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Motivation:

Reconstruction	
  of	
  bulk	
  physics	
  in	
  AdS/CFT	
  is	
  an	
  important	
  problem	
  that	
  will	
  likely	
  
teach	
  us	
  new	
  things	
  about	
  the	
  nature	
  of	
  black	
  hole	
  horizons	
  and	
  space-­‐time.

Bulk	
  locality	
  should	
  be	
  an	
  approximate,	
  emergent,	
  dynamical	
  property	
  of	
  the	
  CFT.

Do	
  there	
  exist	
  natural	
  CFT	
  observables	
  that	
  appear	
  to	
  behave	
  like	
  gravitationally	
  
dressed	
   local’	
  operators	
  in	
  the	
  bulk?

Can	
  we	
  use	
  CFT	
  bootstrap	
  techniques	
  as	
  a	
  helpful	
  tool	
  in	
  bulk	
  reconstruction?



Physics goal:  Derive gravitational bulk dynamics from CFT 

 

 

 

 

 

 

 

 

 

Approach: Conformal bootstrap = Abstract definition of CFT 
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We propose an intrinsic CFT definition of local bulk operators in AdS3/CFT2 in terms of twisted
Ishibashi boundary states. The bulk field �(X) creates a cross cap, a circular hole with opposite edge
points identified, in the CFT space-time. The size of the hole is parameterized by the holographic
radial coordinate y. Our definition is state-independent, non-perturbative, and does not presume or
utilize a semi-classical bulk geometry. We argue that, at large c, the matrix element between highly
excited states satisfies the bulk wave equation in the AdS black hole background.

Introduction

AdS/CFT duality has passed many tests. Most checks
compare CFT correlation functions with the dependence
of AdS quantities on sources at the boundary [1]. The
CFT construction of local bulk observables [2, 3], on the
other hand, remains underdeveloped. In this note we
propose a new representation of local bulk fields in terms
of operators that create finite size holes in the space-time
of the CFT. We formulate and test our proposal for the
case of AdS

3

/CFT
2

. In the following, x = (z, z̄) and
X = (y, x) denote coordinate systems on the 2D space-
time and in AdS

3

, respectively.

Gauge/gravity duality postulates a one-to one map be-
tween the Hilbert space of the CFT and the gravity the-
ory. Local bulk fields should thus have images as suit-
able non-local operators in the CFT. In particular, if the
gravity side is weakly coupled, we can associate to ev-
ery local CFT operator Oh(x) an e↵ective field �h(X) in
AdS, such that, as we approach the AdS boundary

lim
y!0

y

�2h�h(y, x) = Oh(x). (1)

To leading order in 1/N , the linearized bulk field satisfies
a free field wave equation

⇤bulk�h = m

2

h�h (2)

with m

2

h = h(h � d). This fact suggests that one can
express the bulk field in terms of the associated CFT
operator via

�
KLL

h (X) =

Z
d

2

xK(X;x)Oh(x), (3)

whereK(X;x) denotes a suitable smearing function, that
solves the wave equation in the bulk. This is the Kabat,
Lifschytz and Lowe prescription [3].

The KLL prescription has several short-comings. The
map presumes the existence of a gravity dual: rather
than reconstructing the extra dimensional physics, it

makes explicit use of the classical bulk geometry. More-
over, since the kernel K(X;x) depends on the geometry,

�
KLL

h (X) is a state dependent operator. Finally, there
appears to be an obstruction to the existence of a well-
defined smearing function for black hole space times [4].

Given these issues, it would clearly be desirable to find
a definition of local bulk fields, that is (i) inherent to the
CFT, (ii) state-independent, and (iii) applicable to black
hole space-times. In this note, we will propose such an
intrinsic CFT definition for AdS

3

/CFT
2

.

Our proposal makes use of Ishibashi boundary states
[5], twisted via a cross cap identification. Let |hi denote
the primary state with (equal left and right) conformal
weight h: L

0

|hi = L̄

0

|hi = h|hi. Algebraically, the cross
cap state ||hii⌦ is defined as the unique state spanned by
descendents of |hi such that

⇣
L�n � (�1)nL̄n

⌘����
h

↵↵
⌦ = 0. (4)

Geometrically, the twisted boundary state ||hii⌦ cuts a
hole in the surface on which the CFT lives, identifies
diametric opposite points on the edge of the hole, and
projects onto the Virasoro representation labeled by h.

The state-operator map associates to the state ||hii⌦,
viewed as obtained via radial quantization, a local oper-
ator �h(0, y) through the relation

�h(0, y)
��0
↵
= y

L0+
¯L0

����
h

↵↵
⌦. (5)

Here y is a scale modulus introduced by the boundary
state. Indeed, adding a cross-cap decreases the Euler
number of the surface by one, and thus adds three real
shape parameters, which we can think of as the loca-
tion (taken to be the origin in (5)) and the size of the
hole. By moving the origin to some arbitrary location
(z, z̄), we thus obtain an operator �h(z, z̄, y) defined on
a 3-dimensional space. This is our proposed CFT defini-
tion of the bulk operator associated to the local operator
Oh(z, z̄). Note that the state (5) is normalizable as long
as y < 1.

ar
X

iv
:1

50
5.

05
06

9v
2 

 [h
ep

-th
]  

17
 Ju

l 2
01

5

Poking Holes in AdS/CFT:

Bulk Fields from Boundary States

Herman Verlinde1, 2

1Department of Physics, Princeton University, Princeton, NJ 08544, USA
2Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA

(Dated: July 20, 2015)

We propose an intrinsic CFT definition of local bulk operators in AdS3/CFT2 in terms of twisted
Ishibashi boundary states. The bulk field �(X) creates a cross cap, a circular hole with opposite edge
points identified, in the CFT space-time. The size of the hole is parameterized by the holographic
radial coordinate y. Our definition is state-independent, non-perturbative, and does not presume or
utilize a semi-classical bulk geometry. We argue that, at large c, the matrix element between highly
excited states satisfies the bulk wave equation in the AdS black hole background.

Introduction

AdS/CFT duality has passed many tests. Most checks
compare CFT correlation functions with the dependence
of AdS quantities on sources at the boundary [1]. The
CFT construction of local bulk observables [2, 3], on the
other hand, remains underdeveloped. In this note we
propose a new representation of local bulk fields in terms
of operators that create finite size holes in the space-time
of the CFT. We formulate and test our proposal for the
case of AdS

3

/CFT
2

. In the following, x = (z, z̄) and
X = (y, x) denote coordinate systems on the 2D space-
time and in AdS

3

, respectively.

Gauge/gravity duality postulates a one-to one map be-
tween the Hilbert space of the CFT and the gravity the-
ory. Local bulk fields should thus have images as suit-
able non-local operators in the CFT. In particular, if the
gravity side is weakly coupled, we can associate to ev-
ery local CFT operator Oh(x) an e↵ective field �h(X) in
AdS, such that, as we approach the AdS boundary

lim
y!0

y

�2h�h(y, x) = Oh(x). (1)

To leading order in 1/N , the linearized bulk field satisfies
a free field wave equation

⇤bulk�h = m

2

h�h (2)

with m

2

h = h(h � d). This fact suggests that one can
express the bulk field in terms of the associated CFT
operator via

�
KLL

h (X) =

Z
d

2

xK(X;x)Oh(x), (3)

whereK(X;x) denotes a suitable smearing function, that
solves the wave equation in the bulk. This is the Kabat,
Lifschytz and Lowe prescription [3].

The KLL prescription has several short-comings. The
map presumes the existence of a gravity dual: rather
than reconstructing the extra dimensional physics, it

makes explicit use of the classical bulk geometry. More-
over, since the kernel K(X;x) depends on the geometry,

�
KLL

h (X) is a state dependent operator. Finally, there
appears to be an obstruction to the existence of a well-
defined smearing function for black hole space times [4].

Given these issues, it would clearly be desirable to find
a definition of local bulk fields, that is (i) inherent to the
CFT, (ii) state-independent, and (iii) applicable to black
hole space-times. In this note, we will propose such an
intrinsic CFT definition for AdS

3

/CFT
2

.

Our proposal makes use of Ishibashi boundary states
[5], twisted via a cross cap identification. Let |hi denote
the primary state with (equal left and right) conformal
weight h: L

0

|hi = L̄

0

|hi = h|hi. Algebraically, the cross
cap state ||hii⌦ is defined as the unique state spanned by
descendents of |hi such that

⇣
L�n � (�1)nL̄n

⌘����
h

↵↵
⌦ = 0. (4)

Geometrically, the twisted boundary state ||hii⌦ cuts a
hole in the surface on which the CFT lives, identifies
diametric opposite points on the edge of the hole, and
projects onto the Virasoro representation labeled by h.

The state-operator map associates to the state ||hii⌦,
viewed as obtained via radial quantization, a local oper-
ator �h(0, y) through the relation

�h(0, y)
��0
↵
= y

L0+
¯L0

����
h

↵↵
⌦. (5)

Here y is a scale modulus introduced by the boundary
state. Indeed, adding a cross-cap decreases the Euler
number of the surface by one, and thus adds three real
shape parameters, which we can think of as the loca-
tion (taken to be the origin in (5)) and the size of the
hole. By moving the origin to some arbitrary location
(z, z̄), we thus obtain an operator �h(z, z̄, y) defined on
a 3-dimensional space. This is our proposed CFT defini-
tion of the bulk operator associated to the local operator
Oh(z, z̄). Note that the state (5) is normalizable as long
as y < 1.

ar
X

iv
:1

50
5.

