Quantum Tunneling
 \&
 Black Hole Horizons

1512.05376 with I. Bena, D.R. Mayerson and B. Vercnocke

Andrea Puhm UC Santa Barbara \longrightarrow Harvard University
Nordita "Inward Bound" Conference - August 18, 2016

Motivation

Motivation

There should be a law of nature to prevent
a star from behaving in this absurd way.

- A.S.Eddington 1935
information paradox?
entropy count?
infalling observers?

Motivation

There should be a law of nature to prevent
a star from behaving in this absurd way.

- A.S.Eddington 1935

Information Paradox

Information paradox as strong subadditivity paradox:

$$
S_{A B}+S_{B C} \geqslant S_{B}+S_{A B C}
$$

$A B$ $B C$ entanglement smooth horizon

Information Paradox

Information paradox as strong subadditivity paradox:

$$
S_{A B}+S_{B C} \geqslant S_{B}+S_{A B C}
$$

$A B$ $B C$

unitarity (purity)
smooth horizon

Entanglement entropy of radiation:

Information Paradox

Information paradox as strong subadditivity paradox:

$$
S_{A B}+S_{B C} \geqslant S_{B}+S_{A B C}
$$

$A B$ $B C$ entanglement smooth horizon

Entanglement entropy of radiation:

[Mathur]: Unitarity \rightarrow dof @ horizon! [AMPS]: firewall;
[Mathur;Bena, Warner;...]: fuzzball

Information Paradox

Information paradox as strong subadditivity paradox:

$$
S_{A B}+S_{B C} \geqslant S_{B}+S_{A B C}
$$

$A B$
$B C$ entanglement
unitarity (purity)
smooth horizon

Entanglement entropy of radiation:

[Mathur]: Unitarity \rightarrow dof @ horizon! [AMPS]: firewall;
[Mathur;Bena, Warner;...]: fuzzball
Other potential ways out:
[Silverstein,Dodelson]: string-effects
[Papadodimas, Raju], [Maldacena,Susskind],
[Kabat,Lifschytz]: A,B,C not independent [Hawking,Perry,Strominger]: soft hair

3 increasingly complicated systems to tackle

$T=0$ (yet $S_{\mathrm{BH}} \neq 0$!):
I. Extreme charged $Q=M$

AdS/CFT [Maldacena'97;Witten'98;...]
SUSY: large classes of microstate geometries constructed
[Bena, Warner'04;Bena,Kraus'05, Berglund, Gimon,Levi'05;...
Bena, Giusto,Martinec, Russo,Shigeomori,Turton, Warner'16]

3 increasingly complicated systems to tackle

$T=0\left(\right.$ yet $S_{\mathrm{BH}} \neq 0$!):
I. Extreme charged $Q=M$

AdS/CFT [Maldacena'97;Witten'98;...]
SUSY: large classes of microstate geometries constructed
[Bena, Warner'04;Bena,Kraus'05, Berglund, Gimon,Levi'05;...
Bena, Giusto,Martinec, Russo,Shigeomori,Turton, Warner'16]
II. Extreme rotating $J=M^{2}$

Kerr/CFT [Guica,Hartman,Song,Strominger'08;...]
\rightarrow from RG flow of AdS/CFT ? [Bena,AP,Heurtier'15]
SUSY: construction of microstate geometries in the making

3 increasingly complicated systems to tackle

$T=0$ (yet $S_{\mathrm{BH}} \neq 0$!):
I. Extreme charged $Q=M$

AdS/CFT [Maldacena'97;Witten'98;...]
SUSY: large classes of microstate geometries constructed [Bena, Warner'04;Bena,Kraus'05, Berglund, Gimon,Levi'05;... Bena, Giusto, Martinec, Russo,Shigeomori,Turton, Warner'16]

Highly charged: not realistic.
II. Extreme rotating $J=M^{2}$

Kerr/CFT [Guica,Hartman,Song,Strominger'08;...]
\rightarrow from RG flow of AdS/CFT ? [Bena,AP,Heurtier'15]
SUSY: construction of microstate geometries in the making
Highly rotating: in the sky!

