Interacting higher spin CFTs in 3d

Bengt E.W. Nilsson

Chalmers University of Technology, Göteborg

Talk at
"Inward Bound- Conference on Black Holes and Emergent Spacetime" ,
Nordita, August 19, 2016

Talk based on:

- arXiv: 1602.01682 (with Hampus Linander) and work in progress
- arXiv: $1312.5883,1506.03328$ and work in progress

Also relevant : topologically gauged $\mathrm{SO}(\mathrm{N}) \mathcal{N}=8 \mathrm{CFT}_{3}$

- arXiv:1204.2521 (with Ulf Gran, Jesper Greitz and Paul Howe)
- arXiv:0809.4478 (with Ulf Gran), arXiv:0906.1655 (with Chu)
- "Critical solutions in", arXiv: 1304.2270

Introduction and Content

$(2+1)$-dimensional higher spins $(s \geq 2)+$ scalar CFT:
We will consider a sourced unfolded equation for a scalar field Φ

$$
\begin{equation*}
\mathcal{D} \Phi|0\rangle_{q}=S(\Phi)|0\rangle_{q}, \quad \text { with } \quad \mathcal{D}=d+A \tag{1}
\end{equation*}
$$

and suggest some non-linear source terms $S(\Phi)$.
This unfolded equation is related to the hs field strength equation

$$
\begin{equation*}
F(A)=T(\Phi, \mathcal{D} \Phi) \tag{2}
\end{equation*}
$$

which however will be discussed in some detail only for $T=0$.
The aim of this talk is to describe

- how to derive the spin 2 covariant spin 3 Cotton eq from $F=0$
- and how to obtain the correct non-linear spin 2 - spin 0 equations from the sourced unfolded equation above
We work in a multi-commutator expansion of the star product \star corresponding to Weyl ordering (\star not written explicitly).

Motivation

MOTIVATION:

Interacting 3d higher spin (hs) CFTs coupled to scalars

- have not yet been constructed (compare to Vasiliev hs in $A d S$)
- seems to be part of the $A d S_{4} / C F T_{3}$ with $\mathrm{N} /$ mixed bc for spin ≥ 2

Related work: Horne-Witten (1988), Fradkin-Linetsky (1989), Pope-Townsend (1989), Vasiliev (1992), Segal (2002), Shaynkman-Vasiliev (2001,...), Vasiliev (2009, 2012,...) Damour-Deser (1987), Bergshoeff et al (2009), Henneaux et al (2015)

3d conformal higher spin basics

Basics

- We introduce two hermitian $\operatorname{so}(2,1)$ spinorial operators q^{α}, p_{α} satisfying $\left[q^{\alpha}, p_{\beta}\right]=i \delta_{\beta}^{\alpha},(\alpha, \beta=1,2)$. Then
- $M^{a}=-\frac{1}{2}\left(\gamma^{a}\right)_{\alpha}{ }^{\beta} q^{\alpha} p_{\beta} \Rightarrow \operatorname{so}(2,1)$, the 3d Lorentz algebra
- all bilinears in $q^{\alpha}, p_{\alpha}=>$ the set $P^{a}, M^{a}, D, K^{a}=>$ so $(3,2)$, the 3 d conformal algebra
- the Weyl ordered form of all even polynomials => the generators of the hs algebra $h s(S O(3,2))$
- this corresponds to the simplest realization of this hs algebra \rightarrow compare to c_{i}, c^{i} in e.g. Günaydin-Warner (1986):
- canonical pairs $c_{i}, c^{i}, a_{i}(r), a^{i}(r)$ and $b_{i}(r), b^{i}(r)$ with $i=1,2$ and $r=1,2, . . p$