05
06

9v
2 

 [h
ep

-th
]  

17
 Ju

l 2
01

5
*	
  satisfying	
  the	
  properties	
  (i)	
  and	
  (ii)	
  

+	
  	
  1/N	
  	
  corrections

(i)

(ii)

Plan:	
  	
  study	
  the	
  AdS bulk	
  by	
  means	
  of	
  a	
  `local’	
  bulk	
  operators*

Principle:	
  	
  The	
  CFT	
  is	
  smarter	
  than	
  us	
  	
  =>	
  	
  use	
  CFT	
  as	
  our	
  guide.



The	
  `standard’	
  construction	
  of	
  bulk	
  operators	
  is	
  to	
  use	
  Green’s
theorem	
  to	
  solve	
  eqns (i)	
  and	
  (ii).	
  This	
  gives	
  the	
  HKLL	
  prescription:
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+	
  	
  	
  	
  	
  inter+	
  	
  	
  	
  1/N	
  	
  	
  corrections

K(X;x)	
  =	
  some	
  suitable	
  `smearing	
  function’.

This	
  prescription	
  is	
  somewhat	
  unsatisfactory	
  because	
  it	
  presumes	
  
the	
  existence	
  of	
  a	
  bulk	
  space-­‐time,	
  and	
  makes	
  explicit	
  use	
  of	
  the	
  
bulk	
  geometry	
  and	
  interactions.	
   à It	
  looks	
  `state-­‐dependent’.

H



X

X’

The	
  family	
  of	
  geodesics	
  through	
  a	
  bulk	
  point	
  specifies
an	
  antipodal	
  Z2 pairing	
  	
  X	
  	
  	
  	
  	
  X’	
  between	
  boundary	
  points.	
  

The	
  map	
  	
  X	
  	
  	
  	
  	
  X’
defines	
  an	
  orientation
reversing	
  involution
on	
  the	
  AdS boundary.	
  



(L
0

� L̄

0

)
���(0)

↵
= (L

1

+ L̄�1

)
���(0)

↵
= (L�1

+ L̄

1

)
���(0)

↵
= 0

M

ab

���(0)
↵
= (P

a

+K

a

)
���(0)

↵
= 0

3

Miyaji,	
  Numasawa,	
  
Takayanagi,	
  Watanabe

A	
  geometric	
  reformulation	
  of	
  HKLL	
  defines	
  bulk	
  operators	
  as	
  solutions
to	
  the	
  cross-­‐cap	
  boundary	
  state conditions

These	
  conditions	
  select	
  a	
  unique	
  bulk	
  point,	
  that	
  is	
  left	
  invariant	
  by	
  the
corresponding	
  global	
  AdS isometries.	
  This	
  reproduces	
  HKLL.

Specializing	
  to	
  AdS3/CFT2 ,	
  these	
  conditions	
  take	
  the	
  form:

(L
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3
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with m
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h (X) =
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xK(X;x)Oh(x), (3)

whereK(X;x) denotes a suitable smearing function, that
solves the wave equation in the bulk. This is the Kabat,
Lifschytz and Lowe prescription [3].

The KLL prescription has several short-comings. The
map presumes the existence of a gravity dual: rather
than reconstructing the extra dimensional physics, it

makes explicit use of the classical bulk geometry. More-
over, since the kernel K(X;x) depends on the geometry,
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KLL

h (X) is a state dependent operator. Finally, there
appears to be an obstruction to the existence of a well-
defined smearing function for black hole space times [4].

Given these issues, it would clearly be desirable to find
a definition of local bulk fields, that is (i) inherent to the
CFT, (ii) state-independent, and (iii) applicable to black
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A	
  natural	
  proposal:	
  promote	
  the	
  bulk	
  operator	
  to	
  a	
  Virasoro cross	
  cap	
  state
=	
  the	
  unique	
  linear	
  sum	
  of	
  descendants	
  of	
  the	
  primary	
  state	
  |h, h	
  >,	
  such	
  that
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⇤bulk�h = m

2

h�h (2)

with m

2

h = h(h � d). This fact suggests that one can
express the bulk field in terms of the associated CFT
operator via

�
KLL

h (X) =

Z
d

2

xK(X;x)Oh(x), (3)

whereK(X;x) denotes a suitable smearing function, that
solves the wave equation in the bulk. This is the Kabat,
Lifschytz and Lowe prescription [3].

The KLL prescription has several short-comings. The
map presumes the existence of a gravity dual: rather
than reconstructing the extra dimensional physics, it

makes explicit use of the classical bulk geometry. More-
over, since the kernel K(X;x) depends on the geometry,

�
KLL

h (X) is a state dependent operator. Finally, there
appears to be an obstruction to the existence of a well-
defined smearing function for black hole space times [4].

Given these issues, it would clearly be desirable to find
a definition of local bulk fields, that is (i) inherent to the
CFT, (ii) state-independent, and (iii) applicable to black
hole space-times. In this note, we will propose such an
intrinsic CFT definition for AdS

3

/CFT
2

.

Our proposal makes use of Ishibashi boundary states
[5], twisted via a cross cap identification. Let |hi denote
the primary state with (equal left and right) conformal
weight h: L

0

|hi = L̄

0

|hi = h|hi. Algebraically, the cross
cap state ||hii⌦ is defined as the unique state spanned by
descendents of |hi such that

⇣
L�n � (�1)nL̄n

⌘����
h

↵↵
⌦ = 0. (4)

Geometrically, the twisted boundary state ||hii⌦ cuts a
hole in the surface on which the CFT lives, identifies
diametric opposite points on the edge of the hole, and
projects onto the Virasoro representation labeled by h.

The state-operator map associates to the state ||hii⌦,
viewed as obtained via radial quantization, a local oper-
ator �h(0, y) through the relation

�h(0, y)
��0
↵
= y

L0+
¯L0

����
h

↵↵
⌦. (5)

Here y is a scale modulus introduced by the boundary
state. Indeed, adding a cross-cap decreases the Euler
number of the surface by one, and thus adds three real
shape parameters, which we can think of as the loca-
tion (taken to be the origin in (5)) and the size of the
hole. By moving the origin to some arbitrary location
(z, z̄), we thus obtain an operator �h(z, z̄, y) defined on
a 3-dimensional space. This is our proposed CFT defini-
tion of the bulk operator associated to the local operator
Oh(z, z̄). Note that the state (5) is normalizable as long
as y < 1.
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mapped onto the other in a continuous, one-to-one fashion. That is, it's the final 
equivalence that counts, whether or not it was obtained via a deformation. 

Let us introduce the primitive topological features in terms of zippers or 
"zip-pairs," a zip being half a zipper. Figure 1A shows a surface with two boundary 
circles, each with a zip. Zip the zips, and the surface acquires a handle (1D). If we 
reverse the direction of one of the zips (2A), then one of the tubes must "pass 
through itself" (2B) to get the zip orientations to match. Figure 2B shows the 
self-intersecting tube with a vertical slice temporarily removed, so the reader may 
see its structure more easily. Zipping the zips (2C) yields a cross handle (2D). This 
picture of a crosshandle contains a line of self-intersection. The self-intersection is 
an interesting feature of the surface's placement in 3-dimensional space, but has 
no effect on the intrinsic topology of the surface itself. 

If the zips occupy two halves of a single boundary circle (Figure 3A), and their 
orientations are consistent, then we get a cap (3C), which is topologically 
trivial (3D) and won't be considered further. If the zip orientations are inconsis- 
tent (4A), the result is more interesting. We deform the surface so that correspond- 
ing points on the two zips lie opposite one another (4B), and begin zipping. At first 

Figure 3. Cap Figure 4. Crosscap 

the zipper head moves uneventfully upward (4C), but upon reaching the top it 
starts downward, zipping together the "other two sheets" and creating a line of 
self-intersection. As before, the self-intersection is merely an artifact of the 
model, and has no effect on the intrinsic topology of the surface. The result is a 
crosscap (4D), shown here with a cut-away view to make the self-intersections 
clearer. 

The preceding constructions should make the concept of a surface clear to 
non-specialists. Specialists may note that our surfaces are compact, and may have 
boundary. 

Comment. A surface is not assumed to be connected. 

Comment. Figure 5 shows an example of a triangulated surface. All surfaces may 
be triangulated, but the proof [4] is difficult. Instead we may consider the 
Classification Theorem to be a statement about surfaces that have already been 
triangulated. 
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Our definition (5) does not presume a free bulk theory, it should auto-
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One can always find local coordinates (Z, Z̄) such that
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=
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= 0. (10)
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mapped onto the other in a continuous, one-to-one fashion. That is, it's the final 
equivalence that counts, whether or not it was obtained via a deformation. 

