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MOTIVATION

Which classical theories of gravity can (possibly) be UV-completed?

Naively,

S =
1

GN

∫
√
−g
(
R− 2Λ +

λ2

(Mnew)2
R2 +

λ3

(Mnew)4
R3 + · · ·

)
But this is not correct.

Assuming Lorentz invariance in the UV, the dimensionless couplings λi
must obey various constraints.



Two basic types of causality constraints:

1. Sign constraints. For example [Gruzinov, Kleban ’06]:

λ4 > 0

2. Fine-tuning constraints [Camanho, Edelstein, Maldacena, Zhiboedov ’14]:

λ2,3 . O(1)

ie, no large dimensionless ratio between the scale of coefficients and

the scale of new physics. Certain higher curvature terms must be

accompanied by new massive particles (or strings) at the same scale.

This is far below the perturbative unitarity constraint, due to the overall

GN — it is a constraint on the classical theory.



“Ultraviolet constraints on infrared couplings”

Derivations:

1. S-matrix + analyticity + optical theorem

2. Causality violation in nontrivial backgrounds

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi ’06]

[Bellazini, Cheung, Remmen ’15]

Both types of constraint also occur in scalar EFT:

L = (∂φ)2 +
λ4

M4
(∂φ)4 +

λ8

M8
(∂2φ)4 + · · ·

must have

λ4 > 0 , λ8 . O(1), . . .



Comments:

• The (∂φ)4 constraint plays a key role in the proof of the a-theorem

[Komargodski, Schwimmer ’11]

• The gravity constraints are even stronger: for example, the Gauss-

Bonnet term in 5d cannot appear without new massive particles!

• This uniquely fixes the 3-graviton coupling in the IR; perhaps

other couplings are also fixed?

These causality constraints are in weakly coupled theories, and the

argument relies on the perturbative expansion.



Meanwhile, the conformal bootstrap constrains strongly interact-

ing theories:

[Rattazzi, Rychkov, Tonni, Vichi ’08; El-Showk et al; Kos, Poland, Simmons-Duffin;

etc]



Goal of this talk is to merge these ideas in several examples:

Conformal bootstrap ⇒
Causality constraints at strong coupling

Constraints on infrared CFT data — spectrum and OPE coefficients

— imposed by UV consistency.

By AdS/CFT, the causality constraints on R2 gravity and (∂φ)4 should

map to constraints on CFTs.

The derivation is purely a QFT result, without assuming large-N or

holography.

But at large N , it gives a CFT derivation for some of these causality

constraints on EFT in AdS.



CAUSALITY REVIEW

〈Ψ|[O(x), O(y)]|Ψ〉 = 0 (x− y)2 > 0

This is a Lorentzian statement.

But bootstrap is usually formulated in terms of Euclidean correlators.

So, first:

How is causality encoded in Euclidean correlators?

This was answered at least in principle long ago.

[ex: Streater and Wightman]

Euclidean correlators,

G(x1, x2, . . . ) = 〈O(x1)O(x2) · · · 〉



are:

1. Permutation invariant

2. With singularities only at coincident points

3. and have no branch cuts (ie, single-valued)

Ex. conformal scalar:

〈φ(0)φ(τ, y)〉 = (τ2 + y2)−∆

But in Lorentzian signature,

〈φ(0)φ(t, y)〉 = (−t2 + y2)−∆

Lightcones ⇒ Branch cuts



This leads to an ambiguity in analytic continuation. Different choices

correspond to different operator orderings.

Commutator = discontinuity across the cut. Ex:

〈 [φ(0), φ(t, y)] 〉 = |t2 − y2|(eiπ∆ − e−iπ∆)

More generally, there is a branch cut whenever an operator crosses the

lightcone of another operator.



The first branch point is always in the correct spot — on the Minkowski

lightcone — by SO(d) invariance of the Euclidean correlator.



But further singularities are not fixed by symmetry.

Shift in the branch cut ⇒ time delay or time advance.



The upshot:

Causality requires the Euclidean correlator, upon analytic continuation,

to be analytic on a certain domain of complexified spacetime.

This is not guaranteed by symmetry.

The extra ingredient in Euclidean QFT to ensure this is reflection

positivity.

[Schwinger, Wightman, Osterwalder and Schrader, etc]



CFT

This was all in a general QFT.

In CFT, can be phrased in terms of conformal cross-ratios [Luscher, Mack

’74]

zz̄ =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

and causality is a question of where G(z, z̄) is analytic in C × C.

[Example later.]

Causality constraints in CFT [TH, Jain, Kundu ’15-16]

To derive constraints on CFT data, we will combine this with techniques

from the conformal bootstrap.



Bootstrap:

G(z, z̄) =

(Previous bootstrap results are mostly Euclidean — now we clearly

need timelike separated operators.)