The higher spin set-up

The higher spin one-form gauge potential A

- $A=\Sigma_{s=2}^{\infty}(-i)^{s-1} A_{s}$ where
- $A_{s}=e^{a_{1} \ldots a_{s-1}}(x) P_{a_{1} \ldots a_{s-1}}+\ldots \ldots+f^{a_{1} \ldots a_{s-1}}(x) K_{a_{1} \ldots a_{s-1}}$
- similar expansions valid for the field strength $F=d A+A^{2}$ and the gauge parameter Λ
- the action is "just" the Chern-Simons one for $h s(S O(3,2))$ written out explicitly by Fradkin-Linetsky in 1987 including all auxiliary fields
- auxiliary fields $=$ here Stückelberg and dependent fields
- we will instead study the theory AFTER eliminating all the auxiliary fields! ("solving" the Chern-Simons eq $F=0$)

The higher spin set-up: spin 2

The standard spin 2 case: $A_{2}(x ; q, p)$
$A_{2}=e^{a} P_{a}+\omega^{a} M_{a}+b D+f^{a} K_{a}$
spin 2 generators with $n_{q}+n_{p}=2$ where $\left(n_{q}, n_{p}\right)=(q, p)$-content

$$
\begin{gathered}
P^{a}(2,0)=-\frac{1}{2}\left(\sigma^{a}\right)_{\alpha \beta} q^{\alpha} q^{\beta}, M^{a}(1,1)=-\frac{1}{2}\left(\sigma^{a}\right)_{\alpha}^{\beta} q^{\alpha} p_{\beta} \\
D(1,1)=-\frac{1}{4}\left(q^{\alpha} p_{\alpha}+p_{\alpha} q^{\alpha}\right), K^{a}(0,2)=-\frac{1}{2}\left(\sigma^{a}\right)^{\alpha \beta} p_{\alpha} p_{\beta}
\end{gathered}
$$

The higher spin set-up: spin 3

The spin 3 part: $A_{3}(x ; q, p)$ with $n_{q}+n_{p}=4$
$A_{3}=e^{a b} P_{a b}+\tilde{e}^{a b} \tilde{P}_{a b}+\tilde{e}^{a} \tilde{P}_{a}+\tilde{\omega}^{a b} \tilde{M}_{a b}+\tilde{\omega}^{b} \tilde{M}_{a}+\tilde{b} \tilde{D}+\tilde{f}^{a} \tilde{K}_{a}+\tilde{f}^{a b} \tilde{K}_{a b}+f^{a b} K_{a b}$

- a tilde indicates that the flat vector indices $a b \ldots=$ irrep
- $P^{a b}(4,0)$ and $K^{a b}(0,4)$ are automatically irreducible (Fierz)

Spin 3 generators:

$$
\begin{gathered}
P^{a b}(4,0)=\frac{1}{4}\left(\sigma^{a}\right)_{\alpha \beta}\left(\sigma^{b}\right)_{\gamma \delta} q^{\alpha} q^{\beta} q^{\gamma} q^{\delta} \\
\tilde{P}^{a b}(3,1)=\frac{1}{4}\left(\sigma^{(a}\right)_{\alpha \beta}\left(\sigma^{b)}\right)_{\gamma}{ }^{\delta} q^{\alpha} q^{\beta} q^{\gamma} p_{\delta} \\
\tilde{P}^{a}(3,1)=\frac{1}{16}\left(\sigma^{a}\right)_{\alpha \beta}\left(q^{\alpha} q^{\beta} q^{\gamma} p_{\gamma}+q^{(\alpha} q^{\beta} p_{\gamma} q^{\gamma)}+q^{(\alpha} p_{\gamma} q^{\beta} q^{\gamma)}+p_{\gamma} q^{\alpha} q^{\beta} q^{\gamma}\right)
\end{gathered}
$$

etc to

$$
K^{a b}(0,4)=\frac{1}{4}\left(\sigma^{a}\right)^{\alpha \beta}\left(\sigma^{b}\right)^{\gamma \delta} p_{\alpha} p_{\beta} p_{\gamma} p_{\delta}
$$