Let us introduce the primitive topological features in terms of zippers or 
"zip-pairs," a zip being half a zipper. Figure 1A shows a surface with two boundary 
circles, each with a zip. Zip the zips, and the surface acquires a handle (1D). If we 
reverse the direction of one of the zips (2A), then one of the tubes must "pass 
through itself" (2B) to get the zip orientations to match. Figure 2B shows the 
self-intersecting tube with a vertical slice temporarily removed, so the reader may 
see its structure more easily. Zipping the zips (2C) yields a cross handle (2D). This 
picture of a crosshandle contains a line of self-intersection. The self-intersection is 
an interesting feature of the surface's placement in 3-dimensional space, but has 
no effect on the intrinsic topology of the surface itself. 

If the zips occupy two halves of a single boundary circle (Figure 3A), and their 
orientations are consistent, then we get a cap (3C), which is topologically 
trivial (3D) and won't be considered further. If the zip orientations are inconsis- 
tent (4A), the result is more interesting. We deform the surface so that correspond- 
ing points on the two zips lie opposite one another (4B), and begin zipping. At first 

Figure 3. Cap Figure 4. Crosscap 

the zipper head moves uneventfully upward (4C), but upon reaching the top it 
starts downward, zipping together the "other two sheets" and creating a line of 
self-intersection. As before, the self-intersection is merely an artifact of the 
model, and has no effect on the intrinsic topology of the surface. The result is a 
crosscap (4D), shown here with a cut-away view to make the self-intersections 
clearer. 

The preceding constructions should make the concept of a surface clear to 
non-specialists. Specialists may note that our surfaces are compact, and may have 
boundary. 

Comment. A surface is not assumed to be connected. 

Comment. Figure 5 shows an example of a triangulated surface. All surfaces may 
be triangulated, but the proof [4] is difficult. Instead we may consider the 
Classification Theorem to be a statement about surfaces that have already been 
triangulated. 
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The orientation reversing involution � : z ! �1/z̄ of the boundary extends to an orientation

reversing isometry of the bulk. In Poincaré coordinates it reads

� : z ! � z

|z|2 + y2
, y ! y

|z|2 + y2
, (3.7)

or in global coordinates

� : (t, ⇢, ✓) ! (�t, ⇢, ✓ + ⇡). (3.8)

This transformation has a fixed point at the origin of AdS. The quotient space-time M = AdS3/Z2

therefore has a Z2 singularity at the origin. We will call this singularity a Z2 defect.

From the above description it may look like inserting the Z2 defect amounts to removing half

of the bulk space-time. However, based on the CFT discussion in section 2 and the correspondence

with the HKLL program, we will adopt a di↵erent interpretation. We will treat the involution

(3.7)-(3.8) as an exact symmetry, that is enforced on all geometric deformations of the bulk space-

time. In other words, we require that any deformation of the space-time metric should respect

the Z2 symmetry. From the point of view of the full AdS geometry, this is a global restriction

that leads to antipodal correlations in the stress energy tensor. In case the bulk theory contains

massless gauge fields, they are also subject to the same Z2 symmetry requirement.

The presence of the Z2 defect has non-local consequences, and thus creating it is a non-local

operation. Any sphere surrounding the Z2 defect is non-orientable, and has non-trivial homotopy.

The support � of the bulk operator ��(X) that creates the defect at X must therefore extend out

from the bulk point X all the way to the boundary and insert a cross-cap into every surface that

intersects with �. This extended support of ��(X) also serves to specify the bulk location of the

point X, by restricting the bulk geometry such that the (regularized) geodesic distance from X

to the boundary is held fixed. This type of non-locality is an inevitable part of any gravitational

dressing prescription. One of the motivations of our study is to quantify its physical consequences.

From here on we will not explicitly indicate the support � of the bulk operator �(X).

3.4 Dressing operator as a sum over geometries

The dressing operator 1(X) is a purely geometrical defect. Note, however, that hT (z)1(X)i = 0,

so at the linearized level, the dressing operator leaves the classical metric unperturbed. To see its

physical e↵ect, we need to look at the fluctuations of the metric. As we will now show, we can

write the state
��
1(0)i, defined in equations (3.5) and (3.6), as a functional integral over all metrics

compatible with the antipodal identification associated with X. We will work at leading order at

large c. In this limit, we can use semi-classical gravity and use a linearized approximation.

In semi-classical gravity, the functional integral over metric is reduced to a sum over classical

geometries. Consider the general class of vacuum solutions of the 3-d Einstein equations

ds2 =
1

y2
�
dy2+ dzdz̄

�
+ ⌦dz2 + ⌦dz̄2 + y2⌦⌦dy2 (3.9)

and (z, z̄) 2 C; the global patch has boundary S

1 ⇥ R parametrized by ⌧ 2 R and ✓ 2 [0, 2⇡]. The center of global

AdS3 is at ⇢ = 0, ⌧ = 0, which corresponds to y = 1 and z = 0.

15

|⌦ih⌦|

O(x1)

�[g]

=

O(x1)

�(X)

Figure 5: The uniformization theorem provides a map from a bulk-to-boundary 2-point function⌦
⌦
���[g]O(x1)

��⌦↵ in a Bañados geometry to a 2-point function

⌦
0
���(X)O(x1)

��0↵ in AdS3. The

bulk point X0 depends on both g0 and ⌦. The map makes essential use of Virasoro symmetry.

5.3 Uniformization

We will now outline the CFT derivation of the uniformization theorem. Consider the bulk-to-

boundary 2-point function (5.8). Both the states
��⌦↵ and the bulk operator �[g] depend on an

infinite set of parameters. So the 2-point function (5.8) naively depends on an infinite set of

parameters. However, it is not hard to see that, thanks to the gauge invariances described above,

all but a finite set of parameters are in fact spurious.

The gauge invariance (5.10) of the in and out states can be used to deform the dDi↵(S1) element

g of the bulk field via

�[g ] ! �[ g̃ ] = V †(⇠)�[g]V (⇠) (5.13)

The first step is to use this freedom to bring the cross-cap operator in a standard form (2.12)-(2.17).

This standardized bulk operator �(X) satisfies the invariance property

V †(⌘0)�(X)V (⌘0) = �(X) (5.14)

where V (⌘0) denote a general element of the conformal group generated by ln = Ln � (�1)nL̄�n.

This invariance now allows us to deform the in and out states via��⌦↵ !
��⌦̃↵ = V (⌘0)

��⌦↵ (5.15)

The final step is to use this freedom to rotate the in and out states into a vacuum state
��0↵, that

satisfies the standard Virasoro Ward identities Ln

��0↵ = L̄n

��0↵ = 0 for n � �1. The physical

parameters of the state
��⌦↵, such as the mass and spin of the corresponding BTZ black hole, are

encoded in the monodromy transformation (5.19) of the uniformizing coordinate Z.

In this way, we have demonstrated that locally we can always go to the uniformizing coordinate

system, in which the 2-point function (5.8) reduces to the standard 2-point function between two

SL(2,R) invariant vacuum states⌦
⌦
���[g ]O(x)

��⌦↵
=

⌦
0
���(X)O(x)

�� 0↵. (5.16)

26

nism, whereby the gravitational dressing terms, when acting on a state that represents a deformed

background, automatically produce the necessary modification of the wave equation.

Consider the general class of classical bulk metric (3.9). In the CFT dual, this class of

backgrounds correspond to states |⌦i created by acting with a di↵eomorphism on the vacuum5��⌦↵
= U †(Z)

��0↵, where U(Z) denotes the unitary operator that implements the finite conformal

transformation [AL: IS THIS A w?] z ! Z(z), with Z(z) chosen such that

h⌦|T (z)|⌦i =
c

6
⌦(z) =

c

12
{Z, z} (5.4)

In the same way, we also introduce the right-moving coordinates Z̄(z̄). As before, we will call

(Z, Z̄) the uniformizing coordinate system. For a general metric in the class (3.9), the uniformizing

coordinate is multivalued: in going around the S1 circle, Z in general undergoes a monodromy

given by a Möbius transformation Z ! aZ+b
cZ+d with ab � cd = 1 and similar for Z̄. For BTZ

black hole states, the conjugacy class of the Möbius transformations specifies the total mass and

spin of the black hole. The 2D uniformizing coordinates can be extended into the bulk to a 3D

uniformizing coordniate system X̃ = (Y , Z, Z̄), in which the metric (3.9) takes the standard form

ds2 =
1

Y 2

�
dY 2+ dZdZ̄

�
. (5.5)

The non-triviality of the background is then encoded in the global boundary conditions on , or

equivalently, by taking a quotient by the elements of the AdS3 isometry group.

We want to demonstrate that, when acting on the deformed state |⌦i, the bulk field �(X)

satisfies the wave equation in the corresponding background

(⇤⌦ +m2)�(X) = 0. (5.6)

We will see that this statement of background independence is an immediate consequence of

the uniformization theorem. Essentially, the CFT proof (5.6) directly copies the bulk procedure

that locally transforms the background metric (3.9) to the standard AdS3 form by going to the

uniformizing coordinates X̃ = (Y , Z, Z̄).
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|⌦ih⌦|

O(x1)

�[g]

=

O(x1)

�(X)

Figure 5: The uniformization theorem provides a map from a bulk-to-boundary 2-point function⌦
⌦
���[g]O(x1)

��⌦↵ in a Bañados geometry to a 2-point function

⌦
0
���(X)O(x1)

��0↵ in AdS3. The

bulk point X0 depends on both g0 and ⌦. The map makes essential use of Virasoro symmetry.

