In the following we will not show the points 0, 1 and ∞ explicitly. Using this graphical

representation of the perturbative coefficients the factorisation theorem takes the simple

form

ρc ic

ρb 0

ρa ia

h

h
=

ρc ic

ρa ia
h (4.18)

In other words, whenever the graph representing a perturbative coefficient contains a face

with index ib = 0 and the lines adjacent to this face have the same helicity, then this

perturbative coefficient is equal to the coefficient where this face has been deleted. We

stress that the factorisation theorem holds for arbitrary helicity configurations and is not

restricted to MHV amplitudes. In Section 4.3 we will prove eq. (4.18) in the special case

of MHV amplitudes, and we defer the proof in the non-MHV case to Section 5.

Before turning to the proof of the factorisation theorem, we discuss its implications for

MHV amplitudes. In that particular case, the factorisation theorem implies that we can

drop all the faces labeled by a zero,

g
(0,...,0,ia1 ,0,...,0,ia2 ,0,...,0,iak ,0,...,0)
+...+ (ρ1, . . . , ρN−5) = g

(ia1 ,ia2 ,...,iak)
+...+ (ρia1 , ρia2 , . . . , ρiak ) . (4.19)
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Holomorphic
Anti-holomorphic }

• Interfaces = places where helicity flips kernels were inserted.

• Rule for leading singularities:

determine the set of all rational prefactors that can appear in a given non-MHV amplitude

in MRK at LLA.

Let us start by defining some concepts that are useful to state the main result. We

define interfaces of the perturbative coefficients g
(i1,...,iN−5)
h1...hN−4

(ρ1, . . . , ρN−5) as the faces of its

graph (see eq. (4.17)) that are bounded by two external lines with opposite helicities. In

the following we refer to a face of the graph simply by the index of the corresponding dual

coordinate (cf. Fig. 5). We call an interface holomorphic if the helicity changes from −1

to +1 in the natural order induced by the color ordering, and anti-holomorphic otherwise.

We denote by I = {a1, . . . , aκ} the set of all interfaces of the graph (equipped with the

natural order induced by the color ordering) and we let a0 = x2 and aκ+1 = xN−2. For

1 ≤ k ≤ κ we define the sets

Eak
↑ = {b | ak−1 ≤ b < ak} and Eak

↓ = {b | ak < b ≤ ak+1} . (5.20)

We also define the cross-ratios

Rbac =

⎧
⎪⎨

⎪⎩

vbac1 , for holomorphic interfaces a ,

v̄bac1 , for anti-holomorphic interfaces a ,

(5.21)

with

vbac1 =
(xb − xa)(xc − x1)

(xb − xc)(xa − x1)
. (5.22)

We are now ready to state the main result of this section. We claim that it is possible

to write the perturbative coefficients in such a way that all rational prefactors multiplying

pure functions take the form

∏

a∈S

Rbac , b ∈ Ea
↑ , c ∈ Ẽa

↓ , (5.23)

where S ⊆ I is a (possibly empty) subset of interfaces and we have introduced the definition

Ẽa
↓ = {b | a < b} . (5.24)

This implies in particular that the building blocks of all rational prefactors in MRK at

LLA are contained in the set

L = {Rbac|a ∈ I , b ∈ Ea
↑ , c ∈ Ẽa

↓} . (5.25)

The cross ratios in this set are at the same time the building blocks for all leading singu-

larities in MRK at LLA. We emphasise that this set is an upper bound for the rational

prefactors that can appear for a given helicity configuration. In particular, one may wonder

whether the asymmetry in eq. (5.23) and eq. (5.25) between Ea
↑ and Ẽa

↓ could not be lifted,

and we could restrict the building blocks to the more symmetric set

Lsym = {Rbac|a ∈ I , b ∈ Ea
↑ , c ∈ Ea

↓} . (5.26)
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➡ At each interface    we can insert at most one (anti-) 
holomorphic cross ratio

a

interface



Leading singularities
• Rule for leading singularities:

determine the set of all rational prefactors that can appear in a given non-MHV amplitude
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➡ At each interface    we can insert at most one (anti-) 
holomorphic cross ratio        .

a

➡ Ranges of    and    restricted as follows:b c

+ + + - - - - + + - + + - - - + + + + - - - - -
cab

• Asymmetry reflects the fact that there are non linear 
relations among the cross ratios:

Unfortunately, this is incorrect, because the cross ratios Rbac are not independent, but they

satisfy intricate non-linear relations, e.g.,

R23c +R234 R4ac = R23cR4ac +R234 R2ac , a < c , a ∈ I . (5.27)

The apparent asymmetry in the set of building blocks in eq. (5.25) can then be lifted

through such relations. It would be interesting to have a classification of all the relations

among the building blocks Rbac. Our building blocks are, however, linearly independent,

and so we can restrict to the more symmetric set Lsym in situations where there is at most

one interface of a given type (holomorphic or anti-holomorphic). Helicity configurations

involving products of building blocks of the same type require at least three interfaces, and

the simplest such amplitude is R−+−+. We observe by explicit computation that in this

case the restricted set Lsym is indeed insufficient and a new building block R236 /∈ Lsym

appears (see Appendix D).