The Scalar field

The scalar field $\Phi(x ; p)$ defined as acting on $|0\rangle_{q}$
Singleton: $\left(E_{0}, s\right)=\left(\frac{1}{2}, 0\right)$ repr of $S O(3,2)$
$\Phi(x ; p)=\Sigma_{n=0}^{\infty}(-i)^{n} \phi^{a_{1} \ldots a_{n}}(x) K_{a_{1} \ldots a_{n}}(p)$,
that is

$$
\Phi(x ; p)=\phi(x)-i \phi^{a}(x) K_{a}(p)-\phi^{a b}(x) K_{a b}(p)+. .
$$

where

$$
K_{a_{1} \ldots a_{n}}(p)=K_{a_{1} \ldots a_{n}}(0,2 n)=K_{a_{1}} K_{a_{2}} \ldots . . K_{a_{n}}
$$

- We will now start "solving" $F=0$ assuming that the dreibein is invertible and return to the scalar eq later!

The spin 2 equations

The pure spin 2 equations: all spin 3 and higher fields are set to zero

- $F_{2}=0$ in the gauge $b_{\mu}=0\left(\right.$ using $\left.\Lambda^{a}(0,2)\right)$:

$$
\begin{aligned}
P_{a}(2,0): & F^{a}(2,0)=T^{a}=0, \text { the torsion constraint }=>\omega=\omega(e) \\
M_{a}(1,1): & F^{a}(1,1)=R^{a}-2 \epsilon^{a}{ }_{b c} e^{b} \wedge f^{c}=0, \text { solved for } f_{\mu}{ }^{a}(\text { below }) \\
D(1,1): & F(1,1)=e^{a} \wedge f_{a}=0, \text { constraint on } f_{\mu}{ }^{a}\left(f_{[\mu \nu]}=0\right) \\
K_{a}(0,2): & F^{a}(0,2)=D f^{a}=0, \text { Cotton equation }
\end{aligned}
$$

Schouten tensor $S_{\mu \nu}$

$$
f_{\mu \nu}=\frac{1}{2}\left(R_{\mu \nu}-\frac{1}{4} g_{\mu \nu} R\right)=\frac{1}{2} S_{\mu \nu}
$$

Field equation (3rd order in derivatives): Cotton equation

$$
C_{\mu \nu}:=\epsilon_{\mu}{ }^{\rho \sigma} D_{\rho} S_{\sigma \nu}=0
$$

which is symmetric and traceless, i.e., in irrep 5 of $S O(2,1)$

The spin 3 equations

Analysis of the spin 3 equations: (BN (2013)), (Linander, BN (2016))
(here all fields with spin ≥ 4 are set to zero)

- recall the spin 3 generators: $\left(n_{q}, n_{p}\right)$

$$
P_{a b}(4,0), \tilde{\tilde{P}}_{a b}(3,1), \tilde{P}_{a}(3,1), \ldots \ldots, K_{a b}(0,4)
$$

- the corresponding $F_{3}\left(n_{q}, n_{p}\right)=0$ eqs divide into 3 groups:
- equations which make it possible to solve for all fields in A_{3} in terms of the frame field $e_{\mu}{ }^{a b}$ (includes the "cascade" below)
- after implementing a set of gauge conditions (eliminating all Stückelberg fields) some of the equations become constraints
- the last component eq is the spin 3 Cotton equation:

$$
F_{3}(0,4)=0
$$

- the spin 4 sector behaves the same way
- linearly all spins behave like this (Pope-Townsend (1989))

The spin 3 cascade equations

The subset of equations in irrep 5 gives :