5.3 Uniformization
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��⌦↵ and the bulk operator �[g] depend on an
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parameters. However, it is not hard to see that, thanks to the gauge invariances described above,

all but a finite set of parameters are in fact spurious.
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Testing the proposal

The bulk field �h(z0, z̄0, y) cuts out a circular hole of
radius y centered around the point (z

0

, z̄

0

), while gluing
together diametric opposite points via the identification1

z̄ � z̄

0

= � y

2

z � z

0

, (6)

We can write this relation as a global SL(2,R) transfor-
mation z̄ = az+b

cz+d with y = 1/c, z
0

= �d/c and z̄

0

= a/c.
The bulk field thus naturally lives on an SL(2,R) group
manifold, or a subspace thereof. In the following, we will
often denote the bulk coordinate X by the group element

g =
⇣
a b
c d

⌘
.

We wish to verify that the bulk field �h(g) defined by
(5) has the required properties (1) and (2). Property (1)
is evident, since P

0

= limy!0

y

L0+
¯L0�2h is a projection

onto the primary state |hi = Oh(0)|0i. Property (2) is
a less trivial statement, that only holds to leading or-
der at large N . Indeed, since our definition (5) does not
presume a free bulk theory, it should automatically in-
corporate all interactions and 1/N corrections.

How can a state-independent operator (5) satisfy a
state dependent wave equation (2)? A partial answer is
that in 2+1-D gravity, and outside of any matter sources,
the background geometry locally looks like AdS

3

. So
the state dependence manifests itself in the form of non-
trivial global transition functions on the variable g.

For concreteness, consider a matrix element of the bulk
field �h(g) between two highly excited states
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The in-state |h
1

, h

2

i = O
�

(0)|0↵ is a primary state with
conformal weight � � c/12. In the gravity dual, it is
describes a non-rotating BTZ black hole with mass M =
� � c

12

. The black hole space-time is obtained from the
SL(2,R) group manifold by taking the quotient [6]

g ⇠ gLggR , gL = gR = e

⇡r+�2
. (8)

Here r

+

=
p
8GNM =

q
24�

c � 1 is the black hole ra-

dius. (We use R

AdS

= 1 units.) The out-state in (7)
represents the black hole with a small extra mass ! and
angular momentum `. It is convenient to parametrize

1
In an earlier version of this note, the orientation flip (�1)

n
was

omitted. We thank Tadashi Takayanagi for explaining the need

for this sign flip in the closely related proposal for local bulk

operators put forward in [16]. For an elegant geometrical inter-

pretation for the extra (�1)

n
factor, see also [17].

h""""" 1"""""""2"""h"","h"""|""""""" > 3"""""""4"""h""","h"""< |""""""" Φ    

FIG. 1: In a semi-classical treatment, the matrix element (7)
equals the 2D Liouville action associated to a hyperpoblic
cylinder with a single cross-cap. The moduli space of this
hyperbolic surface is isomorphic to the BTZ black hole space-
time.
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The amplitude (7) transforms in a well-prescribed way
under conformal transformations (z, z̄) ! (w(z), w̄(z̄)).
The Ishibashi state ||hii⌦ is inert under reparametriza-
tions that leave the location of the boundary circle (6)
fixed. In addition, the primary in- and out-states are an-
nihilated by half of the Virasoro generators. This gives
us the freedom to evaluate (7) in our favorite coordinate
system.

How can we detect the BTZ monodromy (8) in the
CFT? At large c, a CFT amplitude selects a natural co-
ordinate system, specified via the expectation value of the
stress-energy tensor. Thanks to the anomalous transfor-
mation property of T (z), one can always find local coor-
dinates (Z, Z̄) such that

⌦
T (Z)

↵
=

⌦
T̄ (Z̄)

↵
= 0. (10)

We call (Z, Z̄) the ‘uniformizing coordinate system’. It
associates to the amplitude a constant curvature metric
ds

2 = e

�
dzdz̄ = dZd ¯Z

(Z� ¯Z)

2 with c
6
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↵
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(@�)2 + @

2

�.

For our matrix element (7) we have
⌦
T (z)
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= �/z

2.
This is uniformized by

Z(z) = z

ir+ with r

2

+

= 24�

c � 1. (11)

The coordinates (Z, Z̄) are multivalued: under a full ro-
tation z ! e

2⇡i
z, they undergo a monodromy specified

by the same hyperbolic SL(2,R) elements gL and gR that
characterize the BTZ geometry. The corresponding 2-D
constant curvature metric describes a hyperbolic cylinder
with two asymptotic regions corresponding to the initial
and final states.

We can now use the (Z, Z̄) coordinates to associate an
SL(2,R) group element g to the boundary state (5), via
the procedure described below eqn (6). When we trans-
port �h(g) around the heavy operator O

�

(0), the group
element g does not come back to itself, but undergoes the
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The Ishibashi state ||hii⌦ is inert under reparametriza-
tions that leave the location of the boundary circle (6)
fixed. In addition, the primary in- and out-states are an-
nihilated by half of the Virasoro generators. This gives
us the freedom to evaluate (7) in our favorite coordinate
system.

How can we detect the BTZ monodromy (8) in the
CFT? At large c, a CFT amplitude selects a natural co-
ordinate system, specified via the expectation value of the
stress-energy tensor. Thanks to the anomalous transfor-
mation property of T (z), one can always find local coor-
dinates (Z, Z̄) such that
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z, they undergo a monodromy specified

by the same hyperbolic SL(2,R) elements gL and gR that
characterize the BTZ geometry. The corresponding 2-D
constant curvature metric describes a hyperbolic cylinder
with two asymptotic regions corresponding to the initial
and final states.

We can now use the (Z, Z̄) coordinates to associate an
SL(2,R) group element g to the boundary state (5), via
the procedure described below eqn (6). When we trans-
port �h(g) around the heavy operator O
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1
In an earlier version of this note, the orientation flip (�1)

n
was

omitted. We thank Tadashi Takayanagi for explaining the need

for this sign flip in the closely related proposal for local bulk

operators put forward in [16]. For an elegant geometrical inter-

pretation for the extra (�1)

n
factor, see also [17].
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FIG. 1: In a semi-classical treatment, the matrix element (7)
equals the 2D Liouville action associated to a hyperpoblic
cylinder with a single cross-cap. The moduli space of this
hyperbolic surface is isomorphic to the BTZ black hole space-
time.
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4 Bulk-to-boundary correlators and commutators

In this section we will compute several correlation functions of a single cross-cap operator �(X)

with one or more local CFT operators O(z). These correlation functions are uniquely fixed and

computable by the Schottky double construction and conformal symmetry. Consider a cross-cap

operator located at X = (y, x, x̄). To study its correlation functions with local CFT operators, we

need to consider the CFT on the complex plane subject to the Z2 identification (2.12). We will

then analyze the singularity structure of the correlation functions, and deduce information about

the commutators between �(X) and local boundary operators.

4.1 Some bulk-to-boundary correlators

In this subsection we will compute some simple bulk to boundary correlation functions.

4.1.1

⌦
�O

↵
As a warm-up we start with the bulk-to-boundary 2-point function hO(x1, x̄1)�(y, x2, x̄2)i. Local
CFT operators O(z, z̄) factorize into a holomorphic and an anti-holomorphic component. Via the

Schottky double, we obtain the bulk-to-boundary correlation functions via the standard image

method, by placing a virtual copy of every physical operator at the corresponding mirror point

under the Z2 identification (2.12). Specifically, we map the left moving component at z into

a right moving operator placed at z0. Meanwhile we keep the left-moving component in place.

This procedure also requires a Jacobian factor O(z, z̄) ! y2h

(z̄�z̄0)2h
OL(z)OR(˜̄z). If the operator is

already chiral then if it is right moving it will stay at the same location, while if it is left moving

it will be mapped to a right moving operator at the mirror point z0.
Following this method, we obtain

hO(x1, x̄1)�h(y, x2, x̄2)i =
⌦
O(x1, x̄1)O(x̃1, ˜̄x1)

↵
=

y2h

(y2 + x12x̄12)2h
. (4.1)

This matches the standard expression for the bulk-to-boundary propagator. Note that if we

multiply the result (4.1) by y�2h and take the y ! 0 limit, we recover the two point function of

a local operator, in accordance to the extrapolate dictionary limy!0 y�2h�h = Oh. The global

cross-cap operator would give the same result, as shown by explicit computation in [1, 3].

4.1.2

⌦
�OT

↵
Consider the three point function hTO�i, where O is a scalar operator of the same conformal

dimension h as �. The Schottky double construction, this is given by a chiral three-point function

on the double cover

hT (z)O(x1, x̄1)�(y, x2, x̄2)i =
⌦
T (z)O(x1, x̄1)O(x̃1, ˜̄x1)

↵
(4.2)

=
h y2h

(y2 + x12x̄12)2h�2(z � x1)2(y2 + (z � x2)x̄12)2
,
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Figure 3: Cross-cap states create for every local operatorO(z) an imageO0(z0) under the involution
z ! z0.

where x12 = x1 � x2. The correlation function (4.2) exhibits a singularity for z = x2 � y2/x̄12.

