

1512.05376 with I. Bena, D.R. Mayerson and B. Vercnocke

Andrea Puhm UC Santa Barbara ---- Harvard University

Nordita "Inward Bound" Conference - August 18, 2016

Motivation

Motivation

Motivation

 $S_{AB} + S_{BC} \ge S_B + S_{ABC}$

 $\begin{array}{c} AB \\ BC \end{array} \hspace{0.1 cm} \text{entanglement} \hspace{0.1 cm} \begin{array}{c} \text{unitarity (purity)} \\ \text{smooth horizon} \end{array}$

 $S_{AB} + S_{BC} \ge S_B + S_{ABC}$

 $\begin{array}{c} AB\\ BC \end{array} \hspace{0.1 cm} \text{entanglement} \hspace{0.1 cm} \begin{array}{c} \text{unitarity (purity)}\\ \text{smooth horizon} \end{array}$

Entanglement entropy of radiation:

 $S_{AB} + S_{BC} \ge S_B + S_{ABC}$

 $\begin{array}{c} AB\\ BC \end{array} \hspace{0.1 cm} \text{entanglement} \hspace{0.1 cm} \begin{array}{c} \text{unitarity (purity)}\\ \text{smooth horizon} \end{array}$

Entanglement entropy of radiation:

[Mathur]: Unitarity \rightarrow dof @ horizon! [AMPS]: firewall; [Mathur;Bena, Warner;...]: fuzzball

 $S_{AB} + S_{BC} \ge S_B + S_{ABC}$

 $\begin{array}{c} AB\\ BC \end{array} \hspace{0.1 cm} \text{entanglement} \hspace{0.1 cm} \begin{array}{c} \text{unitarity (purity)}\\ \text{smooth horizon} \end{array}$

Entanglement entropy of radiation:

T = 0 (yet $S_{\rm BH} \neq 0!$):

I. Extreme charged Q = MAdS/CFT [Maldacena'97; Witten'98;...] SUSY: large classes of microstate geometries constructed [Bena, Warner'04; Bena, Kraus'05, Berglund, Gimon, Levi'05;... Bena, Giusto, Martinec, Russo, Shigeomori, Turton, Warner'16]

T = 0 (yet $S_{\rm BH} \neq 0!$):

I. Extreme charged Q = MAdS/CFT [Maldacena'97; Witten'98;...] SUSY: large classes of microstate geometries constructed [Bena, Warner'04; Bena, Kraus'05, Berglund, Gimon, Levi'05;... Bena, Giusto, Martinec, Russo, Shigeomori, Turton, Warner'16]

II. Extreme rotating $J = M^2$

Kerr/CFT [Guica, Hartman, Song, Strominger'08;...] → from RG flow of AdS/CFT ? [Bena, AP, Heurtier'15] SUSY: construction of microstate geometries in the making

T = 0 (yet $S_{\rm BH} \neq 0!$):

I. Extreme charged Q = MAdS/CFT [Maldacena'97; Witten'98;...] SUSY: large classes of microstate geometries constructed [Bena, Warner'04; Bena, Kraus'05, Berglund, Gimon, Levi'05;... Bena, Giusto, Martinec, Russo, Shigeomori, Turton, Warner'16]

Highly charged: not realistic.

II. Extreme rotating $J = M^2$

Kerr/CFT [Guica, Hartman, Song, Strominger'08;...] → from RG flow of AdS/CFT ? [Bena, AP, Heurtier'15] SUSY: construction of microstate geometries in the making

Highly rotating: in the sky!

GRS 1915+105: $J \sim 0.98 M^2$

T = 0 (yet $S_{BH} \neq 0$!):

I. Extreme charged Q = MAdS/CFT [Maldacena'97; Witten'98;...] SUSY: large classes of microstate geometries constructed [Bena, Warner'04; Bena, Kraus'05, Berglund, Gimon, Levi'05;... Bena, Giusto, Martinec, Russo, Shigeomori, Turton, Warner'16]

II. Extreme rotating J = M²
Kerr/CFT [Guica, Hartman, Song, Strominger'08;...]
→ from RG flow of AdS/CFT ? [Bena, AP, Heurtier'15]
SUSY: construction of microstate geometries in the making

 $T \neq 0$:

III. Non-extreme charged Q < M, rotating $J < M^2$ SUSY: general existence proof [Gibbons, Warner'13] perturbative construction [Bena, AP, Vercnocke'11+'12] non-perturbative constructions in the making