Before we prove our result, let us discuss some of its implications. First, it is evi-

dent from eq. (5.23) that every interface contributes at most one factor to the product in

eq. (5.23), i.e., we never encounter higher powers of Rbac.

Second, we see that for a given helicity configuration there is always a finite number

of different rational prefactors, independently of the number of loops. The complete set of

rational prefactors for a given helicity configuration shows up when all indices are non-zero.

In particular, we will see that eq. (5.23) is consistent with the factorisation theorem (4.18)

in the sense that we never need to consider faces b and c bounded by external lines with

equal helicities and vanishing index.

Finally, we note that the ratios Rbac transform non-trivially under target-projectile

symmetry. Target-projectile symmetry obviously maps interfaces to interfaces, and we

have

Rbac "→ RN−b,N−a,N−c = 1−RN−c,N−a,N−b . (5.28)

Let us now illustrate the content of eq. (5.23) on some simple examples. MHV and

MHV amplitudes do not have any interfaces, so these amplitudes should not contain any

non-trivial rational prefactors, in agreement with known results. The simplest amplitudes

having a single interface are NMHV amplitudes of the formR−+···+. Since these amplitudes

have a single interface, we have L = Lsym. The amplitude must then take the form

R−+···+ = a+
N−2∑

c=4

R23c bc , (5.29)

where a and bc are pure functions to all loop orders. In the special case N = 6 eq. (5.29)

reduces to the known structure of the six-point NMHV amplitude in MRK [78],

R−+ = a+R234 b = a+
ρ1

ρ1 − 1
b . (5.30)

Equation (5.23) implies that this structure generalises to an infinite class of NkMHV am-

plitudes, k ≥ 1, with a single holomorphic interface,

R−···−+···+ = a+
a−1∑

b=2

N−2∑

c=a+1

Rbac bbc , (5.31)
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➡ Effect can appear for the first time with 3 interfaces: (+-+-)
➡ It does indeed appear!



Leading singularities
• Example:

+   -   -   +

For eight external legs, there are for the first time also independent NNMHV helicity

configurations,

g(i1,i2,i3)+−−+ (ρ1, ρ2, ρ3) = a
(i1,i2,i3)
+−−+ (ρ1, ρ2, ρ3) +R234 b

(i1,i2,i3)
1,+−−+ (ρ1, ρ2, ρ3) (D.65)

+R235 b
(i1,i2,i3)
2,+−−+ (ρ1, ρ2, ρ3) +R356 b

(i1,i2,i3)
3,+−−+ (ρ1, ρ2, ρ3) +R456 b

(i1,i2,i3)
4,+−−+ (ρ1, ρ2, ρ3)

+R234 R356 c
(i1,i2,i3)
1,+−−+ (ρ1, ρ2, ρ3) +R234 R456 c

(i1,i2,i3)
2,+−−+ (ρ1, ρ2, ρ3)

+R235 R356 c
(i1,i2,i3)
3,+−−+ (ρ1, ρ2, ρ3) +R235 R456 c

(i1,i2,i3)
4,+−−+ (ρ1, ρ2, ρ3) ,

g(i1,i2,i3)−+−+ (ρ1, ρ2, ρ3) = a
(i1,i2,i3)
−+−+ (ρ1, ρ2, ρ3) +R234 b

(i1,i2,i3)
1,−+−+ (ρ1, ρ2, ρ3) (D.66)

+R236 b
(i1,i2,i3)
2,−+−+ (ρ1, ρ2, ρ3) +R345 b

(i1,i2,i3)
3,−+−+ (ρ1, ρ2, ρ3) +R456 b

(i1,i2,i3)
4,−+−+ (ρ1, ρ2, ρ3)

+R234 R345 c
(i1,i2,i3)
1,−+−+ (ρ1, ρ2, ρ3) +R236 R345 c

(i1,i2,i3)
2,−+−+ (ρ1, ρ2, ρ3)

+R234 R456 c
(i1,i2,i3)
3,−+−+ (ρ1, ρ2, ρ3) +R236 R456 c

(i1,i2,i3)
4,−+−+ (ρ1, ρ2, ρ3)

+R345 R456 c
(i1,i2,i3)
5,−+−+ (ρ1, ρ2, ρ3) +R234 R345 R456 d

(i1,i2,i3)
1,−+−+ (ρ1, ρ2, ρ3)

+R236 R345 R456 d
(i1,i2,i3)
2,−+−+ (ρ1, ρ2, ρ3) .