The global cross-cap produces the same formula (4.2). Of course, the reason that the two are

identical is that (4.2) follows uniquely from a global conformal Ward identity.

4.1.3

⌦
1T T̄

↵
As a next simple example, we place a single pure dressing operator 1(X) in the bulk and consider

its correlation functions with one or two stress tensor insertions. We immediately find that these

correlation functions are all trivial (i.e. equal to those in the vacuum), except for the T T̄ two-point

function

⌦
T (z) T̄ (w̄)1(X)

↵
=

c/2

(y2 + (z � x)(w̄ � x̄))4
(4.3)

Note that this two-point function has a pole at z � x = �y2/(w̄ � x̄), but that, for w inside the

region |w � x| > y, the pole in z is located on the second sheet |z � y| < y. On the first sheet,

i.e. outside the circle |z � x| = y, the two-point function remains finite and analytic in z and

anti-analytic in w̄. The presence of the singularity indicates that if we move T (z) from the first

to the second sheet, it flips orientation into T̄ (�1/z̄), which does have a singular OPE with T̄ (w̄).

4.1.4

⌦
�OT T̄

↵
The simplest case for which the global and Virasoro results are di↵erent is

hT (z)T̄ (w̄)O(x1, x̄1)�(y, x2, x̄2)i. (4.4)

In the Virasoro case this is fixed by the image method and the conformal Ward identity. We

add the image of the operator O(x1, x̄1) and the image of the anti-holomorphic component of the
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stress tensor T (w̃) with w̃ = � y2

w̄�x̄2
+ x2. Including the proper Jacobians we obtain

hT (z)T̄ (w̄)O(1)�(y, 2)i = h2y2h

(y2 + x12x̄12)2h�4(y2 + x12w̄2)2(w̄ � x̄1)2(z � x1)2(y2 + z2x̄12)2

+
2hy2h

(y2 + x12x̄12)2h�2(y2 + x12w̄2)(w̄ � x̄1)(z � x1)(y2 + z2w̄2)2(y2 + z2x̄12)

+
cy2h

2(y2 + x12x̄12)2h(y2 + z2w̄2)4
, (4.5)

where I = (xI , x̄I) in the argument of the operators, x12 = x1�x2, z2 = z�x2, w2 = w�x2, etc.

The details of the computation are given in the Appendix. Again we observe that the correlation

function (4.5) is regular everywhere, except for poles when two operators are at the same physical

location, or at each others image point on the second sheet. In particular we see that there are

no non-local branch cuts.

Let us repeat the calculation for the global cross-cap �(0). In this case the stress tensor is on

equal footing with other quasi-primary operators. Therefore when we insert more than one stress

tensor the result is no longer fixed by conformal symmetry. The Schottky double picture is still

valid and therefore the three point function is equal to a chiral four point function

hT T̄O�(0)i = hTO PG

h TOi, (4.6)

where the first two operator are placed outside the cross-cap radio and the rest are inside and we

inserted the projection PG

h onto the global module of the primary state associated to the cross-cap.

From this one can immediately conclude that this is given by a global conformal block4

hh|T (z)T̄ (w̄)|�(0)i =
h2

(�zw̄)2
2F1

✓
2, 2, 2h;� 1

w̄z

◆
. (4.7)

This hypergeometric function diverges at z ! w̃ = �1/w̄, which corresponds to the antipodal

point on the second sheet, but has a branch cut for w̃
z = (1,+1). This equation can be generalized

for arbitrary positions since there is only one cross-ratio that can be defined ⌘ = (z�x1)(w̄�x̄1)
(1+x1x̄1)(1+zw̄) ,

following [2], since this is equivalent to inserting a non-chiral operator O(z, w̄) = T (z)T̄ (w̄).

Equation (4.7) can be compared with the Virasoro cross-cap result given by (4.5) in the limit

in which x1, x̄1 ! 1 and x2, x̄2 ! 0, which gives

hh|T (z)T̄ (w̄)|�i = h2

(�zw̄)2
+

2h

(�zw̄)(1 + zw̄)2
+

c/2

(1 + zw̄)4
. (4.8)

Comparing (4.7) with (4.8), we notice several di↵erences. The global cross-cap correlator has

branch cuts, whereas the Virasoro cross-cap correlator has only poles. On the other hand, equation

(4.8) has a term proportional to the central charge c, while (4.7) in independent of c. The

extra term is identical to the vacuum two-point function h0|T (z)T̄ (w̄)|0i. Both di↵erences can be

interpreted as a result of the gravitational dressing.

4In the Appendix, we derive this result by direct computation.
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This matches the standard expression for the bulk-to-boundary propagator. Note that if we

multiply the result (4.1) by y�2h and take the y ! 0 limit, we recover the two point function of

a local operator, in accordance to the extrapolate dictionary limy!0 y�2h�h = Oh. The global

cross-cap operator would give the same result, as shown by explicit computation in [1, 3].

4.1.2

⌦
�OT

↵
Consider the three point function hTO�i, where O is a scalar operator of the same conformal

dimension h as �. The Schottky double construction, this is given by a chiral three-point function

on the double cover

hT (z)O(x1, x̄1)�(y, x2, x̄2)i =
⌦
T (z)O(x1, x̄1)O(x̃1, ˜̄x1)

↵
(4.2)

=
h y2h

(y2 + x12x̄12)2h�2(z � x1)2(y2 + (z � x2)x̄12)2
,

where x12 = x1 � x2. The correlation function (4.2) exhibits a singularity for z = x2 � y2/x̄12.

The global cross-cap produces the same formula (4.2). Of course, the reason that the two are

identical is that (4.2) follows uniquely from a global conformal Ward identity.

4.1.3

⌦
1T T̄

↵
As a next simple example, we place a single pure dressing operator 1(X) in the bulk and consider

its correlation functions with one or two stress tensor insertions. We immediately find that these

correlation functions are all trivial (i.e. equal to those in the vacuum), except for the T T̄ two-point

function

⌦
T (z) T̄ (w̄)1(X)

↵
=

c/2

(y2 + (z � x)(w̄ � x̄))4
(4.3)

Note that this two-point function has a pole at z � x = �y2/(w̄ � x̄), but that, for w inside the

region |w � x| > y, the pole in z is located on the second sheet |z � y| < y. On the first sheet,
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Again, this is a highly non-trivial condition. For generic cross-cap states the three point function

G�
ij(⌘) is expected to exhibit a non-local branch cut for ⌘ > 1. In the dual AdS interpretation,

the point ⌘ = 1 corresponds to the situation where Oi and Oj are situated at antipodal points

relative to the bulk operator �. Equation (2.26) is the requirement that the non-local branch cut

cancels out after adding all contributions in the sum (2.19). This condition was introduced and

used in [?] to uniquely determine the 1/N correction terms �p.

We can make direct contact with the analysis of [?], by noting that in the large c limit with

fixed hi, hj , hp, the Virasoro blocks reduce to global blocks

Gijp(⌘) =
c!1

Cijp ⌘
hp

2F1
�
hp + hij , hp � hij , 2hp; ⌘

�
(2.27)

with hij = hi � hj . This expression exactly matches with the bulk-to-boundary three point

function (2.6) of �(0) found in [?].

The global block (2.27) has a branch cut for ⌘ > 1. The discontinuity across the branch cut

by Iijk(⌘) = Gijk(⌘ + i✏) � Gijk(⌘ � i✏) has support only for ⌘ > 1. The functions Iijk(⌘) and

Ilpq(1 � ⌘) thus have zero overlap. The holographic bootstrap equation (2.22) can be satisfied

provided that the discontinuity cancels separately on each side of the sumX
p

�pCijpIijp(⌘) = 0,
X
k

 k CijkIijk(⌘) = 0. (2.28)

These first equation is the HKLL equation analyzed in [?]. As noted earlier, for holographic CFTs

the conformal bootstrap equations imply that the spectrum must contain, for every pair of light

single trace operators Oi and Oj , an infinite series of double trace operators On with conformal

dimension hn = hi+hj +n with n � 0 integer. The first equation in (2.28) can then be solved via

the Ansatz that the sum over p in (2.19) runs over the primary state h (with normalized coe�cient

�h = 1) plus this special set of double trace operators. The expansion coe�cients �n are then

uniquely fixed.

G�

ij(⌘) '
⌘!1

X
n

Cijn n (1� ⌘)n +
1

N

X
k

Cijk  k (1� ⌘)hk�hi�hj . (2.29)

Let us summarize. We have have presented a CFT reformulation of the HKLL expansion

and conditions in terms of cross-cap boundary states. The novelty of our approach is that we

factorize the HKLL conditions into (i) the conformal invariance constraint (2.13) and (ii) the

holographic bootstrap equation (??). As a combination, equations (2.13) and (??) ensure that

the three point functions
⌦
�OO

↵
between a bulk operator and two primary CFT operators are free

of non-local branch cuts. However, as we will see in the following, correlation functions involving

boundary stress energy tensors and other conserved currents such as
⌦
�OT T̄

↵
still exhibit non-

local singularities whenever the stress energy insertions are antipodal relative to �. However,

thanks to the conformal invariance constraint (i), these singularities are given by poles instead of

branch cuts. In the next section, we will argue that step (i) has a natural bulk interpretation in

terms of gravitational dressing.