GRS 1915+105: $J \sim 0.98 M^{2}$

3 increasingly complicated systems to tackle

$T=0\left(\right.$ yet $\left.S_{\mathrm{BH}} \neq 0!\right):$

I. Extreme charged $Q=M$

AdS/CFT [Maldacena'97; Witten'98;...]
SUSY: large classes of microstate geometries constructed

> [Bena, Warner'04;Bena, Kraus'05, Berglund, Gimon, Levi'05;...
> Bena, Giusto, Martinec, Russo,Shigeomori,Turton, Warner'16]
II. Extreme rotating $J=M^{2}$

Kerr/CFT [Guica,Hartman,Song,Strominger'08;...]
\hookrightarrow from RG flow of AdS/CFT ? [Bena,AP,Heurtier'15]
SUSY: construction of microstate geometries in the making
$\underline{T \neq 0:}$
III. Non-extreme charged $Q<M$, rotating $J<M^{2}$ SUSY: general existence proof [Gibbons, Warner'13] perturbative construction [Bena,AP, Vercnocke'11+'12] non-perturbative constructions in the making

Challenges

General Relativity \& Quantum Mechanics \Rightarrow structure at the horizon!

- Not ordinary matter (falls in/dilutes)
- Must form in astrophysical process

Challenges

General Relativity \& Quantum Mechanics \Rightarrow structure at the horizon!

- Not ordinary matter (falls in/dilutes) \Rightarrow need mechanism (firewall is NOT!) that circumvents "no hair theorem" and "no solitons without horizons theorem"!
- Must form in astrophysical process

Challenges

General Relativity \& Quantum Mechanics \Rightarrow structure at the horizon!

- Not ordinary matter (falls in/dilutes) \Rightarrow need mechanism (firewall is NOT!) that circumvents "no hair theorem" and "no solitons without horizons theorem"!
- Must form in astrophysical process
backwards in time singularity resolution
$\Rightarrow \quad$ OR
quantum effects on scales $R_{H} \sim 10^{10} \mathrm{~m}$

Challenges

General Relativity \& Quantum Mechanics \Rightarrow structure at the horizon!

- Not ordinary matter (falls in/dilutes) \Rightarrow need mechanism (firewall is NOT!) that circumvents "no hair theorem" and "no solitons without horizons theorem"!
- Must form in astrophysical process
backwards in time singularity resolution $\Rightarrow \quad$ OR
quantum effects on scales $R_{H} \sim 10^{10} \mathrm{~m}$

String theory: extra dimensions, topology and fluxes ;)

The Microstate Mechanism

The Microstate Mechanism

- extra dimensions: 5D

The Microstate Mechanism

- extra dimensions: 5D
- topology: 2-cycles ("bubbles") over R^{3} base (Gibbons-Hawking)

The Microstate Mechanism

- extra dimensions: 5D
- topology: 2-cycles ("bubbles") over R^{3} base (Gibbons-Hawking)
- Chern-Simons terms: sources replaced by flux \Rightarrow smooth

$$
A \wedge F \wedge F \quad \rightarrow \quad d \star F=F \wedge F \text { instead of } d \star F=\delta(r)
$$

The Microstate Mechanism

- extra dimensions: 5D
- topology: 2-cycles ("bubbles") over R^{3} base (Gibbons-Hawking)
- Chern-Simons terms: sources replaced by flux \Rightarrow smooth

$$
A \wedge F \wedge F \quad \rightarrow \quad d \star F=F \wedge F \text { instead of } d \star F=\delta(r)
$$

5D Geometry: $\mathbb{R}_{t} \times \mathbb{R}^{3} \times S_{\psi}^{1}$

The Microstate Mechanism

- extra dimensions: 5D
- topology: 2-cycles ("bubbles") over R^{3} base (Gibbons-Hawking)
- Chern-Simons terms: sources replaced by flux \Rightarrow smooth

$$
A \wedge F \wedge F \quad \rightarrow \quad d \star F=F \wedge F \text { instead of } d \star F=\delta(r)
$$

11D Geometry: $\mathbb{R}_{t} \times \mathbb{R}^{3} \times S_{\psi}^{1} \times T^{6}$