a
(1,0,0)
++−+ (ρ1, ρ2, ρ3) =

1

4
G1,1 (ρ1)−

1

4
G1,ρ3 (ρ1)−

1

4
G0 (ρ3)G1 (ρ1) . (D.67)

b
(1,0,0)
1,++−+ (ρ1, ρ2, ρ3) =− 1

4
G1,0 (ρ1) +

1

4
G1,0 (ρ3)−

1

4
G1,1 (ρ3) +

1

4
G1,ρ3 (ρ1) (D.68)

+
1

4
G0 (ρ3)G1 (ρ1)−

1

4
G0 (ρ1)G1 (ρ3) +

1

4
G1 (ρ1)G1 (ρ3) .

b
(1,0,0)
2,++−+ (ρ1, ρ2, ρ3) =− 1

4
G0,1 (ρ1)−

1

4
G1,0 (ρ3) +

1

4
G1,1 (ρ1) +

1

4
G1,1 (ρ3) (D.69)

+
1

4
G0 (ρ1)G1 (ρ3)−

1

4
G1 (ρ1)G1 (ρ3) .

b
(1,0,0)
3,++−+ (ρ1, ρ2, ρ3) =− 1

4
Gρ2,1 (ρ1) +

1

4
Gρ2,ρ3 (ρ1)−

1

4
Gρ2 (ρ1)Gρ3 (ρ2) (D.70)

+
1

4
G0 (ρ3)G1 (ρ1)−

1

4
G1 (ρ1)G1 (ρ2) +

1

4
G1 (ρ2)Gρ2 (ρ1)

+
1

4
G1 (ρ1)Gρ3 (ρ2) .

c
(1,0,0)
1,++−+ (ρ1, ρ2, ρ3) =

1

4
G0,0 (ρ2)−

1

4
G0,0 (ρ3) +

1

4
G0,1 (ρ3)−

1

4
G0,ρ3 (ρ2) (D.71)

− 1

4
G1,0 (ρ2) +

1

4
G1,ρ3 (ρ2) +

1

4
Gρ2,0 (ρ1)−

1

4
Gρ2,ρ3 (ρ1)

− 1

4
G0 (ρ1)G0 (ρ2) +

1

4
G0 (ρ1)G0 (ρ3) +

1

2
G0 (ρ2)G1 (ρ1)

− 1

2
G0 (ρ3)G1 (ρ1) +

1

4
G0 (ρ3)G1 (ρ2)−

1

4
G1 (ρ2)G1 (ρ3)

− 1

4
G0 (ρ2)Gρ2 (ρ1) +

1

4
G0 (ρ1)Gρ3 (ρ2)−

1

4
G0 (ρ3)Gρ3 (ρ2)

− 1

2
G1 (ρ1)Gρ3 (ρ2) +

1

4
G1 (ρ3)Gρ3 (ρ2) +

1

4
Gρ2 (ρ1)Gρ3 (ρ2) .
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➡        does not appear, because we have only two interfaces!R236



Analytic structure
• Pole structure of LS is         is not random!

determine the set of all rational prefactors that can appear in a given non-MHV amplitude

in MRK at LLA.

Let us start by defining some concepts that are useful to state the main result. We

define interfaces of the perturbative coefficients g
(i1,...,iN−5)
h1...hN−4

(ρ1, . . . , ρN−5) as the faces of its

graph (see eq. (4.17)) that are bounded by two external lines with opposite helicities. In

the following we refer to a face of the graph simply by the index of the corresponding dual

coordinate (cf. Fig. 5). We call an interface holomorphic if the helicity changes from −1

to +1 in the natural order induced by the color ordering, and anti-holomorphic otherwise.

We denote by I = {a1, . . . , aκ} the set of all interfaces of the graph (equipped with the

natural order induced by the color ordering) and we let a0 = x2 and aκ+1 = xN−2. For

1 ≤ k ≤ κ we define the sets

Eak
↑ = {b | ak−1 ≤ b < ak} and Eak

↓ = {b | ak < b ≤ ak+1} . (5.20)

We also define the cross-ratios

Rbac =

⎧
⎪⎨

⎪⎩

vbac1 , for holomorphic interfaces a ,

v̄bac1 , for anti-holomorphic interfaces a ,

(5.21)

with

vbac1 =
(xb − xa)(xc − x1)

(xb − xc)(xa − x1)
. (5.22)

We are now ready to state the main result of this section. We claim that it is possible

to write the perturbative coefficients in such a way that all rational prefactors multiplying

pure functions take the form

∏

a∈S

Rbac , b ∈ Ea
↑ , c ∈ Ẽa

↓ , (5.23)

where S ⊆ I is a (possibly empty) subset of interfaces and we have introduced the definition

Ẽa
↓ = {b | a < b} . (5.24)