11

still highly restrictive. For generic �p, one may still find a formal mirror cross cap state | i with
the property (2.22), but this mirror state will typically involve a sum (or integral) over Ishibashi

states that do not belong to the CFT spectrum. The rule that the sum in (2.22) runs over the

actual CFT spectrum is a natural and necessary requirement if we want to be able to view the

state |�i as obtained by imposing some geometric boundary condition on the CFT path-integral.

Equation (2.22) can be written in the form of a crossing relation as follows. As we will discuss

in section 4, the three point functions Gijk(⌘) can be evaluated via the method of images, by

going to the double cover b⌃ of the non-oriented surface ⌃. This method identifies the three poinft

function Gijp(⌘) with the chiral Virasoro conformal blocks of conformal blocks defined on the

double cover

(2.23)
p

Oi(⌘) Ōj̄(1)

Oj(0) Ōī(1)

Gijp(⌘) =
⌦
Oi(0)Oj(⌘)Pp Ōi(1)Ōj(1)

↵
=

Here Pp denotes the projection onto the conformal sector labeled by p, and we absorbed the

OPE coe�cients into the definition of the conformal block. We can think of this chiral four

point function as obtained by factorizing the operators Oi and Oj into their chiral halves, and

placing the right-moving half of each operator at the Z2 image point of the left-moving half under

the orientation reversing Z2 involution. Via the identification (4.12), the holographic bootstrap

condition (2.22) can be diagrammatically represented as the crossing relation

(2.24)
p

Oi

Oj

Oj

Oi

= Σ
k

Ψk k

Oi

Oj

Oj

Oi

‘

‘
‘

‘

p
ΦpΣ

This condition can be explicitly analyzed once we know analytic expressions for the Virasoro

conformal blocks.

2.5 Bulk interactions and locality II

We will now argue that for holographic CFTs, the holographic bootstrap equation (2.22) auto-

matically implements the HKLL procedure that restores bulk locality. In our set up, the HKLL

causality condition stipulates that the three point function should be free of non-local branch cuts

G�

ij(⌘) = has no branch-cut for ⌘ > 1, (2.25)

which is a special case of the more stringent condition that the three point function remains

regular when the operator Oj approaches the Z2 image O0
i(0) of the other operator

G�

ij(⌘) = regular at ⌘ = 1. (2.26)
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hp > h will be automatically suppressed in the y ! 0 limit. Moreover, following HKLL, it seems

reasonable to assume that all terms �p with hp > h are of order 1/N . This is a reasonable

assumption, given that the role of the these higher coe�cients is to incorporate the e↵ect of bulk

interactions.

Consider the matrix elements⌦
Oi

��Oj(x)
��p↵↵ = ⌘hi�hjGijp(⌘), ⌘ ⌘ 1

1 + x2
, (2.19)

⌦
Oi

�� Oj(x)
���↵ = ⌘hi�hjG�ij (⌘), G�ij (⌘) =

X
p

�p Gijp(⌘). , (2.20)

The BPZ conjugate state hOi| places a local operator at x = 1. These matrix elements thus

represent three point functions of two local operators and one cross cap state at X = 0. We can

obtain the three point functions at general positions via (2.6), with ⌘ given in (2.7). Both cross

cap states in (2.19) implement the Z2 identification x $ x0 = �1/x̄ for the stress tensor. This

involution acts on the cross ratio via ⌘ ! 1� ⌘.

The bootstrap condition is a restriction on the Z2 transformation of the three point function.

Since the Ishibashi state |pii involves a projection on a given conformal sector, correlation functions

involving primary fields are not single valued on the quotient space ⌃: if we transport Oi from a

point in the outside region |z| > 1 to its mirror point in the interior region |z| < 1, we must deform

the contour along which the projection acts. As a result, the three point functions Gijp(⌘) exhibit

a non-trivial Z2 monodromy. The standard bootstrap condition for CFT cross cap states |C i =P
p Cp |pii is the requirement that the corresponding three point functions GC

ij(⌘) =
P

p CpGijp(⌘)

are single valued under the Z2 identification: GC
ij(1� ⌘) = GC

ij(⌘). It may look natural to require

that holographic bulk operators should also satisfy the CFT bootstrap. However, as pointed out in

[2], this condition appears to be too restrictive and at odds with the requirement of bulk locality.

We will therefore replace it with a weaker condition.

Our holographic bootstrap condition stipulates that, for every pair of operators Oi and Oj ,

there must exists a mirror cross cap state | i =
P

p  p

��pii 2 HCFT such that the Z2 involution

x ! x0 interchanges the respective three point functions G�ij (1� ⌘) = G ij (⌘). Writing this out a

bit more explicitly, we require thatX
p

�pGijp(1� ⌘) =
X
k

 kGijk(⌘), (2.21)

where the sum on both sides is restricted to run over the actual CFT spectrum. The standard

CFT bootstrap condition would impose that  p = �p. While (2.21) is evidently weaker, it is

still highly restrictive. For generic �p, one may still find a formal mirror cross cap state | i with
the property (2.21), but this mirror state will typically involve a sum (or integral) over Ishibashi

states that do not belong to the CFT spectrum. The rule that the sum in (2.21) runs over the

actual CFT spectrum is a natural and necessary requirement if we want to be able to view the

state |�i as obtained by imposing some geometric boundary condition on the CFT path-integral.

Equation (2.21) can be written in the form of a crossing relation as follows. As we will discuss

in section 4, the three point functions Gijk(⌘) can be evaluated via the method of images, by

9
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Figure 10: Factorization of hOO�i amplitude.

45

Oi Oj

⌘ ! 0

Oi Oj

Figure 9: Factorization of hOO�i amplitude.

Oi Oj
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We start from the Ansatz that holographic cross-cap states can be expanded as an infinite

weighted sum of Virasoro Ishibashi states���↵ =
X
hp�h

�p

�� p↵↵ (2.19)

The extrapolate dictionary limy!0 y�2h�(y, x) = O(x) requires that the Ishibashi state
��h↵↵

appears with unit coe�cient �h = 1 as the lowest term in this expansion. Higher terms with

hp > h will be automatically suppressed in the y ! 0 limit. Moreover, following HKLL we will

assume that all terms �p with hp > h are of order 1/N . This is a reasonable assumption, given

that the role of the these higher coe�cients is to incorporate the e↵ect of bulk interactions.

Consider the matrix elements⌦
Oi

�� Oj(x)
��p↵↵ = ⌘hi�hjGijp(⌘), ⌘ ⌘ 1

1 + x2
, (2.20)

⌦
Oi

��Oj(x)
���↵ = ⌘hi�hjG�ij (⌘), G�ij (⌘) =

X
p

�p Gijp(⌘). , (2.21)

The BPZ conjugate state hOi| places a local operator at x = 1. These matrix elements thus

represent three point functions of two local operators and one cross cap state at X = 0. We can

obtain the three point functions at general positions via (2.6), with ⌘ given in (2.7). Both cross

cap states in (2.20) implement the Z2 identification x $ x0 = �1/x̄ for the stress tensor. This

involution acts on the cross ratio via ⌘ ! 1� ⌘.

The bootstrap condition is a restriction on the Z2 transformation of the three point function.

Since the Ishibashi state |pii involves a projection on a given conformal sector, correlation functions

involving primary fields are not single valued on the quotient space ⌃: if we transport Oi from a

point in the outside region |z| > 1 to its mirror point in the interior region |z| < 1, we must deform

the contour along which the projection acts. As a result, the three point functions Gijp(⌘) exhibit

a non-trivial Z2 monodromy. The standard bootstrap condition for CFT cross cap states |C i =P
p Cp |pii is the requirement that the corresponding three point functions GC

ij(⌘) =
P

p CpGijp(⌘)

are single valued under the Z2 identification: GC
ij(1� ⌘) = GC

ij(⌘). It may look natural to require

that holographic bulk operators should also satisfy the CFT bootstrap. However, as pointed out in

[2], this condition appears to be too restrictive and at odds with the requirement of bulk locality.

We will therefore replace it with a weaker condition.

Our holographic bootstrap condition stipulates that, for every pair of operators Oi and Oj ,

there must exists a mirror cross cap state | i =
P

p  p

��pii 2 HCFT such that the Z2 involution

x ! x0 interchanges the respective three point functions G�ij (1� ⌘) = G ij (⌘). Writing this out a

bit more explicitly, we require thatX
p

�pGijp(1� ⌘) =
X
k

 kGijk(⌘), (2.22)

where the sum on both sides is restricted to run over the actual CFT spectrum. The standard

CFT bootstrap condition would impose that  p = �p. While (2.22) is evidently weaker, it is
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Testing the proposal

The bulk field �h(z0, z̄0, y) cuts out a circular hole of
radius y centered around the point (z

0

, z̄

0

), while gluing
together diametric opposite points via the identification1

z̄ � z̄

0

= � y

2

z � z

0

, (6)

We can write this relation as a global SL(2,R) transfor-
mation z̄ = az+b

cz+d with y = 1/c, z
0

= �d/c and z̄

0

= a/c.
The bulk field thus naturally lives on an SL(2,R) group
manifold, or a subspace thereof. In the following, we will
often denote the bulk coordinate X by the group element

g =
⇣
a b
c d

⌘
.