- the cascade solution $f_{\mu}{ }^{a b} \rightarrow \tilde{f}_{\mu}{ }^{a b} \rightarrow \tilde{\omega}_{\mu}{ }^{a b} \rightarrow \tilde{e}_{\mu}{ }^{a b} \rightarrow e_{\mu}{ }^{a b}$
- and the 5 'th order spin 3 Cotton equation (last equation below)
- $F^{a b}(4,0)=$
$D e^{a b}+e^{c} \wedge \tilde{e}^{d(a} \epsilon_{c d}{ }^{b)}-\left(e^{(a} \wedge \tilde{e}^{b)}-\operatorname{trace}\right)=0$,
- $F^{a b}(3,1)=$
$\left.D \tilde{e}^{a b}-2 e^{c} \wedge \tilde{\omega}^{d(a} \epsilon_{c d}{ }^{b}\right)-\left(e^{(a} \wedge \tilde{\omega}^{b)}-\operatorname{trace}\right)-4 f^{c} \wedge e^{d(a} \epsilon_{c d}{ }^{b)}=0$,
- $F^{a b}(2,2)=$
$D \tilde{\omega}^{a b}+3 e^{c} \wedge \tilde{f}^{d(a} \epsilon_{c d}{ }^{b)}-\left(e^{(a} \wedge \tilde{f}^{b)}+f^{(a} \wedge \tilde{e}^{b)}-\operatorname{trace}\right)$
$+3 f^{c} \wedge \tilde{e}^{d(a} \epsilon_{c d}{ }^{b)}=0$,
- $F^{a b}(1,3)=$
$D \tilde{f}^{a b}-4 e^{c} \wedge f^{d(a} \epsilon_{c d}{ }^{b)}+\left(f^{(a} \wedge \tilde{\omega}^{b)}-\operatorname{trace}\right)-2 f^{c} \wedge \tilde{\omega}^{d(a} \epsilon_{c d}{ }^{b)}=0$,
- $F^{a b}(0,4)=$
$D f^{a b}+\left(f^{(a} \wedge \tilde{f}^{b)}-\operatorname{trace}\right)+f^{c} \wedge \tilde{f}^{d(a} \epsilon_{c d}{ }^{b)}=0 .($ spin 3 Cotton eq $)$
- the terms in brackets simplify after choosing gauges (not unique)
- remaining parts play a role later!

Spin 3 gauges

Spin 3 gauge choices
The spin 3 fields in irrep 3: Using the gauge symmetry we can set

- $\tilde{e}_{\mu}{ }^{a}(3,1)=0, \quad \tilde{\omega}_{\mu}{ }^{a}(2,2)=e_{\mu}{ }^{a} \hat{\omega}$, etc
- remaining spin 3 symmetry parameters:

$$
\begin{equation*}
\Lambda^{a b}(4,0), \quad \tilde{\Lambda}^{a b}(3,1), \quad \tilde{\Lambda}^{a}(3,1) \tag{3}
\end{equation*}
$$

- i.e. the spin 3 "translations", "Lorentz" and "dilatations"
- the spin 3 dilatation gauge field $\tilde{b}_{\mu}(2,2)$ and the above (hatted) fields are also determined by the zero field strength equations!
$\Rightarrow>$ All fields are then given in terms of the spin 3 frame field $e_{\mu}{ }^{a b}=>$
- The spin 2 covariant spin 3 Cotton eq is quite complicated even when neglecting all spin ≥ 4 fields: (see the arXiv)
- when expressed in terms of $e_{\mu}{ }^{a b}$ it has more than 1300 terms!
- about 900 terms in the metric version!

Spin 3 Cotton eq

Some spin 3 linearized equations
Define the operator \mathcal{O} by $\left.\tilde{e}_{\mu}^{a b}\right|_{\operatorname{lin}}\left(e_{\mu}{ }^{a b}\right)=(\mathcal{O} e)_{\mu}{ }^{a b}$ Then

$$
\begin{aligned}
& \left.\tilde{\omega}_{\mu}{ }^{a b}\right|_{\text {lin }}\left(e_{\mu}{ }^{a b}\right)=-\frac{1}{2}\left(\mathcal{O}^{2} e\right)_{\mu}{ }^{a b} \\
& =-\frac{1}{2}\left(-\square e_{\mu}{ }^{a b}+\partial_{\mu} \partial^{\nu} e_{\nu}^{a b}-\frac{4}{3} e_{\mu}{ }^{(a} \partial_{\nu} \partial_{\rho} e^{|\nu \rho| b)}+\frac{4}{3} e_{\mu}{ }^{(a} \square e_{\nu}{ }^{b) \nu}\right. \\
& \quad+\text { another } 12 \text { terms }) .
\end{aligned}
$$