• Not ordinary matter (falls in/dilutes)

• Must form in astrophysical process

- Not ordinary matter (falls in/dilutes)
 ⇒ need mechanism (firewall is NOT!) that circumvents "no hair theorem" and "no solitons without horizons theorem" !
- Must form in astrophysical process

- Not ordinary matter (falls in/dilutes)
 ⇒ need mechanism (firewall is NOT!) that circumvents "no hair theorem" and "no solitons without horizons theorem" !
- Must form in astrophysical process backwards in time singularity resolution \Rightarrow OR quantum effects on scales $R_H \sim 10^{10} m$

- Not ordinary matter (falls in/dilutes)
 ⇒ need mechanism (firewall is NOT!) that circumvents "no hair theorem" and "no solitons without horizons theorem" !
- Must form in astrophysical process backwards in time singularity resolution \Rightarrow OR quantum effects on scales $R_H \sim 10^{10} m$

String theory: extra dimensions, topology and fluxes \bigcirc

• extra dimensions: 5D

- extra dimensions: 5D
- topology: 2-cycles ("bubbles") over \mathbb{R}^3 base (Gibbons-Hawking)

- extra dimensions: 5D
- topology: 2-cycles ("bubbles") over \mathbb{R}^3 base (Gibbons-Hawking)
- Chern-Simons terms: sources replaced by flux \Rightarrow smooth $A \land F \land F \rightarrow d \star F = F \land F$ instead of $d \star F = \delta(r)$

- extra dimensions: 5D
- topology: 2-cycles ("bubbles") over \mathbb{R}^3 base (Gibbons-Hawking)
- Chern-Simons terms: sources replaced by flux \Rightarrow smooth $A \land F \land F \rightarrow d \star F = F \land F$ instead of $d \star F = \delta(r)$

5D Geometry: $\mathbb{R}_t \times \mathbb{R}^3 \times S^1_{\psi}$

- extra dimensions: 5D
- topology: 2-cycles ("bubbles") over \mathbb{R}^3 base (Gibbons-Hawking)
- Chern-Simons terms: sources replaced by flux \Rightarrow smooth $A \land F \land F \rightarrow d \star F = F \land F$ instead of $d \star F = \delta(r)$

11D Geometry: $\mathbb{R}_t \times \mathbb{R}^3 \times S^1_{\psi} \times T^6$

- \bigcirc extra dimensions: 5D
- \bigcirc topology: 2-cycles ("bubbles") over \mathbb{R}^3 base (Gibbons-Hawking)
- $Chern-Simons terms: sources replaced by flux <math>\Rightarrow$ smooth $A \land F \land F \rightarrow d \star F = F \land F$ instead of $d \star F = \delta(r)$

11D Geometry: $\mathbb{R}_t \times \mathbb{R}^3 \times S^1_{\psi} \times T^6$

See talk by B.Vercnocke: [Gibbons, Warner'13]: found loophole in "No solitons without horizons" ⇒ "No solitons without topology" - not just BPS!

Geometric bubbling transition

[Bena, Warner]:

Geometric bubbling transition

Phase transition driven by Chern-Simons coupling

New scales in addition to ℓ_P , R_H :

- size of bubble threaded by flux: order parameter (0 for BH)
- throat depth: gap (∞ for BH)

Typical Black Hole Microstates

Extremal microstate geometries from solving the *bubble equations:*

$$\langle \Gamma_i, H(r_i) \rangle = 0$$

- $\Gamma_i = (KK, M5, M2, J)$ charges at r_i
- $H(r_i) = \sum_i (h_i + \frac{\Gamma_i}{r_i})$ harmonic background functions

Typical microstate geometries: deep throat

Typical Black Hole Microstates

- $\Gamma_i = (KK, M5, M2, J)$ charges at r_i
- $H(r_i) = \sum_i (h_i + \frac{\Gamma_i}{r_i})$ harmonic background functions

Typical microstate geometries: deep throat \Rightarrow Scaling Solutions

Black Holes Microstate Dynamics

Black Holes Microstate Dynamics

Probability of a collapsing shell $\xrightarrow{\text{tunnel}}$ fuzzball with $r_{\text{FB}} \sim r_{\text{BH}}$: [Mathur'08]

 $P = \mathcal{N} \cdot \Gamma_{tunnel}$

Probability of a collapsing shell $\xrightarrow{\text{tunnel}}$ fuzzball with $r_{\text{FB}} \sim r_{\text{BH}}$: [Mathur'08]

$$P = \mathcal{N} \cdot \Gamma_{tunnel}$$

$$\Gamma_{tunnel} \sim e^{-S_{tunnel}} \quad \text{with} \quad S_{tunnel} \sim \int \sqrt{-g}R \sim \alpha M^2 \sim \alpha S_{BH}$$

... very small number!

