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Worldsheet Models of (Massless) QFTs

String theory: field theory is α′ → 0
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Worldsheet Models of QFTs: no α′
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Modular integrals localised by scattering equations.
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Worldsheet Models ←→ Scattering Equations

Old story

Twistor string theory [Witten 03] −→ RSV formula [Roiban, Spradlin, Volovich 04]

D = 4. SYM, SUGRA. [Hodges, Cachazo, Geyer, Skinner, Mason 12]

Only tree level. [Berkovitz, Witten 04]

New story

Ambitwistor string theory [Mason, Skinner 13] ←− CHY formulas [Cachazo, He, Yuan 13-14]

Any D. Many theories of massless particles.

This talk: Loop-level progress!
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Outline

Review of scattering equations and ambitwistor strings

Ambitwistor strings at genus 1

New formulas at one loop
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Review of the scattering equations

Scattering Equations [Cachazo, He, Yuan ’13]

Consider n massless particles, k2
i = 0, i = 1, . . . ,n

Ei =
∑

j 6=i

ki · kj

σi − σj
= 0, ∀i

kinematic invariants sij = 2 ki · kj −→ points σi ∈ CP1

∑
i ki = 0 : SL(2,C) invariance, σ → Aσ + B

C σ + D

(n − 3)! solutions σ(A)
i

factorisation: (k1 + . . .+ km)2 → 0 gives σ1, . . . , σm → σ?

1
m
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Review of the scattering equations

CHY Formulas [Cachazo, He, Yuan ’13]

Tree-level scattering amplitude: A =

∫
dµ I

measure is universal∫
dµ =

∫
dnσ

volSL(2,C)

∏

i

′δ(Ei ) =⇒ A =

(n−3)!∑

A=1

I
J

∣∣∣
σ=σ(A)

I specifies the theory

IYM = Pf ′M(ε)×
( tr(T a1T a2 · · ·T an )

σ12σ23 · · ·σn1
+ non-cyclic perm

)
σrs = σr − σs

IGrav = Pf ′M(ε)× Pf ′M(ε̃) εµνi = εµi ε̃
ν
i (graviton, dilaton, 2-form)

⇒ Gravity ∼ YM2 cf. Kawai-Lewellen-Tye relations
Bern-Carrasco-Johansson double copy

SE hard to solve, but no need for that.
[Dolan, Goddard, Cachazo, Gomez, Baadsgaard at al, Huang et al, Sogaard, Zhang, Cardona, Kalousios, Bjerrum-Bohr et al]
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Review of ambitwistor strings

Geometry of Scattering Equations

Consider 1-form on CP1, Pµ = dσ
n∑

i=1

ki µ

σ − σi
SL(2,C) invariant

The scattering equations are P2(σ) = 0 .

Worldsheet model?

Mason, Skinner: target space is

ambitwistor space = space of null geodesics of complexified spacetime.

Take (Xµ,Pν) with P2 = 0, (Xµ,Pν) ∼ (Xµ + αPµ,Pν).

Ricardo Monteiro (CERN) Loop-level Scattering Equations 7 / 15



Review of ambitwistor strings

Strings in Ambitwistor Space [Mason, Skinner 13]

Chiral complexification of worldline action for massless particle:

SB =
1

2π

∫

Σ

Pµ ∂̄Xµ − 1
2

e P2

e enforces P2 = 0. ambitwistor space
√

gauge freedom: δXµ = αPµ, δPν = 0, δe = ∂̄α.

Quantisation: A =

〈
n∏

i=1

Vi

〉
Fix e = 0, Vi =

∫
Σ
δ̄(k · P) eik·X . . .

Xµ integration is exact: ∂̄Pµ = 2πi dσ ∧ d σ̄
∑

i ki µ δ
2(σ − σi )

⇒ on CP1, Pµ = dσ
∑

i

ki µ

σ − σi
⇒ scattering equations

No α′. Weight(eik·X ) = 0 → massless spectrum
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Review of ambitwistor strings

Worldsheet Matter [Ohmori 15; Casali, Geyer, Mason, RM, Roehrig 15]

Combine with other chiral CFTs to reproduce CHY formulas:

S = SB + S` + Sr → A =

∫
dµ I` I r

S`
Sr

SΨ SΨ1,Ψ2 S(m′)
ρ,Ψ S(N′)

CS S(N′)
CS0

SΨ E

SΨ1,Ψ2 BI Galileon

S(m)
ρ,Ψ EM

U(1)m

DBI EMS
U(1)m ⊗U(1)m′

S(N)
CS,Ψ EYM gen. DBI EYMS

SU(N)⊗U(1)m′
EYMS
SU(N) ⊗ SU(N′)