Spin 3 Cotton equation

$$
\left.C_{\mu}{ }^{a b}(e)\right|_{\text {lin }}:=\left(\left.ब f(e)\right|_{\text {lin }}\right)_{\mu}^{a b}=\frac{1}{4!} \mathscr{q}\left(\mathcal{O}^{4} e+\mathcal{O} \hat{\mathcal{O}} \mathcal{O}^{2} e\right)_{\mu}{ }^{a b}=0 .
$$

- here ε, \mathcal{O} are constructed from an epsilon tensor and a derivative - $\hat{\mathcal{O}}$ is another operator similar to \mathcal{O}
- by turning ∂_{μ} into D_{μ} we get the first term in the full Cotton eq:

$$
C_{\mu \nu \rho}=C_{\mu \nu \rho}\left(D^{5}\right)+C_{\mu \nu \rho}\left(R, D^{3}\right)+C_{\mu \nu \rho}\left(R^{2}, D\right)
$$

Spin 3 Cotton eq: checks on the non-linear equations

Checks on the spin 2 covariant spin 3 Cotton equation (> 1300 terms)

- The Cotton eq is invariant under spin 3 translation, Lorentz and scale transformations related to $\Lambda^{a b}(4,0), \tilde{\Lambda}^{a b}(3,1), \tilde{\Lambda}^{a}(3,1)$! (this is true provided the other parameters are solved for and inserted into the transformations rules for translations etc)
- the linearized Cotton eq in the metric formulation coincides with the one of Damour-Deser (1987)
- a nice way to write it is (Bergshoeff et al (2010), Henneaux et al (2015))

$$
\left.C_{\mu \nu \rho}\right|_{\text {lin }}(h):=\left.(q)_{\mu}{ }^{\sigma}(\notin)_{\nu}^{\tau} S_{\sigma \tau \rho}\right|_{\text {lin }}=0
$$

where the linearized Schouten tensor
$\left.S_{\mu \nu \rho}\right|_{\text {lin }}(h):=\left.G_{\mu \nu \rho}\right|_{\text {lin }}-\left.\frac{3}{4} \eta_{(\mu \nu} G_{\rho)}\right|_{\text {lin }}$ (note the second term)
and the spin 3 "Einstein" tensor

$$
\left.G_{\mu \nu \rho}\right|_{\text {lin }}(h):=-\frac{1}{6}(q)_{\mu}^{a}(q)_{\nu}^{b}(q)_{\rho}^{c} h_{a b c}
$$

- the non-linear field $\tilde{\omega}_{\mu}^{a b}(e)$ is Lorentz invariant when linearized but not otherwise! (i.e. has no metric formulation)
- but $\left.\tilde{\omega}_{\mu}^{a b}\right|_{\text {lin }}(h)$ coincides with the Damour-Deser Ricci tensor

Coupling to a scalar field: unfolding

Unfolding (BN:1312.5883)

A minimal requirement: the unfolded equation must reproduce the conformal scalar equation in an arbitrary curved background:

$$
\square \phi-\frac{1}{8} R \phi=0
$$

This is easy to demonstrate: recall $A(q, p)$ while $\Phi(p)$

$$
\mathcal{D} \Phi|0\rangle_{q}=(d+A) \Phi|0\rangle_{q}=\left(d-i A_{2}-A_{3}+\ldots\right) \Phi|0\rangle_{q}=0
$$