The Microstate Mechanism

(-) extra dimensions: 5D
(-) topology: 2-cycles ("bubbles") over R^{3} base (Gibbons-Hawking)
(-) Chern-Simons terms: sources replaced by flux \Rightarrow smooth $A \wedge F \wedge F \quad \rightarrow \quad d \star F=F \wedge F$ instead of $d \star F=\delta(r)$

11D Geometry: $\mathbb{R}_{t} \times \mathbb{R}^{3} \times S_{\psi}^{1} \times T^{6}$

See talk by B. Vercnocke:
[Gibbons, Warner'13]: found loophole in "No solitons without horizons" \Rightarrow "No solitons without topology" - not just BPS!

Geometric bubbling transition

Geometric bubbling transition

[Bena, Warner](!%5B%5D(./images/02134e953629a9ac8a30fd85fd49f958_168_664_145_1115.jpg)):
potentially singular
brane sources
microstate geometries supported by cohomological fluxes

$$
d \star F^{(p)} \sim \delta^{(D-p)}+\sum_{k} G^{(k)} \wedge G^{(D-k-p)}
$$

Phase transition driven by Chern-Simons coupling
New scales in addition to ℓ_{P}, R_{H} :

- size of bubble threaded by flux: order parameter (0 for BH)
- throat depth: gap (∞ for BH)

Typical Black Hole Microstates

Extremal microstate geometries from solving the bubble equations:

$$
\left\langle\Gamma_{i}, H\left(r_{i}\right)\right\rangle=0
$$

- $\Gamma_{i}=(K K, M 5, M 2, J)$ charges at r_{i}
- $H\left(r_{i}\right)=\sum_{i}\left(h_{i}+\frac{\Gamma_{i}}{r_{i}}\right)$ harmonic background functions

Typical microstate geometries: deep throat

Typical Black Hole Microstates

Extremal microstate geometries from solving the bubble equations:

$$
\left\langle\Gamma_{i}, H\left(r_{i}\right)\right\rangle=0
$$

- $\Gamma_{i}=(K K, M 5, M 2, J)$ charges at r_{i}
- $H\left(r_{i}\right)=\sum_{i}\left(h_{i}+\frac{\Gamma_{i}}{r_{i}}\right)$ harmonic background functions

Typical microstate geometries: deep throat \Rightarrow Scaling Solutions

Black Holes Microstate Dynamics

1 state

Black Holes Microstate Dynamics

The Tunneling Argument

Probability of a collapsing shell $\xrightarrow{\text { tunnel }}$ fuzzball with $r_{\mathrm{FB}} \sim r_{\mathrm{BH}}$:
[Mathur'08]

$$
P=\mathcal{N} \cdot \Gamma_{\text {tunnel }}
$$

The Tunneling Argument

Probability of a collapsing shell $\xrightarrow{\text { tunnel }}$ fuzzball with $r_{\mathrm{FB}} \sim r_{\mathrm{BH}}$:
[Mathur'08]

$$
P=\mathcal{N} \cdot \Gamma_{\text {tunnel }}
$$

$\Gamma_{\text {tunnel }} \sim e^{-S_{\text {tunnel }}} \quad$ with $\quad S_{\text {tunnel }} \sim \int \sqrt{-g} R \sim \alpha M^{2} \sim \alpha S_{\mathrm{BH}}$
... very small number!

The Tunneling Argument

Probability of a collapsing shell $\xrightarrow{\text { tunnel }}$ fuzzball with $r_{\mathrm{FB}} \sim r_{\mathrm{BH}}$:
[Mathur'08]

$$
\begin{gathered}
P=\mathcal{N} \cdot \Gamma_{\text {tunnel }} \\
\Gamma_{\text {tunnel }} \sim e^{-S_{\text {tunnel }}} \quad \text { with } \quad S_{\text {tunnel }} \sim \int \sqrt{-g} R \sim \alpha M^{2} \sim \alpha S_{\mathrm{BH}} \\
\ldots \text { very small number! } \\
\mathcal{N}=\# \text { of microstates }=e^{S_{\mathrm{BH}}} \\
\ldots \text { very large number! }
\end{gathered}
$$