Probability of a collapsing shell $\xrightarrow{\text{tunnel}}$ fuzzball with $r_{\text{FB}} \sim r_{\text{BH}}$: [Mathur'08]

$$P = \mathcal{N} \cdot \Gamma_{tunnel}$$

$$\Gamma_{tunnel} \sim e^{-S_{tunnel}} \quad \text{with} \quad S_{tunnel} \sim \int \sqrt{-g}R \sim \alpha M^2 \sim \alpha S_{BH}$$

$$\dots \quad veru \quad small \quad number.$$

 $\mathcal{N} = \#$ of microstates $= e^{S_{\rm BH}}$

... very large number!

Probability of a collapsing shell $\xrightarrow{\text{tunnel}}$ fuzzball with $r_{\text{FB}} \sim r_{\text{BH}}$: [Mathur'08]

$$P = \mathcal{N} \cdot \Gamma_{tunnel}$$

$$\Gamma_{tunnel} \sim e^{-S_{tunnel}}$$
 with $S_{tunnel} \sim \int \sqrt{-g}R \sim \alpha M^2 \sim \alpha S_{\rm BH}$

... very small number!

 $\mathcal{N} = \# \text{ of microstates} = e^{S_{\rm BH}}$

... very large number!

The two exponentials play off against each other if $\alpha \sim \mathcal{O}(1)$:

 $t_{\text{tunnel}} \sim P^{-1} \sim e^{-S_{BH}} e^{\alpha S_{BH}} \Rightarrow fast \text{ for } \alpha \lesssim 1 !$

The shell tunnels into fuzzballs before a horizon can form!

Probability of a collapsing shell $\xrightarrow{\text{tunnel}}$ fuzzball with $r_{\text{FB}} \sim r_{\text{BH}}$: [Mathur'08]

$$P = \mathcal{N} \cdot \Gamma_{tunnel}$$

$$\Gamma_{tunnel} \sim e^{-S_{tunnel}}$$
 with $S_{tunnel} \sim \int \sqrt{-g}R \sim \alpha M^2 \sim \alpha S_{\rm BH}$

... very small number!

$$\mathcal{N} = \# \text{ of microstates} = e^{S_{\text{BH}}}$$

... very large number!

The two exponentials play off against each other if $\alpha \sim \mathcal{O}(1)$:

$$t_{\text{tunnel}} \sim P^{-1} \sim e^{-S_{BH}} e^{\alpha S_{BH}} \Rightarrow \text{found} \left[\alpha = 1 \right] ! [Kraus, Mathur' 15]$$

The shell tunnels into fuzzballs before a horizon can form!

"Nature abhors a horizon"

[Kraus, Mathur'15]

Black hole emitting Hawking radiation with backreaction:

 $\Gamma_{tunnel} \sim e^{S_{\rm BH}(M-\omega)-S_{\rm BH}(M)}$

"Nature abhors a horizon"

Black hole emitting Hawking radiation with back reaction: $\begin{array}{c} \omega = M \\ \downarrow \\ \Gamma_{tunnel} \sim e^{S_{\rm BH}(M-\omega)-S_{\rm BH}(M)} = e^{-S_{\rm BH}(M)} \end{array}$

[Kraus, Mathur'15]

Black hole emitting Hawking radiation with backreaction: $\begin{array}{c} \omega = M \\ \downarrow \\ \Gamma_{tunnel} \sim e^{S_{\rm BH}(M-\omega)-S_{\rm BH}(M)} = e^{-S_{\rm BH}(M)} \equiv e^{-\alpha S_{\rm BH}(M)} \rightarrow \boxed{\alpha = 1} \end{array}$

Black hole emitting Hawking radiation with backreaction: $\begin{array}{c} \omega = M \\ \downarrow \\ \Gamma_{tunnel} \sim e^{S_{\rm BH}(M-\omega)-S_{\rm BH}(M)} = e^{-S_{\rm BH}(M)} \equiv e^{-\alpha S_{\rm BH}(M)} \rightarrow \boxed{\alpha = 1} \end{array}$