- $|0\rangle_{q}$ component eq $=>\phi_{\mu}=-\partial_{\mu} \phi$
- dropping higher spin terms $s \geq 3$ here ($e_{\mu}{ }^{a}$ used)
- $K_{a}|0\rangle_{q}$ component eq $=>\frac{1}{8} R \phi$ from $f^{a}(0,2) K_{a}(0,2)$ term in A_{2}
- including the spin 3 sector gives $\square \phi-\frac{1}{8} R \phi+\tilde{f} \phi=0$ where $\tilde{f}:=e_{a}{ }^{\mu} \tilde{f}_{\mu}{ }^{a}(1,3)$ from solving $F_{3}=0$

Further requirements

Back reaction (BN:1506.03328)

The term $-\frac{1}{8} R \phi$ leads to back reaction in the spin 2 Cotton equation.

- => must add source terms to the unfolded equation!

This follows from from looking at the component eqs $->$
In detail: expand $\mathcal{D} \Phi|0\rangle_{q}=0$ in $K_{a_{1} \ldots a_{n}}|0\rangle_{q}$:

$$
\begin{array}{ll}
n=0: & \left(\partial_{\mu} \phi+\phi_{\mu}+\mathcal{O}\left(e_{\mu}^{a b} \phi_{a b}(s=3)+\ldots\right)\right)|0\rangle_{q}=0, \\
n=1: & \left(D_{\mu} \phi^{a}+f_{\mu}^{a} \phi+6 \phi_{\mu}^{a}+\mathcal{O}(s \geq 3)\right) K_{a}|0\rangle_{q}=0, \\
n=2: & \left(D_{\mu} \phi^{a b}+f_{\mu}{ }^{(a} \phi^{b)}+15 \phi_{\mu}^{a b}+\mathcal{O}(s \geq 3)\right) K_{a b}|0\rangle_{q}=0,
\end{array}
$$

where $D=d+\omega_{s=2}$.
For $n \geq 1$ we split these into irreps (in μ and $a, b, .$.) with spin

$$
\begin{equation*}
n^{-}=n-1, \quad n^{0}=n, n^{+}=n+1 \tag{4}
\end{equation*}
$$

Background discussion: the classical case

The $n=0$ eq $=>\phi_{\mu}=-\partial_{\mu} \phi$ (as above).
Inserting this into the other equations gives

$$
\begin{aligned}
n=1^{-}: & -\square \phi+f_{\mu}{ }^{\mu} \phi+\mathcal{O}(s \geq 3)=0 \\
n=1^{0}: & \epsilon^{\mu \nu a} f_{\mu \nu}+\mathcal{O}(s \geq 3)=0 \\
n=1^{+}: & -D_{(\mu} \partial_{\nu)} \phi+f_{(\mu \nu)}+6 \phi_{\mu \nu}+\mathcal{O}(s \geq 3)=0 .
\end{aligned}
$$

$$
\begin{aligned}
n=2^{-}: & D_{\mu} \phi^{\mu a}+\frac{1}{2} f_{\mu}{ }^{\mu} \phi^{a}+\frac{1}{6} f^{a b} \phi_{b}+\mathcal{O}(s \geq 3)=0 \\
n=2^{0}: & \epsilon^{\mu \nu(a} D_{\mu} \phi_{\nu}^{b)}+\frac{1}{2} \epsilon^{\mu \nu(a} f_{\mu}^{b)} \phi_{\nu}+\mathcal{O}(s \geq 3)=0 \\
n=2^{+}: & D_{(\mu} \phi_{\nu \rho)}+f_{(\mu \nu} \phi_{\rho)}+15 \phi_{\mu \nu \rho}+\mathcal{O}(s \geq 3)=0 .
\end{aligned}
$$

- note that the n^{+}equations will just determine $\phi(x)_{\mu_{1} \ldots \mu_{n+1}}$

Unfolding

From the equations on the previous slide we find that

- the 1^{-}eq $=>$the linear Klein-Gordon equation (as above)
- the 2^{-}eq $=>$

$$
\left(R_{\mu \nu}-2 f_{\mu \nu}-2 f_{\rho}^{\rho} g_{\mu \nu}\right) \partial^{\nu} \phi-\left(D_{\nu} f_{\mu}^{\nu}-D_{\mu} f_{\nu}^{\nu}\right) \phi=0 .
$$

but this eq becomes an identity if we set, as found from $F_{2}=0$,

$$
f_{\mu \nu}=\frac{1}{2} S_{\mu \nu}=\frac{1}{2}\left(R_{\mu \nu}-\frac{1}{4} g_{\mu \nu} R\right),
$$

where $S_{\mu \nu}$ is the Schouten tensor.