The Tunneling Argument

Probability of a collapsing shell $\xrightarrow{\text { tunnel }}$ fuzzball with $r_{\mathrm{FB}} \sim r_{\mathrm{BH}}$:

$$
\begin{gathered}
P=\mathcal{N} \cdot \Gamma_{\text {tunnel }} \\
\Gamma_{\text {tunnel }} \sim e^{-S_{\text {tunnel }}} \quad \text { with } \quad S_{\text {tunnel }} \sim \int \sqrt{-g} R \sim \alpha M^{2} \sim \alpha S_{\mathrm{BH}} \\
\ldots \text { very small number! }
\end{gathered}
$$

$$
\mathcal{N}=\# \text { of microstates }=e^{S_{\mathrm{BH}}}
$$

... very large number!
The two exponentials play off against each other if $\alpha \sim \mathcal{O}(1)$:

$$
t_{\text {tunnel }} \sim P^{-1} \sim e^{-S_{B H}} e^{\alpha S_{B H}} \quad \Rightarrow \text { fast for } \alpha \lesssim 1!
$$

The shell tunnels into fuzzballs before a horizon can form!

The Tunneling Argument

Probability of a collapsing shell $\xrightarrow{\text { tunnel }}$ fuzzball with $r_{\mathrm{FB}} \sim r_{\mathrm{BH}}$:
[Mathur'08]

$$
P=\mathcal{N} \cdot \Gamma_{\text {tunnel }}
$$

$\Gamma_{\text {tunnel }} \sim e^{-S_{\text {tunnel }}} \quad$ with $\quad S_{\text {tunnel }} \sim \int \sqrt{-g} R \sim \alpha M^{2} \sim \alpha S_{\mathrm{BH}}$
... very small number!

$$
\mathcal{N}=\# \text { of microstates }=e^{S_{\mathrm{BH}}}
$$

... very large number!
The two exponentials play off against each other if $\alpha \sim \mathcal{O}(1)$:

$$
t_{\text {tunnel }} \sim P^{-1} \sim e^{-S_{B H}} e^{\alpha S_{B H}} \quad \Rightarrow \text { found } \alpha=1 \text { ![Kraus,Mathur'15] }
$$

The shell tunnels into fuzzballs before a horizon can form!

Black hole emitting Hawking radiation with backreaction:

$$
\Gamma_{\text {tunnel }} \sim e^{S_{\mathrm{BH}}(M-\omega)-S_{\mathrm{BH}}(M)}
$$

Black hole emitting Hawking radiation with backreaction:

$$
\begin{gathered}
\omega=M \\
\downarrow \\
\Gamma_{\text {tunnel }} \sim e^{S_{\mathrm{BH}}(M-\omega)-S_{\mathrm{BH}}(M)}=e^{-S_{\mathrm{BH}}(M)}
\end{gathered}
$$

Black hole emitting Hawking radiation with backreaction:

$$
\begin{gathered}
\begin{array}{c}
\omega=M \\
\downarrow
\end{array} \\
\Gamma_{\text {tunnel }} \sim e^{S_{\mathrm{BH}}(M-\omega)-S_{\mathrm{BH}}(M)}=e^{-S_{\mathrm{BH}}(M)} \equiv e^{-\alpha S_{\mathrm{BH}}(M)} \rightarrow \alpha=1
\end{gathered}
$$

Black hole emitting Hawking radiation with backreaction:

$$
\begin{gathered}
\begin{array}{c}
\omega \\
\stackrel{\downarrow}{=} \\
\Gamma_{\text {tunnel }} \sim e^{S_{\mathrm{BH}}(M-\omega)-S_{\mathrm{BH}}(M)}
\end{array}=e^{-S_{\mathrm{BH}}(M)} \equiv e^{-\alpha S_{\mathrm{BH}}(M)} \rightarrow \alpha=1
\end{gathered}
$$

Assumptions:

- $\mathrm{P}($ black hole $\xrightarrow{\text { tunnel }}$ shell $)=\mathrm{P}($ shell $\xrightarrow{\text { tunnel }}$ fuzzball $)$
- $r_{\mathrm{FB}} \sim r_{\mathrm{BH}}$
- fuzzball exterior $=$ black hole exterior

Black hole emitting Hawking radiation with backreaction:

Assumptions:

- $\mathrm{P}($ black hole $\xrightarrow{\text { tunnel }}$ shell $)=\mathrm{P}($ shell $\xrightarrow{\text { tunnel }}$ fuzzball $)$
- $r_{\mathrm{FB}} \sim r_{\mathrm{BH}}$
- fuzzball exterior $=$ black hole exterior

Goals:

- compute $\Gamma_{\text {tunnel }}$ into explicitly known microstate geometries
- study $\Gamma_{\text {tunnel }}$ for different microstates: non-scaling and scaling \rightarrow universal features?

Black hole emitting Hawking radiation with backreaction:

Assumptions:

- $\mathrm{P}($ black hole $\xrightarrow{\text { tunnel }}$ shell $)=\mathrm{P}($ shell $\xrightarrow{\text { tunnel }}$ fuzzball $)$
- $r_{\mathrm{FB}} \sim r_{\mathrm{BH}}$
- fuzzball exterior $=$ black hole exterior

Goals:

- compute $\Gamma_{\text {tunnel }}$ into explicitly known microstate geometries
- study $\Gamma_{\text {tunnel }}$ for different microstates: non-scaling and scaling \rightarrow universal features?
Upshot: $\alpha \lesssim 1$ and no need for above assumptions!

Modeling gravitational collapse

How to compute $\Gamma_{\text {tunnel }}=A e^{-B}$?

Modeling gravitational collapse

$$
\text { How to compute } \Gamma_{\text {tunnel }}=A e^{-B} \text { ? }
$$

General idea is to tunnel branes into bubbling microstate solutions:

- $10+1 \mathrm{D}$ problem: branes wrap extra dimensions

Modeling gravitational collapse

$$
\text { How to compute } \Gamma_{\text {tunnel }}=A e^{-B} \text { ? }
$$

General idea is to tunnel branes into bubbling microstate solutions:

- $10+1 \mathrm{D}$ problem: branes wrap extra dimensions
\downarrow reduction
- $3+1 \mathrm{D}$ problem: branes become particles

Modeling gravitational collapse

$$
\text { How to compute } \Gamma_{\text {tunnel }}=A e^{-B} \text { ? }
$$

General idea is to tunnel branes into bubbling microstate solutions:

- $10+1 \mathrm{D}$ problem: branes wrap extra dimensions
\downarrow reduction
- 3+1D problem: branes become particles
\downarrow symmetry
- $1+1 \mathrm{D}$ problem: quantum mechanics!

Tunneling building blocks

Decay of supertubes into branes:

Excess energy \rightarrow (Hawking) radiation.

Tunneling building blocks

Decay of supertubes into branes:

Excess energy \rightarrow (Hawking) radiation.
Tunneling branes into supertubes \rightarrow topology and flux:

[Bena,Mayerson, AP, Vercnocke'15]

Tunneling building blocks

Decay of supertubes into branes:

Excess energy \rightarrow (Hawking) radiation.
Tunneling branes into supertubes \rightarrow topology and flux:

[Bena,Mayerson, AP, Vercnocke'15]

Quantum Tunneling into Microstates

On-shell Euclidean action integrated over path of 'least resistance':

$$
\begin{array}{r}
B=S_{E}=\int_{t_{i}}^{t_{f}} d t L_{E}(x(t), \dot{x}(t))=\int_{\uparrow}^{\vec{x}_{x_{i}}}|d x||p(x)| \\
H_{E}=p \dot{x}-L_{E}=0 \text { with } p=\frac{\partial L_{E}}{\partial \dot{x}}
\end{array}
$$

Quantum Tunneling into Microstates

On-shell Euclidean action integrated over path of 'least resistance':

$$
\begin{array}{r}
B=S_{E}=\int_{t_{i}}^{t_{f}} d t L_{E}(x(t), \dot{x}(t))=\int_{\uparrow}^{\vec{x}_{x_{i}}}|d x||p(x)| \\
H_{E}=p \dot{x}-L_{E}=0 \text { with } p=\frac{\partial L_{E}}{\partial \dot{x}}
\end{array}
$$