This implies in particular that the building blocks of all rational prefactors in MRK at

LLA are contained in the set

L = {Rbac|a ∈ I , b ∈ Ea
↑ , c ∈ Ẽa

↓} . (5.25)

The cross ratios in this set are at the same time the building blocks for all leading singu-

larities in MRK at LLA. We emphasise that this set is an upper bound for the rational

prefactors that can appear for a given helicity configuration. In particular, one may wonder

whether the asymmetry in eq. (5.23) and eq. (5.25) between Ea
↑ and Ẽa

↓ could not be lifted,

and we could restrict the building blocks to the more symmetric set

Lsym = {Rbac|a ∈ I , b ∈ Ea
↑ , c ∈ Ea

↓} . (5.26)
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• There is no pole in soft limit, because                    .b < a < c

➡ No weight drop in soft limit!

• Soft limits of NMHV amplitudes can be MHV, i.e., pure.

g(i1,i2)+�+ = a(i1,i2)+�+ +R234 b
(i1,i2)
1,+�+ +R345 b

(i1,i2)
2,+�+ +R234 R345 c

(i1,i2)
1,+�+

➡ Example:

➡ In the limit all rational factors disappear:

where a is the holomorphic interface and a and bbc are pure functions. Products of rational

prefactors contribute for the first time for amplitudes with two distinct interfaces, which

appear precisely for the helicity configurations considered in eq. (5.10). The interfaces

are located at (a1, a2) = (a + 1, b + 2). One of them is holomorphic and the other one

anti-holomorphic, so we can work with the symmetric set Lsym. We find

R+···+−···−+···+ = a+
a1−1∑

c=2

a2∑

d=a1+1

Rca1d b
1
cd +

a2−1∑

c=a1

N−2∑

d=a2+1

Rca2d b
2
cd

+
a1−1∑

c1=2

a2∑

d1=a1+1

a2−1∑

c2=a1

N−2∑

d2=a2+1

Rc1a1d1 Rc2a2d2 c
12
c1d1c2d2 ,

(5.32)

where we have indicated the anti-holomorphic rational functions by Rbac for clarity and a,

bicd nd c
ij
c1d1c2d2

are pure functions

Let us conclude this section by discussing the soft limits of the rational prefactors.

First, we can see that Rbac has simple poles for xb = xc and xa = x1. None of these

singularities corresponds to a soft limit. This implies in particular that the weight of the

pure functions does not drop when taking a soft limit. Next, we see that

lim
xb→xa

Rbac = 0 and lim
xc→xa

Rbac = 1 . (5.33)

In order to understand the implication of these relations, let us consider a NMHV ampli-

tude, which can be written in the form of eq. (5.32) with a ≡ a1 = a2 − 1,

R+···+−+···+ = a+
a−1∑

c=2

Rca(a+1) b
1
ca+1 +

N−3∑

d=a+2

Ra(a+1)d b
2
cd

+
a−1∑

c=2

N−3∑

d=a+2

Rca(a+1) Ra(a+1)d c
12
c1(a+1)ad2

.

(5.34)

In the limit where the gluon with negative helicity becomes soft, xa → xa+1, the NMHV

amplitude reduces to an MHV amplitude, which is a pure function. Equation (5.33) guar-

antees that this is indeed the case, and we find,

lim
xa→xa+1

R+···+−+···+ = a+
a−1∑

c=2

b1c(a+1) . (5.35)

5.3.1 Proof of the structure of leading singularities in MRK

Let us now prove our claim about the structure of the rational prefactors in MRK to LLA.

Before turning to the proof itself, we make the following observation: every perturbative

coefficient can be built up by a finite sequence of the following three operations:

1. Flipping the leftmost helicity by convolution with H(z1) or H(z̄1) respectively.

2. Increasing the first index by convolution with E(z1).
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Conclusion & Outlook

• Consequences:

N -point scattering amplitudes in planar N=4 SYM in MRK 
are single-valued iterated integrals on                .  M0,N�2

➡ Convolutions can be computed using Stokes’ theorem.

➡ Algorithmic construction of all MRK amplitudes at LLA.

➡ Classification of leading singularities in MRK at LLA.

➡ All amplitudes have uniform weight.

➡ Explicit results for all MHV amplitudes up to 5 loops, and 
all non-MRK amplitude with up to 8 legs and 4 loops.



Conclusion & Outlook

➡ Formalism is general!

➡ BFKL eigenvalue & impact factor known to all orders from 
integrability.

➡ Central emission block only known to LO.

➡ Multi-Reggeon bound state exchanges?

➡ Amplitudes in 2D kinematics?

• Generalisation beyond LLA?

• Are there other cases where we can ‘control’ the geometry?

➡ Limits where the cluster algebras are all of finite type?

[See Basso’s talk]