S(N)
CS YM NLSM YMS

SU(N)⊗U(1)m′
YMS
SU(N) ⊗ SU(N′)

S
SU(N) ⊗ SU(N′)
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The one-loop scattering equations

Ambitwistor String at Genus 1

Genus-1 worldsheet: torus τ z ∼ z + 2π ∼ z + 2πτ

1
2- 1

2

⌧ $

Ambitwistor string correlator: type II SUGRA [Adamo, Casali, Skinner 13]

A(1) =

∫
dD` dτ δ̄(P2(z0|τ))

(
n∏

i=2

δ̄(ki · P(zi |τ)) dzi

)
Iτ

scattering equations on torus: δ̄( · ) ⇒ P2(z|τ) = 0

Pµ = dz

(
`µ +

∑

i

kiµ
θ′1(z − zi )

θ1(z − zi )

)

Modular invariance τ ∼ τ + 1 ∼ −1/τ

How to evaluate? [see also Cardona, Gomez 16]
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The one-loop scattering equations

Contour argument [Geyer, Mason, RM, Tourkine 15]

Integrand is rational, like tree level amplitude.

Torus similar to Riemann sphere?

Idea: apply residue theorem to localise on τ = i∞ (q = e2πiτ = 0).

1
2- 1

2

⌧ $Use modular invariance:

only q = 0 contributes!

1
2- 1

2

⌧ $

Nodal Riemann sphere!
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The one-loop scattering equations

New One-Loop Formula

Take coords σ = e2πiz on CP1,

A(1) = −
∫

dD`
1
`2

(
n∏

i=2

δ̄(Ei )
dσi

σ2
i

)
I0

2

satisfies

@̄P = 2⇡i
X

i

ki�̄(z � zi)dz ,

where �̄(f(z)) := @̄ 1
2⇡if(z) = �(<f)�(=f)df(z) . Intro-

ducing ` 2 Rd to parametrise the zero-modes, and denot-
ing zij = zi � zj , our choice of solution for P (z, zi|q)
is

P = 2⇡i `dz+
X

i

ki

 
✓01(z � zi)

✓1(z � zi)
+
X

j 6=i

✓01(zij)

n ✓1(zij)

!
dz . (1)

This is meromorphic and doubly periodic in z and the
zi. The ACS version is not holomorphic and does not
factorise properly [9], while that in [8, 10] is not doubly
periodic until the loop momentum is integrated out (as in
conventional string theory), and is thus not well defined
on the elliptic curve for fixed `. Using (1), the scattering
equations are

Reszi
P 2(z) = 2ki · P (zi) = 0 , P 2(z0) = 0 . (2)

Because the sum of residues of P 2 vanishes, the first scat-
tering equation follows from those at i = 2, . . . , n. Trans-
lation invariance implies that we must fix the location of
z1 by hand. On the support of the equations at zi, which
fix these points, P 2(z0) is global and holomorphic, hence
constant in z0, depending only on ⌧ . Therefore, the final
equation P 2(z0) = 0 determines ⌧ .

The ACS proposal for the 1-loop integrand of type-II
supergravity amplitudes takes the form

M(1)
SG =

Z
Iq dd` d⌧ �̄(P 2(z0))

nY

i=2

�̄(ki · P (zi))dzi , (3)

where, for the critical case, d = 10 and Iq = I(ki, ✏i, zi|q),
and ✏i is the polarisation data. It is obtained as a sum
over spin structures of a worldsheet correlator of vertex
operators, giving rise to certain Pfaffians and partition
functions described later and in more detail in [9]. This
formula is doubly periodic in the zi and modular invari-
ant, i.e., invariant under ⌧ ! ⌧+1,�1/⌧ (and `! `, ⌧`).

In [10], it was shown that when n = 4, as in string
theory, I is independent of zi and q, so it factors out
of the integral. The nontrivial remaining integral is the
n = 4 version of the more general integral

M(1)
n�gon =

Z
dd` d⌧ �̄(P 2(z0))

nY

i=2

�̄(ki · P (zi))dzi ,

where the integral is modular invariant for d = 2n + 2.
In [10], this was conjectured to be equivalent to a sum
over permutations of n-gons.

In both cases, there are as many delta functions as
integration variables and these restrict the integral to
a sum over a discrete set of solutions to the scattering
equations. Each term consists of the integrand evaluated
at the corresponding solution divided by a Jacobian.