Relativistic particle with mass $m(x)$ and charge q :

$$
\begin{gathered}
L_{E}=\int m(x)+\int q A_{t}(x) \\
|p(x)|=\left(g_{t t}(x)\right)^{-1 / 2} \sqrt{\left|g_{t t}(x)\right| m(x)^{2}-\left(q A_{t}(x)\right)^{2}}
\end{gathered}
$$

Quantum Tunneling into Microstates

On-shell Euclidean action integrated over path of 'least resistance':

$$
\begin{array}{r}
B=S_{E}=\int_{t_{i}}^{t_{f}} d t L_{E}(x(t), \dot{x}(t))=\int_{\vec{x}_{i}}^{\vec{x}_{f}}|d x||p(x)| \\
H_{E}=p \dot{x}-L_{E}=0 \text { with } p=\frac{\partial L_{E}}{\partial \dot{x}}
\end{array}
$$

Supertube with electric q_{1}, q_{2}, dipole d_{3} and ang. mom. $q_{1} q_{2} / d_{3}$:

harmonic functions describing the bubbling microstate

Tunneling Amplitude

One tunneling event:

$$
B=\int_{r_{1}}^{r_{2}} d r\langle\Gamma, H(r)\rangle
$$

$\left\langle\Gamma_{i}, H\left(r_{i}\right)\right\rangle=0$ Bubble equations!
$\left\langle\Gamma, H\left(r_{\text {susy }}\right)\right\rangle=0$ susy probe min

Tunneling Amplitude

One tunneling event:

$$
B=\int_{r_{1}}^{r_{2}} d r\langle\Gamma, H(r)\rangle
$$

$\left\langle\Gamma_{i}, H\left(r_{i}\right)\right\rangle=0$ Bubble equations!
$\left\langle\Gamma, H\left(r_{\text {susy }}\right)\right\rangle=0$ susy probe min

Bound on tunneling timescale from slowest process:

$$
B=\left|d_{3}\right| r_{12}
$$

Extremely simple result!

Tunneling Before a Horizon Forms

Make N-centered solution from multiple tunneling events:

$$
e^{-\alpha S_{B H}} \equiv \Gamma_{\text {tunnel }} \sim e^{-\alpha_{0} S_{\mathrm{BH}} / N^{\beta}} \quad \rightarrow \quad \alpha \sim 1 / N^{\beta}
$$

- α_{0} depends on the details of the collapse
- $\beta>0$ (non-scaling: $\beta=3 / 2$ and scaling $\beta=0.93$)

Tunneling Before a Horizon Forms

Make N-centered solution from multiple tunneling events:

$$
e^{-\alpha S_{B H}} \equiv \Gamma_{\text {tunnel }} \sim e^{-\alpha_{0} S_{\mathrm{BH}} / N^{\beta}} \quad \rightarrow \quad \alpha \sim 1 / N^{\beta}
$$

- α_{0} depends on the details of the collapse
- $\beta>0$ (non-scaling: $\beta=3 / 2$ and scaling $\beta=0.93$)

Tunneling into N-bubbled microstate:

$$
\frac{\alpha \ll 1}{\uparrow} \text { for N large }
$$

before the shell reaches the horizon !

Shell quantum tunnels into microstate before horizon forms!

Conclusions

\diamond Summary:

Tunneling amplitude into multi-bubbled microstates not parametrically suppressed $\Gamma_{\text {tunnel }}=e^{-\alpha S_{B H}}$ with $\alpha \lesssim 1$
\Rightarrow can be fast enough to avoid formation of horizon!

\diamond Open Questions:

- Total tunneling amplitude: $P=\mathcal{N} \Gamma_{\text {tunnel }}$
- Typical microstates: size of bubbles vs. number of bubbles? See talk by D. Turton.
- Infalling observers: tunnel into microstate ?
- Emergence of spacetime from collective microstate excitations ?