Assumptions:

- $P(\text{black hole} \xrightarrow{tunnel} \text{shell}) = P(\text{shell} \xrightarrow{tunnel} \text{fuzzball})$
- $r_{\rm FB} \sim r_{\rm BH}$
- fuzzball exterior = black hole exterior

Black hole emitting Hawking radiation with backreaction: $\begin{array}{c} \omega = M \\ \downarrow \\ \Gamma_{tunnel} \sim e^{S_{\rm BH}(M-\omega)-S_{\rm BH}(M)} = e^{-S_{\rm BH}(M)} \equiv e^{-\alpha S_{\rm BH}(M)} \rightarrow \boxed{\alpha = 1} \end{array}$

Assumptions:

- $P(\text{black hole} \xrightarrow{tunnel} \text{shell}) = P(\text{shell} \xrightarrow{tunnel} \text{fuzzball})$
- $r_{\rm FB} \sim r_{\rm BH}$
- fuzzball exterior = black hole exterior

Goals:

- compute Γ_{tunnel} into explicitly known microstate geometries
- study Γ_{tunnel} for different microstates: *non-scaling and scaling* \rightarrow universal features?

Black hole emitting Hawking radiation with backreaction: $\begin{array}{c} \omega = M \\ \downarrow \\ \Gamma_{tunnel} \sim e^{S_{\rm BH}(M-\omega)-S_{\rm BH}(M)} = e^{-S_{\rm BH}(M)} \equiv e^{-\alpha S_{\rm BH}(M)} \rightarrow \boxed{\alpha = 1} \end{array}$

Assumptions:

- $P(\text{black hole} \xrightarrow{tunnel} \text{shell}) = P(\text{shell} \xrightarrow{tunnel} \text{fuzzball})$
- $r_{\rm FB} \sim r_{\rm BH}$
- fuzzball exterior = black hole exterior

Goals:

- compute Γ_{tunnel} into explicitly known microstate geometries
- study Γ_{tunnel} for different microstates: *non-scaling and scaling* \rightarrow universal features?

Upshot: $\alpha \leq 1$ and no need for above assumptions!

How to compute
$$\Gamma_{tunnel} = A e^{-B}$$
?

How to compute
$$\Gamma_{tunnel} = A e^{-B}$$
?

General idea is to tunnel branes into bubbling microstate solutions:

• 10+1D problem: branes wrap extra dimensions

How to compute
$$\Gamma_{tunnel} = A e^{-B}$$
?

General idea is to tunnel branes into bubbling microstate solutions:

- 10+1D problem: branes wrap extra dimensions
 ↓ reduction
- 3+1D problem: branes become particles

How to compute
$$\Gamma_{tunnel} = A e^{-B}$$
?

General idea is to tunnel branes into bubbling microstate solutions:

- 10+1D problem: branes wrap extra dimensions
 ↓ reduction
- 3+1D problem: branes become particles ↓ symmetry
- 1+1D problem: quantum mechanics!

Tunneling building blocks

Decay of supertubes into branes:

Excess energy \rightarrow (Hawking) radiation.

[Bena, AP, Vercnocke'11]

Tunneling building blocks

Decay of supertubes into branes:

Excess energy \rightarrow (Hawking) radiation.

[Bena, AP, Vercnocke'11]

Tunneling branes into supertubes \rightarrow topology and flux:

[Bena, Mayerson, AP, Vercnocke' 15]

Tunneling building blocks

Decay of supertubes into branes:

Excess energy \rightarrow (Hawking) radiation. [Bena, AP, Vercnocke'11]

Tunneling branes into supertubes \rightarrow topology and flux:

[Bena, Mayerson, AP, Vercnocke' 15]

Quantum Tunneling into Microstates

On-shell Euclidean action integrated over path of 'least resistance':

$$B = S_E = \int_{t_i}^{t_f} dt \, L_E(x(t), \dot{x}(t)) = \int_{\vec{x}_i}^{\vec{x}_f} |dx| \, |p(x)|$$

$$\uparrow$$

$$H_E = p\dot{x} - L_E = 0 \text{ with } p = \frac{\partial L_E}{\partial \dot{x}}$$