- the 2^{0} part eq =>

$$
-\frac{1}{2} C_{\mu \nu} \phi=0
$$

i.e. the Cotton equation without a source term!

What kind of coupled spin 2 / scalar theory are we aiming for? -->

Topologically gauged BLG theory

Prototype field theory: gauged CFT_{3} with $\mathcal{N}=8$ susy
(Gran, BN (2008)), (Gran, Greitz, Howe, BN(2012))

- $B L G$ scalars $X^{i}{ }_{a}: i, j, . . S O_{R}(8)$ and $a, b, .$. gauge group indices,
- The bosonic part of L is

$$
L=\frac{1}{g} L_{\text {conf }}^{\text {sugra }}+L_{\text {cov }}^{B L G}-\frac{1}{16} X^{2} R-V_{\text {new }}^{(t t)}
$$

the total scalar potential has

- a contribution from $L_{\text {cov }}^{B L G}$

$$
V_{B L G}^{(s t)}=\frac{\lambda^{2}}{12}\left(X^{i}{ }_{a} X^{j}{ }_{b} X^{k}{ }_{c} f^{a b c d}\right)\left(X^{i}{ }_{e} X^{j}{ }_{f} X^{k}{ }_{g} f^{e f g}{ }_{d}\right)
$$

- and a new term from the topological gauging

$$
V_{\text {new }}^{(t t)}=\frac{e g^{2}}{2 \cdot 32 \cdot 32}\left(\left(X^{2}\right)^{3}-8\left(X^{2}\right) X_{b}^{j} X_{c}^{j} X_{c}^{k} X_{b}^{k}+16 X_{c}^{i} X_{a}^{i} X_{a}^{j} X_{b}^{j} X_{b}^{k} X_{c}^{k}\right)
$$

- setting $\lambda=0=>S O(4)$ can be extended to $S O(N)$ for any N !

The Cotton equation in gauged CFTs

- The bosonic field equations relevant for this talk are obtained by replacing $X^{i}{ }_{a}(x)$ by one scalar $\phi(x)$:

$$
\square \phi-\frac{1}{8} R \phi-\frac{27 g^{3}}{32 \cdot 32} \phi^{5}=0
$$

and

$$
\begin{aligned}
& C_{\mu \nu}-\frac{g}{16}\left(R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R\right) \phi^{2}-\frac{g}{2}\left(\partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} g_{\mu \nu} \partial^{\rho} \phi \partial_{\rho} \phi\right) \\
& -\frac{g}{8}\left(\phi \square \phi+\partial^{\rho} \phi \partial_{\rho} \phi\right) g_{\mu \nu}+\frac{g}{8}\left(\phi D_{\mu} \partial_{\nu} \phi+\partial_{\mu} \phi \partial_{\nu} \phi\right) \\
& +\frac{9 g^{3}}{2 \cdot 32 \cdot 32} g_{\mu \nu} \phi^{6}=0
\end{aligned}
$$

The Cotton equation in gauged CFTs and unfolding

In the hs context we split all equations into irreps.
The irreducible spin 2 Cotton eq is in the irrep 5 and reads

- $C_{\mu \nu}-\left.\frac{g}{16}\left(\phi^{2} R_{\mu \nu}-2 \phi D_{\mu} \partial_{\nu} \phi+6 \partial_{\mu} \phi \partial_{\nu} \phi\right)\right|_{5}=0$

This is the equation we need to obtain from the unfolded equation!