We wish to verify that the bulk field �h(g) defined by
(5) has the required properties (1) and (2). Property (1)
is evident, since P

0

= limy!0

y

L0+
¯L0�2h is a projection

onto the primary state |hi = Oh(0)|0i. Property (2) is
a less trivial statement, that only holds to leading or-
der at large N . Indeed, since our definition (5) does not
presume a free bulk theory, it should automatically in-
corporate all interactions and 1/N corrections.

How can a state-independent operator (5) satisfy a
state dependent wave equation (2)? A partial answer is
that in 2+1-D gravity, and outside of any matter sources,
the background geometry locally looks like AdS

3

. So
the state dependence manifests itself in the form of non-
trivial global transition functions on the variable g.

For concreteness, consider a matrix element of the bulk
field �h(g) between two highly excited states

�h

⇥
1 2

3 4

⇤
(g) =

⌦
h

3

,h

4

���h(g)
��
h

1

,h

2

↵
(7)

h

1

= h

2

= 1

2

�, h

3

= 1

2

(�+!+`), h

4

= 1

2

(�+!�`)

The in-state |h
1

, h

2

i = O
�

(0)|0↵ is a primary state with
conformal weight � � c/12. In the gravity dual, it is
describes a non-rotating BTZ black hole with mass M =
� � c

12

. The black hole space-time is obtained from the
SL(2,R) group manifold by taking the quotient [6]

g ⇠ gLggR , gL = gR = e

⇡r+�2
. (8)

Here r

+

=
p
8GNM =

q
24�

c � 1 is the black hole ra-

dius. (We use R

AdS

= 1 units.) The out-state in (7)
represents the black hole with a small extra mass ! and
angular momentum `. It is convenient to parametrize

1
In an earlier version of this note, the orientation flip (�1)

n
was

omitted. We thank Tadashi Takayanagi for explaining the need

for this sign flip in the closely related proposal for local bulk

operators put forward in [16]. For an elegant geometrical inter-

pretation for the extra (�1)

n
factor, see also [17].

h""""" 1"""""""2"""h"","h"""|""""""" > 3"""""""4"""h""","h"""< |""""""" Φ    

FIG. 1: In a semi-classical treatment, the matrix element (7)
equals the 2D Liouville action associated to a hyperpoblic
cylinder with a single cross-cap. The moduli space of this
hyperbolic surface is isomorphic to the BTZ black hole space-
time.

g = e

i
2 ('̂+

ˆt)�2
e

ir�1
e

i
2 ('̂�ˆt)�2 , with '̂=2r

+

' and t̂=2r
+

t,
and split o↵ the time and angular dependence via

�h

⇥
1 2

3 4

⇤
(g) = e

�i!t
e

i`'
�h

⇥
1 2

3 4

⇤
(r). (9)

The amplitude (7) transforms in a well-prescribed way
under conformal transformations (z, z̄) ! (w(z), w̄(z̄)).
The Ishibashi state ||hii⌦ is inert under reparametriza-
tions that leave the location of the boundary circle (6)
fixed. In addition, the primary in- and out-states are an-
nihilated by half of the Virasoro generators. This gives
us the freedom to evaluate (7) in our favorite coordinate
system.

How can we detect the BTZ monodromy (8) in the
CFT? At large c, a CFT amplitude selects a natural co-
ordinate system, specified via the expectation value of the
stress-energy tensor. Thanks to the anomalous transfor-
mation property of T (z), one can always find local coor-
dinates (Z, Z̄) such that

⌦
T (Z)

↵
=

⌦
T̄ (Z̄)

↵
= 0. (10)

We call (Z, Z̄) the ‘uniformizing coordinate system’. It
associates to the amplitude a constant curvature metric
ds

2 = e

�
dzdz̄ = dZd ¯Z

(Z� ¯Z)

2 with c
6

⌦
T

↵
= � 1

2

(@�)2 + @

2

�.

For our matrix element (7) we have
⌦
T (z)

↵
= �/z

2.
This is uniformized by

Z(z) = z

ir+ with r

2

+

= 24�

c � 1. (11)

The coordinates (Z, Z̄) are multivalued: under a full ro-
tation z ! e

2⇡i
z, they undergo a monodromy specified

by the same hyperbolic SL(2,R) elements gL and gR that
characterize the BTZ geometry. The corresponding 2-D
constant curvature metric describes a hyperbolic cylinder
with two asymptotic regions corresponding to the initial
and final states.

We can now use the (Z, Z̄) coordinates to associate an
SL(2,R) group element g to the boundary state (5), via
the procedure described below eqn (6). When we trans-
port �h(g) around the heavy operator O

�

(0), the group
element g does not come back to itself, but undergoes the

The	
  matrix	
  element	
  of	
  Φ(g) between	
  two	
  highly	
  excited	
  primary	
  states	
  

should	
  coincide	
  with	
  the	
  mode-­‐function	
  fωl(g)	
  of	
  a	
  scalar	
  field	
  of	
  mass	
  mh
in	
  the	
  BTZ	
  black	
  hole	
  geometry	
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  the	
  excited	
  state	
  |h1,h2>.

h1=h2=	
  ½Δ
h3 =	
  ½(Δ+ω+l )
h4 =	
  ½(Δ+ω−l )
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BTZ holonomy (8). We conclude that the Teichmüller

space of the hyperbolic cylinder with a cross-cap (shown

in fig 1) is isomorphic to the BTZ black hole space-time.

This is our first piece of evidence that, at large c, the bulk
field �h(g) lives on the classical black hole background.

To provide more quantitative support for our proposal,
let us set out to compute the amplitude (7) and compare
the answer with the bulk mode that solves the wave equa-
tion (2) in the BTZ geometry. This bulk mode takes the
form f!`(t,', ⇢) = e

�i!t
e

i`'
f!`(⇢) with

f!`(⇢) = ⇢

h(1�⇢)
i!
2r+

2F1

�
h+ i(!+`)

4r+
, h+ i(!�`)

4r+
, 2h ; ⇢

�
(12)

Here 2F1(a, b, c ; z) denotes the ordinary hypergeometric
function and ⇢ = r

2

+

/r

2 parametrizes the radial coordi-
nate. In fact, the mode function constitutes an SL(2,R)
matrix element, f!`(g) = hh, i(!+`)

4r+
|g |h, i(!�`)

4r+
i, which

evidently satisfies the free bulk wave equation (2).

To compute the CFT matrix element (7), it is con-
venient to start in Euclidean signature, define �h(g) as
the operator that pokes a hole in the 2D Euclidean space
time, and then Wick rotate back to Lorentzian signature.
Moreover, we will choose to work in the uniformizing
coordinate system (Z, Z̄) introduced in (10)-(11). This
choice will greatly facilitate our analysis.

A CFT amplitude on a surface with a cross-cap is most
conveniently analyzed by introducing the so-called Schot-
tky double, as shown in fig 2. In our case, ⌃ is a cylinder
with a circular hole, and its Schottky double ⌃̃ is two
cylinders connected via a narrow bridge. ⌃̃ admits an
(orientation reversing) involution that identifies diamet-
ric opposite points on the circular boundary of ⌃. The
reflection symmetry restricts its cross ratio Z to be real

Z = Z̄ ⌘ ⇢.

A sphere with two punctures and a cross-cap has one
single real modulus.

Since the boundary reflects left-moving into right-
moving modes, the involution interchanges the two chiral
halves of the CFT. Moreover, thanks to the projection
onto the conformal sector h in the intermediate channel,
the CFT amplitude on the double ⌃̃ takes the form of a
single non-chiral conformal block Fh

⇥
1 2

3 4

⇤
(Z, Z̄), which in

turn factorizes into the product of two chiral blocks:

Fh

⇥
1 2

3 4

⇤
(Z, Z̄) =

�� h

⇥
1 2

3 4

⇤
(Z)

��2
. (13)

Here we absorbed the product of OPE coe�cients
C

12hCh34 into the normalization of the conformal block.
The Z-dependence of the conformal blocks is universal
and completely fixed by conformal invariance.

The amplitude �h

⇥
1 2

3 4

⇤
(g) is obtained by taking the

h"Φ

3"""""""4"""h"","h"""!!!!!!!!!!!!!!

1"""""""2"""h"","h"""!!!!!!!!!!!!!!

h"

1"""""""2"""h"","h"""!!!!!!!1"""""""2"""h"","h"""!!!!!!!

3"""""""4"""h"","h"""!!!!!!!3"""""""4"""h"","h"""!!!!!!!

FIG. 2: The CFT amplitude with the insertion of an Ishibashi
boundary state (left) and its Schottky double (right). Due to
the projection onto the conformal sector h in the intermediate
channel, the amplitude is given by a single conformal block.

square root of the amplitude on the double ⌃̃.
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So our task is: (i) compute the conformal block, (ii) take
the square root, (iii) compare the result with the mode
function (12) in the BTZ black hole background (c.f. [7]).