Quantum Tunneling into Microstates

On-shell Euclidean action integrated over path of 'least resistance':

$$B = S_E = \int_{t_i}^{t_f} dt \, L_E(x(t), \dot{x}(t)) = \int_{\vec{x}_i}^{\vec{x}_f} |dx| \, |p(x)|$$

$$H_E = p\dot{x} - L_E = 0 \text{ with } p = \frac{\partial L_E}{\partial \dot{x}}$$

Relativistic particle with mass m(x) and charge q:

$$L_E = \int m(x) + \int qA_t(x)$$
$$|p(x)| = (g_{tt}(x))^{-1/2} \sqrt{|g_{tt}(x)|m(x)^2 - (qA_t(x))^2}$$

Quantum Tunneling into Microstates

On-shell Euclidean action integrated over path of 'least resistance':

$$B = S_E = \int_{t_i}^{t_f} dt \, L_E(x(t), \dot{x}(t)) = \int_{\vec{x}_i}^{\vec{x}_f} |dx| \, |p(x)|$$

$$H_E = p\dot{x} - L_E = 0 \text{ with } p = \frac{\partial L_E}{\partial \dot{x}}$$

Supertube with electric q_1, q_2 , dipole d_3 and ang. mom. $q_1 q_2/d_3$:

$$\Gamma = (\underline{d_3}, q_1, q_2, q_1 q_2 / \underline{d_3}) \qquad \text{poles} = N - 1 \text{ bubbles}$$

$$|p(x)| = \langle \Gamma, H(x) \rangle = \frac{1}{|\underline{d_3}|} |q_1^{\text{eff}}(x) q_2^{\text{eff}}(x) V(x) - \underline{d_3^2} Z_3(x)|$$

harmonic functions describing the bubbling microstate

Tunneling Amplitude

One tunneling event:

$$B = \int_{r_1}^{r_2} dr \langle \Gamma, H(r) \rangle$$

 $\langle \Gamma_i, H(r_i) \rangle = 0$ Bubble equations! $\langle \Gamma, H(r_{susy}) \rangle = 0$ susy probe min

Tunneling Amplitude

One tunneling event:

$$B = \int_{r_1}^{r_2} dr \left\langle \Gamma, H(r) \right\rangle$$

 $\begin{array}{l} & \langle \Gamma_i, H(r_i) \rangle = 0 \ Bubble \ equations! \\ \hline \mathbf{R}^3 \qquad \langle \Gamma, H(r_{susy}) \rangle = 0 \ \text{susy probe min} \end{array}$

Bound on tunneling timescale from slowest process:

$$B = |\mathbf{d_3}| r_{12}$$

Extremely simple result!

Tunneling Before a Horizon Forms

Make N-centered solution from multiple tunneling events:

$$e^{-\alpha S_{BH}} \equiv \boxed{\Gamma_{tunnel} \sim e^{-\alpha_0 S_{BH}/N^{\beta}}} \rightarrow \boxed{\alpha \sim 1/N^{\beta}}$$

- α_0 depends on the details of the collapse
- $\beta > 0$ (non-scaling: $\beta = 3/2$ and scaling $\beta = 0.93$)

Tunneling Before a Horizon Forms

Make $\ensuremath{\textit{N}}\xspace$ centered solution from multiple tunneling events:

$$e^{-\alpha S_{BH}} \equiv \boxed{\Gamma_{tunnel} \sim e^{-\alpha_0 S_{BH}/N^{\beta}}} \rightarrow \boxed{\alpha \sim 1/N^{\beta}}$$

- α_0 depends on the details of the collapse
- $\beta > 0$ (non-scaling: $\beta = 3/2$ and scaling $\beta = 0.93$)

Tunneling into N-bubbled microstate:

$$\begin{array}{c} \alpha \ll 1 \\ \uparrow \end{array} \quad \text{for } \mathbf{N} \text{ large}$$

before the shell reaches the horizon !

Shell quantum tunnels into microstate before horizon forms! [Bena,Mayerson,AP,Vercnocke'15]

◊ Summary:

Tunneling amplitude into multi-bubbled microstates not parametrically suppressed $\Gamma_{tunnel} = e^{-\alpha S_{BH}}$ with $\alpha \lesssim 1$

 \Rightarrow can be fast enough to avoid formation of horizon!

◊ Open Questions:

- Total tunneling amplitude: $P = \mathcal{N} \Gamma_{tunnel}$
- **Typical** microstates: *size* of bubbles *vs. number* of bubbles ? *See talk by D. Turton.*
- Infalling observers: tunnel into microstate ?
- *Emergence of spacetime* from collective microstate excitations ?