- now, using the 2^{-}and 1^{+}parts of the unfolded eq to eliminate $D_{\mu} \partial_{\nu} \phi$ in the above eq our prototype Cotton eq becomes:

$$
C_{\mu \nu}=\left.\frac{3 g}{8}\left(\phi_{\mu} \phi_{\nu}-2 \phi \phi_{\mu \nu}\right)\right|_{5}
$$

- But recall the 2^{0} part of the unfolded eq $\mathcal{D} \Phi|0\rangle_{q}=0$:

$$
-\frac{1}{2} C_{\mu \nu} \phi=0
$$

i.e. the Cotton equation without a source term!

Source terms

Unfolded eq with sources

Thus we must add source terms to the unfolded equation

- the source term (1-form, $\operatorname{dim}=L^{-\frac{1}{2}}$) that seems to do the job is

$$
S_{M}=-i \lambda_{1} M\left(\Phi^{*} \Phi\right) \Phi \text { with } M=d x^{\mu} e_{\mu}{ }^{a} M_{a}
$$

- in fact, expanding in powers of K_{a} gives

$$
S_{M}|0\rangle_{q}=-i \lambda_{1} M\left(\left(\phi^{a} \phi^{b}-2 \phi \phi^{a b}\right) \phi K_{a b}+\ldots .\right)|0\rangle_{q}
$$

- with this source term the 2^{0} eq gives the Cotton equation above

$$
C_{\mu \nu}=\left.36 \lambda_{1}\left(\phi_{\mu} \phi_{\nu}-2 \phi \phi_{\mu \nu}\right)\right|_{\mathbf{5}}
$$

which indicates that we are on the right track!

Sixth order potential

The sixth order potential
From dimensional arguments alone it is possible to add also

$$
S_{K}=-i \lambda_{2} K\left(\Phi^{*} \Phi\right)^{2} \Phi \text { with } K=d x^{\mu} e_{\mu}{ }^{a} K_{a}
$$

which gives the contributions to the unfolded equation

$$
\begin{aligned}
P^{a} 6 \lambda K_{a} \Phi^{5} \mid 0>_{q} & =0, \quad n=0, \\
& =-3 \lambda_{2} \phi^{5} \mid 0>_{q}, \quad n=1^{-}, \\
& =-10 \lambda_{2} \phi^{b} \phi^{4} K_{b} \mid 0>_{q}, \quad n=2^{-} .
\end{aligned}
$$

- thus these new terms give the correct non-linear spin 2 Cotton and Klein-Gordon equations
- The 2^{-}equation (def of Schouten) remains the same due to new terms on both sides which cancel

Comments

- Conclusions:
- we derived the spin 2 covariant spin 3 Cotton (complicated!)
- we proposed source terms for the unfolded eq which seems to give the correct spin 2 Cotton/scalar theory (for $F=T$ see BN:1506.03328)
- but many aspects are still unclear:
- what are the full set of source terms in the two higher spin eqs?
- what is the Lagrangian in terms of $A(x ; q, p)$ and $\Phi(x ; p)$??
- is there a hs invariant metric definition? (Campoleoni, Fredenhagen, ...)
- does $\hat{g}_{\mu \nu}=\operatorname{Tr}\left(e_{(\mu} f_{\nu}\right)$ (has dim= L^{-2}) work?
- is 3d conformal hs-theory on $A d S_{3}$ a new theory?

$$
(s l(\lambda) \times \operatorname{sl}(\lambda) \leftarrow \operatorname{so}(1,2) \times \operatorname{so}(1,2) \rightarrow h s(s o(3,2)))
$$

- can we learn anything about derivative dressing in $A d S$?
(Bekaert, Skvortsov, Taronna, , Erdmenger,...)
- what is its exact role in $A d S_{4} / C F T_{3}$? (N/mixed bc)
(Giombi, Yin, Klebanov, ...)