III. FROM A TORUS TO A RIEMANN SPHERE

Here we use a residue theorem (or integration by parts
in our notation) to reduce the formula on the elliptic
curve to one on the nodal Riemann sphere at q = 0 (such
‘global residue theorems’ have already been applied to
tree-level CHY formulae by [11]). We will be left with
scattering equations that have off-shell momenta associ-
ated to `, and a formula for the 1-loop integrand based
on these.

1
2- 1

2

⌧ $

FIG. 1. Contour argument in the fundamental domain.

In order to obtain a formula for the amplitude on the
Riemann sphere, we assume that Iq := I(. . . |q) is holo-
morphic as a function of q on the fundamental domain
D⌧ = {|⌧ | � 1,<⌧ 2 [�1/2, 1/2]} for the modular group.
It was shown in [9] that the holomorphicity of the su-
pergravity integrand at q = 0 is a consequence of the
GSO projection. For other values of q the possible poles
in the integrand can only occur when zi ! zj , but the
standard factorisation argument [11] applies here also to
imply that this can only happen when the momenta are
factorising and hence nongeneric. The main argument is
then

M(1)
SG =

Z
Iq dd`

dq

q
@̄

✓
1

2⇡iP 2(z0)

◆ nY

i=2

�̄(ki · P (zi))dzi

= �
Z

Iq dd` @̄

✓
dq

2⇡iq

◆
1

P 2(z0)

nY

i=2

�̄(ki · P (zi))dzi

= �
Z

I0 dd`
1

P 2(z0)

nY

i=2

�̄(ki · P (zi))dzi

���
q=0

. (4)

In the first line, we put d⌧ = dq/2⇡iq and inserted the
definition of �̄(P 2(z0)). In the second line, we integrated
by parts in the domain D⌧ , yielding a delta function sup-
ported at q = 0 that is then integrated out. The bound-
ary terms cancel because of the modular invariance. This
is equivalent to a contour integral argument in the fun-
damental domain D⌧ as in figure 1. The sum of the
residues at the poles of 1/P 2(z0, . . . |q) simply gives the
contribution from the residue at the top, q = 0, since the
contributions from the sides and the unit circle cancel by
modular invariance.

where

I0 = I(q = 0). Details later.

Pµ =

(
`µ

σ − 0
− `µ
σ −∞ +

∑

i

kiµ

σ − σi

)
dσ ∼ tree-level for n + 2 pts

Scattering equations: Ei = ki · P(σi ) =
ki · `
σi

+
∑

j 6=i

ki · kj

σij
= 0

Can be understood from forward limit of tree level. [HY, CHY 15] [Naculich 14]
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The one-loop scattering equations

Shifted Integrand

New formula: A(1) = −
∫

dD`
1
`2

(
n∏

i=2

δ̄(Ei )
dσi

σ2
i

)
I0

Puzzle! Only one
1
`2 , rest depends only on ` · K , ` · ε . . .

Shifted Integrand
use

1∏
i Di

=
∑

i

1
Di
∏

j 6=i (Dj − Di )

shift each term
1
Di
→ 1

`2

Example: 1
`2(`+ K )2 =

1
`2(2 ` · K + K 2)

+
1

(`+ K )2(−2 ` · K − K 2)

shift→ 1
`2

[
1

2 ` · K + K 2 +
1

−2 ` · K + K 2

]

Good for obtaining loop integrands from trees! [Baadsgaard et al 15] [CHY 15]
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New formulas at one loop

Yang-Mills and Gravity
Supersymmetry

SUGRA: take q → 0 of torus correlator [Adamo, Casali, Skinner 13]

ISUGRA
0 = Î(ε) Î(ε̃) Î = 16 (Pf M2 − Pf M3) |q0 − 2 Pf M3 |q1/2

SYM: guess based on double copy to gravity.

ISYM
0 = Î(ε) IPT (1)

1
σ12σ23···σn1

 σ+`,−`

σ+`,1 σ1,2 σ2,3... σn,−`
+ cyc

No supersymmetry

Can identify bulding blocks in sum over spin structures.

In D = 4, vector = Pf M3 |q1/2 + 2 Pf M3 |q0 , scalar = Pf M3 |q0 .

I0= ( vector ) IPT(1) = pure Yang-Mills

I0= ( vector ) 2 = NS-NS gravity (graviton-dilaton-axion)

I0= ( vector ) 2 − 2 ( scalar ) 2 = Einstein gravity
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Conclusion

Conclusion

Scattering equations work at loop level.

Geometric picture of the loop momentum.

New formulas for gauge theory and gravity, with or without SUSY.

Gravity ∼ YM2 at one loop.

Some open questions

Higher loops? Multiple degenerations. Yvonne’s talk

Relation to string theory? [Casali, Tourkine 16]

What class of theories?

Worldsheet models on nodal spheres?
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