Virasoro conformal blocks are uniquely determined
by the conformal Ward identity. An explicit expres-
sion is not available yet, however, though exact or semi-
classical properties are known. Known exact results are
(a) Zamolodchikov’s recursion formula [8] relating Vi-
rasoro and global conformal blocks and (b) the modu-
lar ‘fusion’ matrices, obtained by Ponsot and Teschner
from Liouville CFT and quantum Teichmuller theory [9].
Semi-classical expressions have recently been obtained in
[10]. Unfortunately, none of the known results allow us
to read o↵ the specific answer that we need.

Given this state of a↵airs, it’s a reasonable strategy at
this point to invert the sequence of step (i)-(iii), and first
deduce the desired expression for the 2D conformal block
that we need in order to find a precise match
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between the CFT amplitude and the bulk mode function.
Imposing this match, we deduce that the conformal block
should take the following form
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To see this, note that taking the chiral conjugate of the
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geometric function. Then, using the standard identity

2F1(a, b, c ;Z) = (1�Z)c�a�b
2F1(c� a, c� b, c ;Z), direct

inspection shows that the CFT amplitude (13)-(14) re-
produces the expression (12).

Again	
  we	
  consider	
  the	
  CFT	
  on	
  the	
  `Schottky double’:

between the CFT amplitude and the bulk mode function. Imposing this
match, we deduce that the conformal block should take the following form
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The uniformizing coordinate system (11) has the special property that
the semi-classical Virasoro conformal blocks e↵ectively reduce to global con-
formal blocks [?].
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The monodromy properties of Virasoro blocks are identical to those of the
invariant tensors obtained by gluing together two Clebsch-Gordan coe�cients
of the quantum group U
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(sl(2)).

 b

h

⇥
1 2

3 4

⇤
(x) = e

2⇡↵hx
F

b

�
↵

h

+↵

13

,↵

h

+↵

24

, 2↵
h

;�ix

�
(17)

where ↵

i

are the Liouville momenta h
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suitable q-deformed SL(2,R) transformations.

The expression (17) is an eigen function of the q-deformed Casimir op-
erator C
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acting on the intermediate channel [?]. Hence, in the small b =
large c limit, it is reasonable to identify the quantum group coordinate Z
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with our uniformizing coordinate Z. We further have
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Figure 1: In a semi-classical treatment, the matrix element (7) equals the 2D
Liouville action associated to a hyperpoblic cylinder with a single hole. The
moduli space of this hyperbolic surface is isomorphic to the BTZ black hole
space-time.
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One can always find local coordinates (Z, Z̄) such that
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amplitude a constant curvature metric ds
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The coordinates (Z, Z̄) are multivalued: under a full rotation z ! e

2⇡i

z, they
undergo a monodromy. The corresponding 2-D constant curvature metric
describes a hyperbolic cylinder.

When we transport �
h

(g) around the heavy operator O
�

(0), the group
element g does not come back to itself, but undergoes the BTZ holonomy
(8). We conclude that the Teichmüller space of the hyperbolic cylinder with

one hole (as shown in fig 1) is isomorphic to the BTZ black hole space-time.
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BTZ holonomy (8). We conclude that the Teichmüller

space of the hyperbolic cylinder with a cross-cap (shown

in fig 1) is isomorphic to the BTZ black hole space-time.

This is our first piece of evidence that, at large c, the bulk
field �h(g) lives on the classical black hole background.

To provide more quantitative support for our proposal,
let us set out to compute the amplitude (7) and compare
the answer with the bulk mode that solves the wave equa-
tion (2) in the BTZ geometry. This bulk mode takes the
form f!`(t,', ⇢) = e

�i!t
e

i`'
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Here 2F1(a, b, c ; z) denotes the ordinary hypergeometric
function and ⇢ = r

2

+

/r

2 parametrizes the radial coordi-
nate. In fact, the mode function constitutes an SL(2,R)
matrix element, f!`(g) = hh, i(!+`)

4r+
|g |h, i(!�`)

4r+
i, which

evidently satisfies the free bulk wave equation (2).

To compute the CFT matrix element (7), it is con-
venient to start in Euclidean signature, define �h(g) as
the operator that pokes a hole in the 2D Euclidean space
time, and then Wick rotate back to Lorentzian signature.
Moreover, we will choose to work in the uniformizing
coordinate system (Z, Z̄) introduced in (10)-(11). This
choice will greatly facilitate our analysis.

A CFT amplitude on a surface with a cross-cap is most
conveniently analyzed by introducing the so-called Schot-
tky double, as shown in fig 2. In our case, ⌃ is a cylinder
with a circular hole, and its Schottky double ⌃̃ is two
cylinders connected via a narrow bridge. ⌃̃ admits an
(orientation reversing) involution that identifies diamet-
ric opposite points on the circular boundary of ⌃. The
reflection symmetry restricts its cross ratio Z to be real

Z = Z̄ ⌘ ⇢.

A sphere with two punctures and a cross-cap has one
single real modulus.

Since the boundary reflects left-moving into right-
moving modes, the involution interchanges the two chiral
halves of the CFT. Moreover, thanks to the projection
onto the conformal sector h in the intermediate channel,
the CFT amplitude on the double ⌃̃ takes the form of a
single non-chiral conformal block Fh
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turn factorizes into the product of two chiral blocks:
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Here we absorbed the product of OPE coe�cients
C

12hCh34 into the normalization of the conformal block.
The Z-dependence of the conformal blocks is universal
and completely fixed by conformal invariance.

The amplitude �h
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FIG. 2: The CFT amplitude with the insertion of an Ishibashi
boundary state (left) and its Schottky double (right). Due to
the projection onto the conformal sector h in the intermediate
channel, the amplitude is given by a single conformal block.

square root of the amplitude on the double ⌃̃.
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So our task is: (i) compute the conformal block, (ii) take
the square root, (iii) compare the result with the mode
function (12) in the BTZ black hole background (c.f. [7]).

Virasoro conformal blocks are uniquely determined
by the conformal Ward identity. An explicit expres-
sion is not available yet, however, though exact or semi-
classical properties are known. Known exact results are
(a) Zamolodchikov’s recursion formula [8] relating Vi-
rasoro and global conformal blocks and (b) the modu-
lar ‘fusion’ matrices, obtained by Ponsot and Teschner
from Liouville CFT and quantum Teichmuller theory [9].
Semi-classical expressions have recently been obtained in
[10]. Unfortunately, none of the known results allow us
to read o↵ the specific answer that we need.

Given this state of a↵airs, it’s a reasonable strategy at
this point to invert the sequence of step (i)-(iii), and first
deduce the desired expression for the 2D conformal block
that we need in order to find a precise match
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⇥
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3 4

⇤
(⇢) = f!`(⇢) (15)

between the CFT amplitude and the bulk mode function.
Imposing this match, we deduce that the conformal block
should take the following form

 h

⇥
1 2

3 4

⇤
(Z) = Zh

2F1

�
h+ i

2r+
h

13

, h+ i
2r+

h

24

, 2h ;Z
�
(16)

To see this, note that taking the chiral conjugate of the
conformal block  h

⇥
1 2

3 4

⇤
(Z) amounts flipping the sign of

i
2r+
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13

and i
2r+

h

24

inside the argument of the hyper-
geometric function. Then, using the standard identity

2F1(a, b, c ;Z) = (1�Z)c�a�b
2F1(c� a, c� b, c ;Z), direct

inspection shows that the CFT amplitude (13)-(14) re-
produces the expression (12).
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between the CFT amplitude and the bulk mode function. Imposing this
match, we deduce that the conformal block should take the following form
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To see this, note that taking the chiral conjugate of the conformal block
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2F1(a, b, c ;Z) = (1�Z)c�a�b

2F1(c� a, c� b, c ;Z)

things match.

The uniformizing coordinate system (11) has the special property that
the semi-classical Virasoro conformal blocks e↵ectively reduce to global con-
formal blocks [?].
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The monodromy properties of Virasoro blocks are identical to those of the
invariant tensors obtained by gluing together two Clebsch-Gordan coe�cients
of the quantum group U
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(sl(2)).
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Our	
  proposal	
  predicts	
  	
  that	
  the	
  semi-­‐classical	
  Virasoro block	
  is	
  given	
  by:
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Figure 10: Factorization of hOO�i amplitude.

45

Oi Oj

⌘ ! 0

Oi Oj

Figure 9: Factorization of hOO�i amplitude.

Oi Oj
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Conclusion:

Reconstruction	
  of	
  bulk	
  physics	
  in	
  AdS/CFT	
  is	
  an	
  important	
  problem	
  that	
  will	
  likely	
  
teach	
  us	
  new	
  things	
  about	
  the	
  nature	
  of	
  black	
  hole	
  horizons	
  and	
  space-­‐time.

Bulk	
  locality	
  should	
  be	
  an	
  approximate,	
  emergent,	
  dynamical	
  property	
  of	
  the	
  CFT.

Cross	
  cap	
  operators	
  are	
  natural	
  CFT	
  observables	
  that	
  appear	
  to	
  behave	
  like	
  
gravitationally	
  dressed	
   local’	
  operators	
  in	
  the	
  bulk.	
  

CFT	
  bootstrap	
  techniques	
  become	
  helpful	
  tools	
  in	
  bulk	
  reconstruction.