Shockwaves

Define the “shockwave state”

|Ψ〉 = ψ(t = iδ, ~x = 0)|0〉



where ψ is a scalar primary.

For small δ, this state has a stress tensor supported on an expanding

null shell:

Probe the shockwave with an operator O:



Causality:

〈Ψ|[O,O]|Ψ〉 = disc.〈ψ(iδ)O(x)O(y)ψ(−iδ)〉

Conclude:

This 4pt function must be analytic on a region of complexified spacetime

just before the lightcone.



Phrased in terms of the cross-ratios, the lightcone limit is

z̄ → 1

Going through the first lightcone sends z around 0:

and causality is the statement that G(z, z̄) is analytic near z ∼ 1 on

the ‘2nd sheet’.

cf: Chaos bound of Maldacena, Shenker, Stanford ’15



Derivation of constraints

In general, the 4pt correlator can be decomposed as a sum of operator

exchanges:

G(z, z̄) =

In some parts of the analytic (purple) region, this sum is dominated by

low-dimension operators (“IR data”)

In other parts, by high-dimension operators (“UV data”)



A contour integral relates the two,∮
dzG(z) = 0 ⇒ −

∫
IR

G =

∫
UV

G

IR piece: calculate via conformal block methods. Dominated by

the exchange of low-dimension spinning operators, typically the stress

tensor Tµν:

UV piece: cannot be calculated explicitly, but sign is fixed by ex-

panding in the dual channel and using reflection positivity.



∮
G = 0 becomes a sum rule relating IR couplings to UV:

λIR =

∫
UV

(positive)

A sum rules exists for the lowest-dimension operator of each spin≥ 2.

For example, the spin-2 sum rule says

λT ≡ 〈OOT−−〉 > 0

Applications

• Scalar probes: trivial, as conformal Ward implies λT = ∆O

• In a large-N theory, the constraint fixes the signs of anomalous



dimensions of composite operators,

γ(O∂µ∂νO) < 0

This is the holographic dual of the sign constraint on (∂φ)4 in the

bulk Lagrangian.

• Probes with spin, such as T itself:

are related to constraints on graviton couplings via AdS/CFT.



Constraints on 〈TTT 〉

Why bother?

Any theory of quantum gravity looks like Einstein gravity in the IR.

This is suggested by EFT, but (for 3pt functions) required by causality

[Camanho et al ’14].

In CFT, this translates into the conjecture that at large N ,

〈TTT · · · 〉CFT = 〈TTT · · · 〉Einstein + · · ·

where the dots are suppressed by the dimension of ‘new physics’ oper-

ators [see for example: Heemskerk, Penedones, Polchinski, Sully ’09].

Where does this universality come from in CFT?



(ie, can we derive Einstein gravity from CFT? Bootstrap?)

This is not kinematics; the physics is all in the size of the corrections!

This question is already very interesting and nontrivial for 3pt functions

〈TTT 〉.

〈TTT 〉 is fixed by conformal invariance up to 3 numbers:

〈TTT 〉 = a × (structure #1 )

+ c × (structure #2)

+ λ3 × (structure #3)

(a, c = Weyl anomaly coefficients in 4d).

The fine-tuning constraints mentioned at the beginning of the talk con-

strain the 3-graviton vertex, and therefore 〈TTT 〉 in the dual CFT.



In CFT language, the AdS causality constraints are:

• At large impact parameter [Brigante et al; Hofman ’08]:

1

3
≤ a

c
≤ 31

18

• At small impact parameter [Camanho et al ’14]:

a

c
≈ 1 .

Our initial motivation to study causality in CFT was to try to prove

a ≈ c in some class of CFTs.

(But haven’t done this.)

The looser, large-impact parameter constraints were derived from CFT

by Hofman and Maldacena assuming the average null energy condi-



tion:

〈O
∫

T−−O〉 > 0

But to push this to a ≈ c seems to require (at least) 2 new ingredients:

1. 4-point functions

2. causality

RESULTS

So can we derive a = c from the bootstrap?

Not yet.



The CFT sum rule described above leads immediately to [TH, Jain, Kundu

1601]
13

54
≤ a

c
≤ 31

18

Improvements to the sum rules by [Hofman et al 1603] squeeze this down

to
1

3
≤ a

c
≤ 31

18
.

This agrees precisely with the Hofman-Maldacena bounds.

To find a ≈ c, need to input ‘holographic universality class’:

1. large N

2. sparse spectrum of low-dimension operators



If these assumptions can be combined with the bootstrap sum rules,

maybe will lead to a ≈ c.

(for comparison: Cardy formula in 2d CFT)

This would be a derivation of Einstein gravity from CFT (for 3pt func-

tions).

Thank you.


